
FemtoGraph: Lightweight Shared-Memory Graph
Processing Framework

[Extended Abstract]

Alex Ballmer
Illinois Institute of Technology
alexandersballmer@gmail.com

Benjamin Walters
Illinois Institute of Technology
bwalter4@hawk.iit.edu

Ioan Raicu
Illinois Institute of Technology

iraicu@cs.iit.edu

ABSTRACT
The emerging applications for large graphs in big data sci-
ence and social networks has led to the development of nu-
merous parallel or distributed graph processing applications.
The need for faster manipulation of graphs has driven the
need to scale across large core counts and many parallel ma-
chines. While distributed memory parallel systems continue
to be used for high performance computing, some smaller
systems make use of shared memory (SMP) and larger core
counts. We have implemented a graph processing frame-
work for shared memory systems capable of scaling past 48
parallel cores. This system leverages and scale to large core
counts and provide a framework for later incorporating dis-
tributed processing across multiple nodes.

CCS Concepts
•Theory of computation→ Shared memory algorithms;

Keywords
Graph processing; Parallel Algorithms; Shared Memory

1. INTRODUCTION

FemtoGraph is a graph processing application which will use
a vertex-centric approach. This approach involves calling
a function in the context of a vertex for each and every
vertex. This function can modify or read from edges and
other vertices. Computation occurs in intervals or steps,
with some form of communication between steps. Vertex-
centric algorithms can be either synchronous, meaning every
vertex function must finish before the next step begins, or
asynchronous, which means that the next step can begin in
the context of one vertex immediately. [1]

FemtoGraph is based off of the pregel model. Pregel is
a vertex-centric graph processing model. [3] Pregel is syn-
chronous, with computation occurring in steps called su-
persteps. There is a messaging system for sending data and

ACM ISBN 978-1-4503-2138-9. . . $-24.32

DOI: 10.1145/1235

state to vertices in the next superstep, but not to any vertex
in the current superstep. In each step, vertices can do com-
putations, modify neighbor vertices and edges, send mes-
sages to vertices in the next superstep, and vote to halt,
meaning it cannot run its compute function until it receives
a message or all vertices have voted to halt. When all ver-
tices have voted to halt, the simulation ends. [3]

2. PREGEL MODEL

The Pregel model is a type of vertex-centric graph process-
ing paradigm. It is designed to make it easy for vary large
amounts of worker threads or processes to modify the graph
at one time with minimal collision of resources.

Pregel is vertex-centric, which means that all code runs in
the context of a vertex in the graph. Vertices can preform
modifications on edges and other neighboring vertices. They
can modify tags, data, and other aspects, and add or remove
vertices and edges.

Computation in Pregel occurs in steps called supersteps.
A single superstep consists of calling a function in the con-
text of every vertex of the graph theoretically in parallel.
This can be fully in parallel in the case of very small graphs,
but in most case vertices are called in sequence with a num-
ber of parallel threads.

Communication between vertices is done by sending mes-
sages. Messages can be sent at any time, but only received
in the next superstep, as to preserve the parallel nature of
Pregel supersteps. Messages can be sent to any number of
vertices at once. The messaging system serves as the main
method of communicating across supersteps.

At the end of each vertex’s compute step, it can choose
to vote to halt. This is usually done when the particular
piece of computation that it was working on has ended. A
vertex that has voted to halt does not perform a compute
step and enters a halted state. The vertex can be ’woken
up’ from the halted state upon receiving a message. When
all vertices enter a halted state, the entire simulation halts
and returns the data and tags from the vertices.

3. RELATED WORK

There are many existing applications in the world of graph
processing. These applications can run on a single node us-
ing shared memory, or on multiple nodes using a distributed
memory paradigm like MPI or MapReduce.

One of the main similar applications in this area is GraphLab.
GraphLab is another vertex-centric graph processing frame-

work that can either run on a single node using shared mem-
ory, or as a distributed application. GraphLab is the sim-
plest to compare to FemtoGraph as it can run with shared
memory without the harsh overhead of frameworks like Hadoop
or Spark. GraphLab is asynchronous, which gives it the edge
of not having to wait for the fist superstep to complete be-
fore starting the next superstep. [4] Graphlab was the main
point of comparison of FemtoGraph

Apache Giraph is another application for processing graphs.
Giraph runs on top of the Hadoop framework, and uses a
modified vertex-centric approach on top of Hadoop’s MapRe-
duce architecture Giraph is used by Facebook to extract
meaningful data from the stored social network.

