
Range Queries over Hashing

Clarissa Bruno Tuxen
Fluminense Federal University

cbtuxen@id.uff.br

Rayane de Araujo
Fluminense Federal Institute

rdearauj@syr.edu

Ioan Raicu
Illinois Institute of Technology

iraicu@cs.iit.edu

ABSTRACT
The present work proposes the investigation of the most ef-
ficient way for implementing range queries over hashing in
a Distributed Hash Table (DHT) environment. Currently,
some DHTs do support such queries, however in most cases
it is done in an inefficient way. One of the used approaches
uses brute force by individually querying each discrete value
within the range, which is not practical and could cause a
lack of performance when compared to systems that could
do it in an efficacious way. Oppositely, there are data struc-
tures that work well for range searches due to their internal
properties, such as Red-Black trees, however they do not
provide some desired DHT functionalities. When working
with fast-changing attributes, and continuous values, it be-
comes even harder to handle the system’s performance in
DHT environments, that intend to uniformly distribute the
keys using hashing. In this scenario, this research intends to
find a suitable approach to fulfill this need as well as to re-
produce it and evaluate its performance comparing with the
approaches that favor both sides, the range query and the
load balancing, so that those systems would achieve better
performance in terms of number of lookups and time.

Keywords
DHT; PHT; range query; hashing

1. INTRODUCTION AND BACKGROUND
DHTs systems do not properly support range queries them-

selves. A simple but non optimum manner of performing
this kind of queries consists in individually querying each
discrete value within a range. This type of approach is not
practical and could cause performance issues that would,
consequently, impede the system of working as expected.
When working with fast-changing attributes, and continu-
ous values, it becomes even harder to handle the system
performance in this scenario, specially regarding DHTs that
intend to uniformly distribute the keys using hashing [13].
In addition to that, the range searches would have a bet-
ter response time, if each discrete value from the range is
not being queried separately specially if the range is sparse,
which means that there are only a few keys within the range
and most of the searches would not return objects.

Zero-Hop Distributed Hash Table (ZHT) is a DHT-based
data structure which has been adjusted to handle High-End
Computing [11]. Based on a persistent NoSQL storage sys-
tem [7], it aims at providing an available, fault tolerant, ef-
ficient structure for systems that work with a great amount

of nodes. ZHT tries to merge the advantages of DHTs and
efficiency in terms of latency and throughput. However,
currently, it does not provide support for performing range
queries, making it susceptible to face the issues presented
above.

Based on the presented problems, this project has the goal
of discovering an efficient approach to support range queries
in a ZHT-like environment. As previously discussed, the
current range query approach that some DHT systems im-
plement is infeasible in most cases [2]. Therefore, it is the
intention of this research to find an approach which avoids
querying each value within the range, using a structure that
provides efficient range search over hashing, since the hash-
ing properties are desirable, aiming at being more efficient.
Implementing this approach, would lead ZHT to a faster
and more efficient solution regarding this task. Once the
ZHT storage system is based on hashing, studying how to
deal with range queries over hashing becomes an important
aspect to implement such queries in this context.

A DHT data structure is a system that allows data to be
distributed across nodes and easily retrieved in a scalable
manner [5]. It can be seen as a large scale multi-computing
hash table. More specifically, a hash table is a data struc-
ture that stores key-value pairs distributedly across the ta-
ble. It does so by applying a hash function to the unique
key in order to define in which entry of the table that pair
will be stored. Hash tables provide O(1) inserts, deletes
and lookups of keys, since they all require to first hash the
key and then apply the desired operation. Considering the
hash function to be efficient, this structure offers uniform
distribution of objects in the storing space. However, if it is
intended to retrieve sequential values in a range, such struc-
ture is inefficient due to the distribution of objects. The
proximity of similar items in the domain can not be explored
in the hashed key space since the objects were uniformly dis-
tributed across the storing space and this is a good property
to be kept once it provides load balancing.

