
XQueue: Extreme Fine-grained Concurrent Lock-less Queue
Poornima Nookala1, Peter Dinda2, Kyle Hale3, Ioan Raicu4

1,3,4Illinois Institute of Technology {pnookala@hawk.iit.edu, khale@cs.iit.edu, iraicu@cs.iit.edu}, 2Northwestern University {pdinda@northwestern.edu}

Overview
A single general purpose shared memory machine today
may have hundreds of hardware threads available. Op-
erations that may run in tens of cycles on a single core
using a single thread can take upwards of millions of
cycles when multiple threads are competing for shared
resources. The concurrent multiple producer, multiple
consumer (MPMC) queue is a critical building block in
numerous systems such as the task scheduler of a run-
time system (or operating system) that supports mod-
ern parallel programming models. We present the de-
sign, implementation, and evaluation of XQueue, a novel
lock-less concurrent queuing system with relaxed order-
ing semantics that is geared to realizing scalability to
hundreds of concurrent threads. XQueue implements
the MPMC interface using multiple queues in order to
reduce contention, applies simple deterministic load bal-
ancing techniques, and eliminates all use of locks and
atomic operations with a lock-less design. Experimental
results show that XQueue can deliver concurrent oper-
ations with 110 to 400 cycle latency at scales up to 384
hardware threads.

Concurrent queues are
terrible!

• Analyzed latency and throughput of mutex, spinlock,
semaphore and atomic fetch-and-add for an increment
operation on Mystic testbed.

• Mystic covers latest many-core architectures from Intel,
AMD, IBM and ARM with processors such as Haswell,
Broadwell, Skylake, Phi, Opteron, Ryzen, Threadripper,
Epyc, Power9, and ThunderX

• Latency of a single atomic increment on a Skylake
system with 192-cores and 384 hardware threads
when running on all threads concurrently is 33592
cycles whereas on Intel Xeon Phi Knights
Landing with 64-cores and 256 hardware threads,
latency reaches 3868 cycles.

• Latency of enqueue/dequeue operation on SPSC
queue takes 30 to 70 cycles depending on the
architecture and clock frequency.

• Average throughput of enqueue/dequeue operations
on SPSC queue reaches 270 million operations
per second on Intel Skylake 192-core machine.

• Latency of MPMC queue can reach up to millions of
cycles under high contention and throughput can
drop up to as low as 300,000 operations per
second.

• These results provide enough motivation to investigate
methods to exploit full concurrency on many-core
architectures while not compromising on the lowest
latency that can be achieved.

Figure 1: SPSC Queue Latency

Figure 2: MPMC Queue Latency

Figure 3: SPSC Queue Throughput

Figure 4: MPMC Queue Throughput

Problem Statement

Having scalable and fast queue data
structures under high concurrency is
a critical missing link towards the
realization of efficient parallel run-
times on many-core architectures. It
is essential to analyze and optimize basic
data structures that form the barebones of
parallel runtime systems so they do not be-
come the bottleneck for performance.

XQueue - Design and Implementation

• Core idea of XQueue is to have two queues per
core, one being the master and other being the auxiliary
queue.

• There is one master queue and one auxiliary queue on
each core with one producer thread per queue and a
common consumer thread for both queues.

• XQueue is implemented without using any types of
locks or atomic operations or barriers. Current
implementation uses B-queue [1] which is a lock-free
concurrent SPSC queue.

• XQueue employs load balancing techniques where
items can be added to auxiliary queues depending on
the topology defined (round-robin in Figure 5). Figure 5: XQueue Architecture

Microbenchmarks

• For evaluation purposes, we implemented two versions of
XQueue, one with a lock-less SPSC queue and another
one with mutex-based MPMC queue.

• The throughput achieved on skylake-192 with
XQueue with lock-less queue is 5 billion
operations per second. For XQueue using
lock-based queue, the average throughput achieved is
135 million operations per second.

• Latency of queue operations on XQueue using
lock-less queue is 110 to 400 CPU cycles on
average on all the different architectures with 384
threads of execution.

Figure 6: XQueue Throughput using
lock-less queue

Figure 7: XQueue Throughput using
lock-based queue

Figure 8: Latency of Xqueue using lock-less queue

latency
<400
cycles
with
384
threads!

Conclusion
• XQueue is an extremely scalable lock-less
con-current MPMC out of order queue that can scale
up to hundreds of threads of execution.

• Future Work: XTask, a light-weight parallel runtime
system which can achieve low latency and high
throughput at extreme scale.

[1] Junchang Wang, Kai Zhang, Xinan Tang, and Bei Hua. B-queue: Efficient and practical queuing for fast core-to-core communication.
International Journal of Parallel Programming, 41(1):137–159, Feb 2013.


