
Albatross Enhancements 

Nikhil Brahmankar 

nbrahman@hawk.iit.edu 
Ketankumar Juneja 

kjuneja@hawk.iit.edu 
Shalin Chopra 

schopr10@hawk.iit.edu 
 

ABSTRACT 

Data Analytics has become very popular on large datasets 

in different organizations. It is inevitable to use distributed 

resources such as Clouds for Data Analytics and other types 

of data processing at larger scales. Frameworks such as 

Hadoop and Spark, which are mainly designed for Big Data 

analytics, have been able to allow for more diversity in job 

types to some extent. However, centralized architectures of 

these systems become a bottleneck on large scales and 

under heavy task loads. In order to achieve high efficiency, 

scalability, and better system utilization, it is critical for a 

modern scheduler to be able to handle over-decomposition 

and run highly granular tasks. Albatross works great in 

order to address all the above mentioned issues. 

Similar to other distributed systems, Albatross performance 

is likely to be limited by I/O and File operations. [2] The 

addition of Cache can help reduce theses bottlenecks 

keeping the latest data into memory and which reduces disk 

accesses. Hence we propose adding a caching layer over 

Albatross, which will help to improve Albatross 

performance by reducing the Albatross overheads of I/O 

and Data Locality by certain extent through minimizing the 

amount of unnecessary disk operation. Using our 

evaluations, we will prove that Albatross outperforms Spark 

and Hadoop at larger scales and in the case of running 

higher granularity workloads. 

In addition, adding a Cache layer to Albatross will also help 

to support iterative applications using in-memory data 

storage similar to Spark. Modern day data analytics require 

multiple iterations to process and fine tune the data. 

Machine learning systems require multiple iterations to fine 

tune the training data results and apply them to testing data. 

Albatross currently supports only single iteration of Map 

Reduce. We propose development of iterative application 

over Albatross, thereby taking advantage of platform 

features and extending them to machine learning 

applications. 

Author Keywords 

Albatross, FusionFS, Distributed File System, Fabriq, ZHT, 

Data Analytics, Task Scheduling, Distributed Systems, 

Spark, Hadoop, Distributed Task Execution, Distributed 

Message Queue  

ACM Classification Keywords 

Data Analytics, Task Scheduling, Distributed Systems, 

Spark, Hadoop, Distributed Task Execution, Distributed 

Message Queue, Distributed File System 

INTRODUCTION 
The massive growth in both scale and diversity of Big Data 

has brought new challenges as industry expectations of data 

processing loads continue to grow. Data analytics 

frameworks such as Hadoop and Spark were proposed to 

particularly solve the problem of data processing at larger 

scales. These frameworks distribute the data on multiple 

nodes and process it with different types of tasks. However, 

both the above systems have bottlenecks as they use a 

centralized approach which limits scalability and load 

balancing. In addition, these systems actually push the tasks 

to Workers instead of let workers pulling them depending 

upon their current status. Therefore, these frameworks are 

not suitable for workloads that generate more tasks in 

shorter periods of times. 

To overcome these shortcomings, Albatross was proposed. 

Albatross is a fully distributed cloud-enabled task 

scheduling and execution system that utilizes a Distributed 

Message Queue as its building block. Albatross uses a pull 

based approach rather than a central push based approach, 

which completely eliminates the single point of failure 

issue. 

Albatross system currently lacks a way to effectively utilize 

memory and reduce disk operation. Addition of Caching 

mechanism will help Albatross to perform better for 

application which involve intensive data operations. 

Besides an effective memory management will also help 

Albatross to better store intermediate results of Map Reduce 

operation. 

Data analytics operation are more iterative in nature which 

requires multiple Map Reduce at each iteration. Albatross 

currently does not support iterative Map Reduce operation. 

Albatross features like data locality and job movement 

could be extended to iterative application which would 

result in better performance. 

Motivation 

Map-Reduce scenario uses coarse-grained tasks to do its 

work, which are too heavyweight for iterative algorithms 

which require lightweight tasks. Another problem is that 

Map-Reduce has no awareness of its intermediate data to be 

stored in memory for faster performance. Instead, it flushes 

Paste the appropriate copyright/license statement here. ACM now supports 

three different publication options: 

 ACM copyright: ACM holds the copyright on the work. This is the 

historical approach. 

 License: The author(s) retain copyright, but ACM receives an 

exclusive publication license. 