In DHTs, instead of different entries there are different
nodes and it becomes clearer why a good distribution is de-
sired, since it provides load balancing of keys across nodes
and decreases overheads, avoiding bottlenecks. Even though
this data structure is widely used as a building block for sev-
eral distributed applications, it is limited to only efficiently
support exact match queries for the aforementioned reasons.
Range queries intend to retrieve all object within a certain
range of keys, making an efficient solution for this problem
non-trivial in DHTs.

As for data structures that support range queries, Red-



Figure 1: PHT representation. Each PHT node is one object to be stored in the DHT. The DHT key is the
PHT node lable, and the DHT value is the PHT node itself.

Black trees provide O(logn) insert, delete, and lookup of
keys [6]. The tree has five properties that may require
some maintenance when inserting or removing elements but
it still keeps the complexity mentioned above where n is
the amount of elements stored in the data structure. When
comparing Red-Black trees and hash tables, these operations
differ in two aspects that concern to this work. The former
searches their objects sequentially starting from the leftmost
leaf until the rightmost leaf is reached. So, it can retrieve all
elements within a given range regardless of the sparsity of
the values. It means that for a given range, if there are few
objects stored that belong to this range, it does not affect
the tree traversal, since the tree stores the values and during
the search the nodes are visited and these values are checked
against the range. The same cannot be guaranteed for hash
tables. As mentioned before, hash tables do not map the
proximity of similar items in the key domain to the hashed
domain, so the range search needs to individually lookup
each possible key in the range. This adds constraints to the
key domain, that needs to allow discretization as well as the
additional overhead that may change with the range density.

The second aspect that differs in both structures is the op-
erations time complexity. While the hash table provides con-
stant time for the basic operations (insert/delete/lookup),
the tree’s complexity depends on the amount of elements
to be stored. This could lead to a potential scalability is-
sue. However, for the range queries, hash tables’ complexity
varies according to the size of the range, while the tree’s
complexity varies according to the range density.

In this work, range density is based on the amount of
elements contained in the range. It is related to the amount
of hits and misses that occur when querying a given range.
As an example, in the domain [1, 3, 5, 10, 11, 12, 13, 14,
15], the density of the range [1, 5] is three; while the density
of [10, 15] is six. Thus, the second range is denser than the
first one, since there were more hits.

As for distribution of objects, both structures provide it.

Hash tables use their hash function to uniformly distributes
the keys among the storing space, while Red-Black trees are
balanced, with their properties assuring it.

Given the usability of DHTs, their mapping to hash tables,
and the desired properties found in hash tables and Red-
Black trees, this work intends to study a data structure that
can provide efficient range querying without loosing the good
performance for the basic operations.

2. PROPOSED SOLUTION
As mentioned in Section 1, the intent of this work is to re-

search the possibility of efficiently implementing the lookup
of range queries in a hashed structure in order to main-
tain the load balancing property adding the support for such
queries.

The initial goal consisted of searching and analysing exist-
ing solutions, so that, based on them, improved approaches
could be discussed and a better solution could be proposed.
However, due to time constraints the work was focused on
implementing one existing approach as well as evaluating its
performance and comparing it against both structures (hash
tables and Red-Black trees) that perform well for each case
mentioned in Section 1, with the nature of the work being a
real system development.

Since DHT can be seen as a multi-computing hash table,
as mentioned in the Section 1, a single-node implementa-
tion of a system using PHT over a hash table was evaluated
in order to simulate such approach. Once PHT is not an
open source project, the approach was implemented follow-
ing the properties described in [13]. It was implemented
using Java. The HashMap and TreeMap Java classes were
used to represent the hash table and the Red-Black tree,
respectively. The Pair class in the javafx.util.Pair is the
only dependency outside of the java.util package.

Among the approaches found, PHT [13] was selected, be-
cause it could be suitable for integrating with the ZHT struc-
ture. This approach suggests the use of an overlay network



Figure 2: PHT range query algorithms representation. The sequential algorithm finds with the prefix of the
lower bound and traverses the linked list of leaves until the leaf containing the upper range is found. The
parallel algorithm finds the smallest prefix that matches both boundaries in the range and from this node it
looks for leaves matching the range in parallel. When in the leaves, the buckets are checked and the keys
within the range have their values retrieved.

over the DHT layer. A good aspect of it is the fact that
it can be applied over any DHT once it does not require
any alteration in the DHT hashing function. The PHT ap-
proach suggests the usage of a binary trie that maintains
the distance property between its elements by using pre-
fixes. Because of that, the number of lookups is minimized
and the range query process is simplified and optimized. A
PHT overview can be found in the section 2.1.