Most work on graph processing is done in parallel, on
multiple nodes. These parallel algorithms make little use of
shared memory.

4. IMPLEMENTATION

FemtoGraph is implemented in C++ using parts of the Boost
C++ library. There are 3 main parts vertex storage, the
message queue, and the compute function.

Vertices are stored in an adjacency list using C++ vectors.
Edges are represented with symbolic references to another
vertex’s unique id. Each vertex has a unique id that serves
as a simple hashing function to generate its index in the ad-
jacency list. Each vertex has a data or tag object that can
be extended or replaced depending on the type of graph be-
ing stored. Graph vertices can be added or removed quickly
by updating the references. All graph storage is done in
memory as of now.

The message queue is implemented using Boost lockfree
queues, [5] one for each vertex. Queues are presorted by
vertex in a single vector in order to minimize the cost of
sorting messages by vertex during the computation. There
is one short queue per vertex in the current graph. This
could result in very large queue structures for large graphs.
This structure improves computation speed at the expense
of potential memory fragmentation.

The compute function takes the role of the Pregel update
function, and is called once for every vertex in the context of
every vertex during a pregel superstep. Compute functions
are called theoretically in parallel with a user defined num-
ber of threads operating at a single time. This means that
computation may as well be occurring in parallel across all
vertices even if there is only a single thread.

Threading is done with std::thread threads from the C++
standard library. The only data shared between threads
during runtime is the vertex storage and message queue.
The vertexes are not accessed frequently enough to need
anything more that a simple mutex to lock between threads.
The message queue is accessed much more frequently and
needs a lockfree approach.

Graphs are input from a file. The format defaults to the
Stanford SNAP graph data format, as this is the primary
data sets we used for testing. Outputs are written as a csv
file with a list of vertices and their associated data, but this
can be changed easily depending on the algorithm run. File
input and output, memory initialization, and graph creation
are not parallelized. Only the compute step is parallelized.

5. EVALUATION

5.1 Results
We collected runtime information at varying core counts

and function call graphs for FemtoGraph and GraphLab.
FemtoGraph and GraphLab were compared for scaling per-
formance on a large shared memory machine.

We used profiling tools such as valgrind and callgrind,
along with basic runtime measurement, to measure the effi-
ciency and speed of FemtoGraph in relation to Graphlab.

5.2 Testing Conditions
All tests were done:

• On a single node system with 48 cores, 2 sockets, and
NUMA

• using a modified pagerank algorithm defined as

∀t ∈ P : r(t)(t) = (1− α) · r(t) + α
∑

(s,t)∈L
r(t−1)(s)
|L(s)|

• Counting only the compute steps (not initialization or
reading in data) for both FemtoGraph and GraphLab.

6. GRAPHLAB
GraphLab is our main point of comparison for Femto-

Graph. GraphLab is vertex-centric, but has a few main
differences from the vertex-centric Pregel model.

On of the most glaring differences in GraphLab is that
its equivalent of the Pregel superstep is asynchronous. This
means that a single vertex or a new group of vertices can
begin a new superstep before the others finish. This means
that algorithms for Graphlab must take into account that
any vertex that they are communicating with may be in a
totally different step. It also means that there is a slight
theoretical speed increase in relation to synchronous algo-
rithms.

In practice, graphlab is very efficient at low core counts
(Figure ??). It does not scale very well, peaking at at about
20 threads (Figure ??) and scaling in reverse afterwards.

7. DIFFICULTIES ENCOUNTERED

In the pregel model for graph processing, the main bottle-
neck encountered when scaling to many cores is the mes-
sage queue. The message queue and the vertex storage are
the only two data structures accessed from multiple threads.
Vertices are not modified enough to warrant anything more
than simple mutex based locking.

The message queue, made clear by profiling with the call-
grind function call analysis tool, is accessed at a very high
rate from vertex compute functions from all threads. This
can lead to race conditions, slowdowns, and deadlocks. A
mutex based locking system resulted in an extreme slow-
down to the point where the system scaled in reverse (Figure
1).

The message queue also had a performance issue with allo-
cating memory for dynamic structures like queues and vec-
tors. This performance issue was evident in the callgrind
profiling, but was not noticed until later.