Alongside with PHT, the naive brute force approach was
implemented using a hash table and providing range queries
by looking up each discrete key value within the given range.
As discussed earlier, even though this approach is not effi-
cient, it is the most intuitive way of performing such queries
in a hashed data structure.

Finally, the last approach considered was a Red-Black
tree, which is a balanced binary tree that stores its elements
in a sorted manner. It was implemented in order to provide
a comparison with an structure that can efficiently retrieve
range values.

A more detailed description of PHT is presented in the
following section as well as an understanding on how the
range queries are performed.

2.1 Prefix Hash Tree
PHT is a resilient and efficient trie-based distributed data

structure that implements more complex queries over a DHT
[13]. It is an overlay network that constructs a trie-based
structure over a DHT and takes advantage of its lookup
interface. Once PHT does not require any changes in the
DHT layer, it can be used with any DHT.

PHT is essentially a binary trie build over the DHT. Every
PHT node has a label (its prefix) and nodes can be either
internal nodes or leaves as in regular trees. Only the leaf
nodes store the key-value objects in an internal data struc-
ture, the bucket. The buckets have a maximum capacity,

the block size. An additional characteristic of leaves is that
they are part of a doubly linked list.

The PHT properties try to maintain the trie as concise
as possible. Nodes are created as leaves. During an insert,
they may become internal nodes if their bucket’s capacity
the block size) is exceeded, so they need to create children
to distribute their key-value pairs among them. This is the
split property. Similarly, during a delete, a merge operation
may be required. The five properties are described in [13].

The way that PHT works over a DHT is by considering
the PHT-nodes the objects to be stored in the DHT. The
key is the PHT-node label, and the value is the PHT-node it-
self. So, it is important to highlight that the PHT-nodes are
different from the DHT-nodes. While the former holds the
actual information, the latter stores the PHT-nodes. Figure
1 illustrates it.

In this work, the PHT approach was implemented follow-
ing its properties. In order to do so, the main operations of
PHT (lookup, insert, split, delete, merge, and range query)
were reproduced. A description of each one of them is pro-
vided as follows.

2.1.1 PHT basic operations
The basic operations that need to be supported include

the ones that provide the basic functionalities (insert, delete,
lookup) and the ones that maintain the PHT properties
(merge and split).

The lookup operation intends to retrieve the value of a
given key. It can be seen as containing two steps: finding
the PHT node (PHT-lookup) and retrieving it from the DHT
(DHT-lookup); and retrieving the value of the desired key.
The first step consists of tring different prefixes and using
them as the key for the DHT-lookup. It can be performed
either linearly or as a binary search. If the DHT-lookup
returns a PHT leaf node, this step is finished; otherwise,



 

Figure 3: The network trace hourly package distri-
bution.

the next prefix is decided based on the algorithm (linear or
binary seacrh) and used as the DHT key. In the second step,
the PHT-node’s bucket is traversed in order to retrieve the
value represented by the desired key. The present work only
reproduced the linear lookup due to time constraints and
the fact that the focus of this research is the range query
itself.

For the insert operation, a DHT-lookup will be done to
retrieve the PHT-node in the same way as the first step of
the lookup operation, retrieving a leaf node. If the bucket of
this node is already full when inserting a new value, a split
operation can become necessary.

A split operation is only performed when the PHT-node’s
bucket is full when a new object is inserted. In order to keep
the PHT’s properties, this requires the overloaded PHT-
node to create two children (because of one of the properties)
and split its objects among them. It is interesting to notice
that this may infer further splits, since it is possible for all
objects to go to the same child, making it overloaded and
requiring a split to be performed.

The delete process is also straight forward. A DHT-lookup
will be done in order to find the PHT leaf node that contains
the given value, once again in the same process as the first
step of the lookup and the insert. After the PHT-node is
retrieved, the object with the given key is removed from the
bucket, therefore it is removed from the entire system. In
this process, the inverse problem of the insert can happen.
It may be necessary to merge nodes into an ancestor.

The merge operation happens in order to maintain an-
other property that states that there is a minimum amount
of keys to be stored in each internal node’s sub-tree. This
number is related to the block size (bucket size), more pre-
cisely blocksize + 1. This operation only ensures that each
internal node has no less than two children and it also helps
the tree to stay concise.

2.1.2 PHT range operations
Regarding the range query process, [13] also proposes

two ways of doing it. The sequential algorithm performs
DHT-lookups for the PHT-node that is a leaf and is labeled
with the lower (or upper) bound prefix. Once such node is
found, all keys in the bucket are checked against the range
and those that belong within the range have their values
retrieved. While the upper (or lower) bound is not reached,

the leaves are traversed through the linked list and the check
of the keys in the buckets is performed. The entire operation
requires one PHT lookup operation at the beginning and it
adds the cost of traversing the amount of leaves that contain
keys within the range.

In the parallel range query, DHT-lookups will also be per-
formed in order to retrieve the node whose label is the small-
est prefix that covers the whole range. If it returns an inter-
nal node, the search is forwarded to the children that overlap
the range until leaves are reached. Once this happens, the
buckets are checked and the values whose keys belong to
the range are retrieved. If it is a leaf, only the final step in
necessary.

3. EVALUATION
This section presents a single node evaluation of the PHT

data structure. A comparison between this work’s imple-
mentation and the simulation in [13] is shown. Also, in order
to evaluate the PHT’s time performance, a comparison be-
tween PHT, hash tables, and Red-Black trees is performed.
Two different datasets were used in the experiments, syn-
thetic and network trace.

The following sections detail the environment setup and
the datasets.

3.1 Testbeds and Benchmark details
As mentioned in Section 2, all three data structures were

implemented in Java. The hash table and Red-Black tree
used Java’s classes HashMap and TreeMap, thus only an
interface was implemented using these classes inherent op-
erations.

The experiments were run in Ubuntu 16.04 LTS OS with
AMD Phenom II X6 1100T processor and 16 GB of RAM.
The implementations are single threaded and single node,
using the fact that the objects can be kept in memory.

3.2 Synthetic dataset
For this dataset, the experiment setup is composed of the

generation of 216 30-bit keys coming from an uniform dis-
tribution in a key space of 230. The PHT block size B is
set to 20. A java HashMap is used as the hash table layer
in which the PHT nodes will be stored. The focus of this
experiment is validating this work’s implementation against
the results presented in [13].

The metric used for evaluating this dataset is based on
the optimum amount of traversed leaves [13]. The optimum
value (O) can be obtained from the size of the result set (R)
and the block size (B). It can be described as O =

⌈
R
B

⌉
.

This represents the ideal case, in which the keys are well
distributed across leaf nodes and only the minimal number
of leaves needs to be traversed.

3.3 Network trace dataset
The network trace dataset was obtained from the “The

industrial cyber security conference” (4SICS 2015) [1] and
it has the network trace of the ICS lab. The trace contains
information of approximately 7 hours, from approximately
10 am until around 5 pm. There is a total of 239,267 entries.
The distribution of the entries per hour is shown in Figure
3.

The experiments run with this dataset intended to inves-
tigate the lookup performance difference between PHT and
the hash table, and the time performance difference between



 

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
b-

op
ti

m
al

it
y 

fa
ct

or

Fraction of ranges

PHT Range query - Synthetic data

Figure 4: The sub-optimal value of the leaves traversed given the range size fraction for the synthetic datset.
The average sub-optimal factor is 1.417.

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

su
b-

op
ti

m
al

it
y 

fa
ct

or

Fraction of ranges

PHT Range query - Netwrok trace

Figure 5: The sub-optimal value of the leaves traversed given the range size fraction for the network trace
dataset. The average sub-optimal factor is 1.427.



the three data structures. In the latter, an average of three
runs was considered.