8. PROFILING

Profiling to find bottlenecks was done with Callgrind, a part
of the Valgrind suite of profiling tools. Callgrind maps out

Figure 1: FemtoGraph scaling using mutex based
message queue

Figure 2: Callgrind profiling after optimization

the graph of function calls and records how long the applica-
tion spends in each function. Using callgrind, we can locate
areas of the program that are hanging, due to an lack of
optimization or a threading error.

Callgrind can be visualized by a tool called kcachegrind,
which arranges functions into a cluster. The function’s size
is based on the time spent in the function. The largest func-
tions are the ones that have spent the most time running,
and are therefore a potential cause of bottleneck. Some long
running functions are not cause for alarm. The main() func-
tion runs for the entire duration of the program, for instance.

The profiling showed problems with allocating memory
for message queue subqueues. This showed up as a large
time spent in the malloc function. This slowdown was not
noticed until after work on optimizing the queue locking was
done The highlighted area in figure 2) shows the large malloc
functions taking up a quarter of the plot. This bottleneck
was eventually fixed. The fix can be seen in a later callgrind
plot in figure 3.

The bottleneck created by locking in the message queue
showed up as a large amount of time spent in the chain of
functions related to pushing a message to the queue, and
popping a message off the queue. This can be seen in the
large number of large-sized vector related functions in the
callgrind plot in figure 3.

Profiling led us to find the bottleneck in the message queue
was caused by two main problems: locking between threads
and allocating memory. Once these bottlenecks were fixed,
FemtoGraph was able to perform normally.

9. SOLUTION

Figure 3: Callgrind profiling before optimization

My main solution for the message queue was to use a vec-
tor of Boost::lockfree queues for the message queue. [5] The
vector was used to presort messages by vertex in order to
minimize compute time sorting message when they were re-
ceived. Adding new vertices still requires a mutex, as the
vector is not lockfree. This mutex is not a problem for the
algorithms that I tested, as they spend most of their time
updating current vertices. The lockfree queues minimize the
total bottleneck in the message queue.

A we tried a few intermediate solutions before implement-
ing the final solution using lockfree queues. We tried various
locking patterns including mutexes across the entire queue,
across sections of the queue, and across individual sections of
the array of queues. The full mutex across the entire queue
had too much of a performance impact, essentially scaling in
reverse. The partial mutex caused some race conditions on
inserting messages. The. The local mutex on sections of the
array proved too difficult to implement in the time allowed.

The problem with memory allocation was solved by allo-
cating all needed memory for the boost lockfree queues at
startup, instead of at runtime. Fixed sized queues do not
need to block while they allocate more memory. As there is
only one queue per vertex, there is little risk of running out
of memory, even at a fixed size.

10. RESULTS
We compared FemtoGraph and GraphLab on running Pager-
ank on a large Stanford SNAP graph (Figure 4). The graph
used was the Wikipedia Talk Network, a directed graph
based off of discussion about Wikipedia article edits with
2394385 Vertices and 5021410 edges. [2] The final version of
FemtoGraph is capable of scaling to 48 cores on a single large
system. At 28 cores, it begins to overtake graphlab in terms
of runtime. GraphLab scales very weakly, only increasing in
performace below 20 cores. After 20 cores, GraphLab scales
in reverse (Figure 5). In the case of both applications, only
compute time was counted. reading in data and initializing
graphs were outside of the measured data.

11. CONCLUSION
FemtoGraph is a lightweight, single node graph process-
ing system capable of scaling to large core counts and out-
performing some of the current graph processing standards
while using the pagerank algorithm. FemtoGraph shows
that the pregel model performs well under shared memory
situations at scale.

12. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation under awards NSF-1461260 (REU).

Figure 4: FemtoGraph in comparison to GraphLab on a single node

Figure 5: Graphlab scaling performance

13. REFERENCES
[1] O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri,

A. Barnawi, S. Sakr, et al. Large scale graph processing
systems: survey and an experimental evaluation.
Cluster Computing, 18(3):1189–1213, 2015.

[2] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages 135–146,
New York, NY, USA, 2010. ACM.

[4] R. R. McCune, T. Weninger, and G. Madey. Thinking
like a vertex: A survey of vertex-centric frameworks for
large-scale distributed graph processing. ACM Comput.
Surv., 48(2):25:1–25:39, Oct. 2015.

[5] B. Schling. The Boost C++ Libraries. XML Press,
2011.