In the time performance analysis, three different work-
loads were considered in order to evaluate the impact of the
range density. The workloads do not impact the lookup per-
formance, since it is mostly based on the range size rather
than the result set size.

3.4 Workload definition
Using different workloads is intended in order to explore

different range densities. The range density is based on the
result set size. It is related to the amount of hits and misses
that happen when a range query is issued. More hits indi-
cates a denser range, while more misses indicates a sparser
range.

The workloads are defined by the amount of objects in-
serted in the data structure. This intends to induce different
range densities for each workload. The three workloads had
their objects selected from the network trace dataset with a
random choice of entries coming from an uniform distribu-
tion. They are defined as follows.

• The first workload inserts 100% of the objects, leading
to denser ranges;

• The second, uses 60% of the data, with intermediary
density;

• The third, considers 20% of the objects, leading to
sparser ranges.

A distribution of the result set size per range size for each
workload is observed in Figure 7. As the points have a
higher result set size, the ranges are denser since more hits
happened. Oppositely, when the result set size is smaller,
the range is sparser which indicates that less hits (more
misses) will happen when querying a given range. As a gen-
eral trend, the 100% workload tends to be denser given its
higher values, while the 20% workload is sparser since it has
generally result sets with fewer values. The 60% workload
presents an intermediary density having its values between
the two more extremes workloads. This corroborates the as-
sumption that inserting different amount of elements would
lead to different range densities.

3.5 Range Query Evaluation
All range queries experiments had a 1000 randomly gener-

ated queries. For the synthetic data, the ranges varied from
222 to 226. For the network trace data, the ranges varied
from 30 seconds to 1 minute. All random values come from
an uniform distribution.

The first experiment used the synthetic data as explained
in Section 3.2. Figure 4 shows the amount of leaves that were
actually traversed normalized by the optimum value (mini-
mum) in PHT. It shows the sub-optimal value for a given
range size. The x-axis represents the range sizes normalized
into a (0,1) scale. Even though there is some variation in
the values, the average (1.417) is comparable to the average
of the values obtained by the simulation in [13] (about 1.4).
The chart can lead to the intuition that the split operation
interferes in the actual amount of leaves traversed based on
the spikes shown.

When the same analysis is performed with the network
trace dataset in PHT, Figure 5 indicates that, in average,

the sub-optimal factor is roughly the same, being 1.427 for
this dataset. The spikes are attributed to the fact that some
queries traverse leaves that have empty buckets. This hap-
pens because the split property of PHT is being followed.
So, after a split operation happens, it is possible that all
keys are assigned to the same child leaving the other child
with an empty bucket and requiring a new split. If the same
situation happens, many leaves with empty buckets will be
created, thus increasing the amount of leaves that need to
be traversed for a range that starts before such leaves and
ends after.

Figure 6 shows the amount of DHT-lookups under the
denser range (100% workload). The amount of DHT-lookups
performed by the hash table is considerably worse than PHT’s.
The density of the range does not affect the number of
lookups of the hash table, however it can be increased in
the PHT. Still, PHT performs better than the hash table
by a large margin.

The time performance analysis uses the three aforemen-
tioned workloads. Given the range density difference with
different workloads, the time performance analysis presented
in Figure 8 compares the total time of range query opera-
tions between the three data structures. It can be observed
that the hash table performance is considerably worse than
the others even though it is consistent across range densities.
This can be attributed to the fact that the hash table’s range
query complexity is based on the range size rather than the
result set size, which influences the density.

As for PHT, there is almost no variation with marginally
better results for the intermediary workload. A factor that
could influence these results is the split property. With
sparser ranges, the amount of leaves with empty buckets
could be higher and add some overhead to the operation.
However, overall, PHT clearly outperforms the other two
data structures.

The Red-Black tree has results affected by the density,
with the best time for the sparser workload. This is aligned
to the structure’s properties, since the sparser workload re-
sults in smaller result sets. The Red-Black tree range query
complexity was said in Section 1 to depend on the result set
size which can be confirmed in this Figure.

As an overall comparison, given the intermediary work-
load, Figure 9 presents the times for the fastest query, the
slowest query, the average, and the total time of the 1000
range query operations. It is clear that PHT has the best
performance. The variation between the fastest query and
the slowest query for the hash table is small with both pre-
senting a large value. As for PHT and the Red-Black tree,
both have low time for the fastest query, however they differ
in the slowest query (2 milliseconds for PHT and 47 mil-
liseconds for Red-Black tree). The tree has a larger varia-
tion which indicates that PHT is in overall faster as it can
be seen in the total time. It is important to notice that the
average PHT time is not negative, since the y-axis is in a
log scale.

Figure 10 shows the time performance with three range
sizes variations for the intermediary workload (60%). The
range sizes vary at most 30 seconds, 15 seconds, and 7.5 sec-
onds. It is demonstrated that PHT and the Red-Black tree
have consistent times with PHT clearly outperforming both
data structures. The hash table presents some improvement
as the range size decreases which supports the initial as-
sumption of the hash table time complexity being based on



 

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 lo

ok
up

s

Range fraction

Range query lookup

PHT Hash table

Figure 6: Comparison between the hash table and PHT regarding the number of lookups performed when a
range query is issued. The x-axis represents the range sizes normalized in a (0, 1) scale.PHT has an average
of 16 lookups while the hash table’s is 44, 841, 724 lookups.

 

0

200

400

600

800

1,000

1,200

1,400

30,000,000 35,000,000 40,000,000 45,000,000 50,000,000 55,000,000 60,000,000

Re
su

lt
 s

et
 s

iz
e

Range size

Range density for different workloads

100% 60% 20%

Figure 7: Result set size distribution by range size. Higher values indicate denser ranges, since there are
more hits within the given range. The opposite can be said about the lower values, where less objects will be
found, making the range sparser. Based on this, the 100% has denser ranges, the 60% has intermediary ones,
and the 20% has sparser ranges.



 

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100% 60% 20%

Ti
m

e 
(m

ill
is

ec
on

ds
)

Workload

Range query time performance with different workloads

PHT Tree Hash table

Figure 8: Total time performance of PHT, hash table, and Red-Black tree. PHT outperforms both data
structures showing a consistent time across workloads, marginally better in the intermediary workload. The
hash table presents the worse results, however consistent, since its range query time complexity depends on
the range size rather than result set size. Oppositely, the Red-Black tree has the most affect values which
also consists with its complexity being dependent on the result set size.

 

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

Minimum Maximum Average Total

Ti
m

e 
(m

ill
is

ec
on

ds
)

Range query time performance

PHT Tree Hash table

Figure 9: Time performance for PHT, hash table, and Red-Black tree with the intermediary workload. PHT
outperforms the other data structures in all time measurements.



the range size. This Figure alongside Figure 8 display the
different time complexity dependencies for the Red-Black
tree and the hash table. The former shows the Red-Black
tree dependency on the range density, while the latter illus-
trates the hash table dependency on the range size.

4. RELATED WORK
The presented issue was not extensively discussed previ-

ously, therefore there are not many approaches proposed for
it. During the investigation, a few were found and they are
presented below.

In [2], the implementation of range queries in a Peer-to-
Peer (P2P) CAN-based network is discussed. In addition
to that, the authors are concerned about the problems that
some DHTs can present when performing such queries by
individually querying each discrete value within the range.
To solve those problems, this paper presents the usage of
a subset of servers that will act as nodes in this network.
Those servers will act as Interval Keepers (IKs) and will
store the pairs [attribute-value, resource-id] and will be re-
sponsible for a sub-interval of values within the range. They
use Space Filling Curves and the Hilbert Function [3] to map
each sub-interval within the IK and its corresponding zone
in the dimensional space. In this way, the zone will be di-
vided into sub-zones of equal spaces. The range query will
be routed to the middle point and this node will recursively
propagate the query to its neighbors. This process is called
Flooding and they present three strategies to implement it:
Brute Force, Controlled Flooding and Directed Controlled
Flooding. Both PHTs and this approach split the domain,
however PHT has an overlay layer over the DHT, which sim-
plifies the approach and makes it more versatile since it does
not inflict changes in the DHT layer.

In [4], Skip graph is presented. It is a data structure
based on skip lists that is meant to handle complex queries.
It is tolerant to node failure and preserves the order of the
keys. [12] combines Skip Graphs with a traditional trie.
The basic idea of this approach is to take the advantages of
Skip Graphs for efficient routing, while using trie to preserve
locality. Another application of Skip Graphs can be found
in [9] where the authors propose a structure that based on
a skip tree, supports aggregation queries and outperforms
range queries and exact-match queries in skip graphs. How-
ever, even though Skip Graphs seems to be a good approach
for complex queries it does not provide load balancing. In
addition to that, this work has the intention of being ag-
gregated to ZHT what makes the Skip Graph approach not
possible once it is a different data structure itself and it does
not provide load balancing, unlike PHT.

B-Trees can also support complex queries. In this struc-
ture, all leaf blocks are at the same tree level and the data is
only added to the leaf nodes. In addition to that, B-trees are
not sensible to clustered data. [10] proposes a P2P overlay
network based on a balanced tree structure. The authors
claim it to be fault tolerant, load balanced and efficient re-
garding costs for update operations. Although B-trees can
be used to perform range queries, for the goal of this work
it does not seem to be a good option. It requires an initial
tree traversal to access any block, which can increase latency
when performing range queries. In addition, it does not sup-
port concurrency for some operations and similarly to [4], it
proposes the usage of a new data structure, the B-tree itself.
Unlike PHT, this approach does not propose a tree structure

over hashing which makes a further integration with ZHT
not practical.

Finally, in [8] the authors also use tries in order to im-
prove the range query process. They propose the usage of
an “in-network indexing” in an overlay network to make it
efficient for high-level predicates. Instead of using uniform
hashing, this work proposes using an order preserving hash
function to optimize the process. In this approach, the P-
Grid DHT is used in order to provide the aforementioned
properties. While this structure maintains the structural
order of the data, it may have skewed data, compromising
the load-balancing property obtained when an uniform dis-
tribution of data is used. They claim to offer a logarithmic
search regarding the number of messages for exact match
and range queries. However, such approach does not seem
highly available if the workload is excessive, due to the im-
balanced distribution of data and potential congestion.

5. CONCLUSION
During the time of this research, an investigation of the

most efficient way of performing range queries in a DHT en-
vironment was done. For this purpose, a better understand-
ing of DHT as well as an improvement of general research
and team work skills was provided to the students involved.
A basic study about ZHT and NoVoHT was also done by
the group members with the goal of better understanding
its functionality and storage system so that the range query
approach chosen would match ZHT’s need.

The evaluation presented intended to compare PHT’s per-
formance against data structures that perform it well for the
two different query cases: the exact match (lookup), and the
range query. Hash tables have O(1) time complexity for the
basic operations (insert, delete, and lookup) and the anal-
ysis predicts range query time complexity to be dependent
on the range size rather than the result set size. So, it is ex-
pected to perform badly for range queries. Red-Black trees
have O(logn) time complexity for the basic operations with
n as the amount of elements in the data structure. Re-
garding range queries, their complexity is expected to be
dependent on the result set size (range density) rather than
the range size. So, their performance is predicted to vary
as the amount of elements retrieved varies regardless of the
range size.

It was also intended to evaluate the data structure’s per-
formance regarding range density, since it was possible that
they could have a comparable performance in a denser range.
Hash tables have to query the entire range while Red-Black
trees’ performance is dependant on the result set size (range
density). So, experiments with denser ranges could provide
similar results for these structures. However, this was not
observed, since the tree outperformed the hash table and
PHT outperformed both.

Based on this work’s evaluation in a single node, PHT has
shown the best performance regardless of the range density
or size, outperforming both data structures by a large mar-
gin. It has proven to be effective and consistent as the range
density varies, unlike the other two data structures. The
hash table has similar results across range densities, while
the Red-Black tree shows an improvement as the range be-
comes sparser, but it is still worse than PHT.

As mentioned before, this work had the goal of investigat-
ing the most efficient way for performing range queries in a
DHT environment. However the presented results were ob-



 

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

30 15 7.5

Ti
m

e 
(m

ill
is

ec
on

ds
)

Range size variation (seconds)

Range query time performance with different range size variation

PHT Tree Hash table

Figure 10: Time performance for the intermediary workload (60%) with three different range sizes variations.
It is shown that the Red-Black tree time is consistent while the hash table is sensitive to the range size since
as the range size decreases, the hash table performance improves. PHT presents the best performance in the
three cases while showing consistency regardless of the range size.

tained from a single node implementation. As future work,
this data structure could be extended to a distributed set-
ting in which the evaluation and comparison against the
results presented in this work could be performed. Once
the system becomes distributed, the integration with ZHT
seems worth investigating. It would be interesting to eval-
uate if ZHT would be able to support range queries with
good performance using PHT. Another possible investiga-
tion is regarding the range query algorithm used in PHT.
[13] proposes a sequential and a parallel search algorithms.
In this work, only the sequential algorithm was used in the
experiments.

As another possible improvement that could be investi-
gated, the lookup algorithm could have the data keys stored
in the DHT. This would decrease the amount of DHT-
lookups, since a single DHT-lookup for the data key would
be required and it would point to the PHT-node that holds
such key. Even though the lookup time is decreased, the
maintenance time will potentially increase once every time
a split or merge operation happens, some keys would be
moved to different PHT nodes and the hash table value for
these keys would need to be updated. An alternative can be
postponing the DHT updates until the lookup for the key
is performed and the information stored in the DHT is out-
dated. When this happens, the regular PHT lookup can be
performed and once the key is found its value (held by the
PHT-node) can be updated in the hash table. It is expected
that even with the selective update, the lookup time will
decrease in average.

6. REFERENCES
[1] 4sics - 2016 - home.

[2] A. Andrzejak and Zhichen Xu. Scalable, efficient range
queries for grid information services. pages 33–40.
IEEE Comput. Soc.

[3] T. Asano, D. Ranjan, T. Roos, E. Welzl, and
P. Widmayer. Space filling curves and their use in the
design of geometric data structures. In
R. Baeza-Yates, E. Goles, and P. V. Poblete, editors,
LATIN ’95: Theoretical Informatics, volume 911,
pages 36–48. Springer Berlin Heidelberg.

[4] J. Aspnes and G. Shah. Skip graphs. 3(4):37–es.

[5] H. Balakrishnan, M. F. Kaashoek, D. Karger,
R. Morris, and I. Stoica. Looking up data in p2p
systems. 46(2):43.

[6] R. Bayer. Symmetric binary b-trees: Data structure
and maintenance algorithms. 1(4):290–306.

[7] K. Brandstatter, T. Li, X. Zhou, and I. Raicu.
NoVoHT: a lightweight dynamic persistent NoSQL
key/value store.

[8] A. Datta, M. Hauswirth, R. John, R. Schmidt, and
K. Aberer. Range queries in trie-structured overlays.
pages 57–66. IEEE.

[9] A. González-Beltrán, P. Milligan, and P. Sage. Range
queries over skip tree graphs. 31(2):358–374.

[10] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A
balanced tree structure for peer-to-peer networks. In
Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 661–672.



VLDB Endowment.

[11] T. Li, R. Verma, X. Duan, H. Jin, and I. Raicu.
Exploring distributed hash tables in HighEnd
computing. 39(3):128.

[12] L. Meifang, Z. Hongkai, S. Derong, N. Tiezheng,
K. Yue, and Y. Ge. Pampoo: An efficient skip-trie
based query processing framework for p2p systems. In
M. Xu, Y. Zhan, J. Cao, and Y. Liu, editors, Advanced
Parallel Processing Technologies, volume 4847, pages
190–198. Springer Berlin Heidelberg.

[13] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein,
and S. Shenker. Prefix hash tree: An indexing data
structure over distributed hash tables. In Proceedings
of the 23rd ACM symposium on principles of
distributed computing, volume 37.