 Open Access: The author(s) wish to pay for the work to be open 

access. The additional fee must be paid to ACM. 

This text field is large enough to hold the appropriate release statement 
assuming it is single-spaced in Times New Roman 8-point font. Please do 

not change or modify the size of this text box. 

Each submission will be assigned a DOI string to be included here. 

mailto:nbrahman@hawk.iit.edu
mailto:kjuneja@hawk.iit.edu
mailto:schopr10@hawk.iit.edu


intermediate data to disk between each Map and Reduce 

step. Combined, these sources of overhead make algorithms 

requiring many fast steps unacceptably slow. For these 

steps to be executed we want them to be as fast and 

lightweight as possible. Thus, to overcome the disadvantage 

of flushing intermediate results to disk we need a better 

memory management layer. 

This issue is addressed by Cache. Similar to Cache Memory 

available to processor in Motherboard, Application Cache 

will help to store the frequently used data, intermediate data 

and input data within Memory to avoid multiple Disk 

Operations. This is one of the major reason Spark is having 

better performance than Hadoop. 

Machine learning application which are iterative in nature 

are supported by various distributed frameworks like Spark. 

These applications take advantage of the current Map 

Reduce programing model and run their tasks as multiple 

Map Reduce for each iteration. Albatross uses the same 

Map Reduce paradigm and hence can support machine 

learning applications. The intermediate results are very 

important in case of iterative application. The addition of 

memory layer which keeps the intermediate results in 

memory will help the iterative application perform better. 

Thus, this will also help to increase the wide array of 

applications supported by Albatross. 

To enable Iterative Application support, we planned to 

implement Logistic Regression in Albatross. 

ALBATROSS ENHANCEMENTS 

This section explains the changes done in Albatross to 

implement Cache Storage and Iterative Application support. 

System Overview 

Albatross’ features like Load Balancing, Data Locality and 

overcoming the disadvantages of Centralized Scheduler 

bottlenecks helps it to outperform traditional Map Reduce 

System. Albatross coupled with a better memory utilization 

layer can boost its performance and help it support a variety 

of application without disk bottlenecks. 

Caching 

Caching in Albatross helps to fetch and store frequently 

accessed data with minimum possible disk accesses. In case 

of Map Reduce Systems, the intermediate data is often 

ignored and flushed onto disk. Thus, if a reducer requires an 

intermediate result from a mapper operation it has to make 

a disk access which is quite slower and hence the 

performance of the system is affected. 

Caching in Albatross uses a Least Recently Used (LRU) 

based replacement scheme for memory management. This 

method was chosen because in case of Iterative Map 

Reduce model, typically the intermediate data from earlier 

iterations except the latest one may not be required in the 

future operation. This saves a lot of space and helps keep 

only the latest data in memory. 

Caching Architecture 

The figure below explains the Caching Architecture in 

Albatross. 

 

Figure 1: Caching Architecture 

 

Caching is implemented with a simple Hash Map coupled 

with a Linked List data structures. Linked List maintains 

the latest accessed records from memory. The Hash Map 

helps to access data with a look up time complexity of O(1). 

The Hash Map uses a key value based storage. The Linked 

List structure is used to keep track of recently used keys. 

The Linked List structure stores only the key of latest 

accessed data. The most recently accessed key is placed at 

the head of the Linked List. Whenever the cache is full the 

tail node is evicted and a new node is created and inserted 

at the head of the Linked List depending upon the size of 

available Cache and the data to be inserted in Cache.  

Caching Decision Making Flow 

The typical Caching decision making flow is explained 

below. 

 If value corresponding to Key already exists in Disk 

o Read existing Value from file on Disk 

o Store the read value in Cache and return it 

 If the value corresponding to Key doesn’t exist in Disk, 

then check if value corresponding to Key already exists 

in Cache. If yes then 

o Read existing Value from cache and return it 

o Move the node corresponding to latest 

accessed Key to head of LRU Linked List 

 If the value corresponding to Key doesn’t exist in Disk 

and Cache both, then check if sufficient space is 

available in Cache to store the Key – Value pair. If yes 

then, 

o Store existing Value in cache and return it 

o Insert the node corresponding to latest 

accessed Key to head of LRU Linked List 

 If sufficient space is unavailable in Cache, then check 

if LRU is enabled in Albatross. If LRU in disabled 

then, 

o Store the Key – Value pair in Disk 



 
Figure 2: Caching decision making flow 

 

 If LRU is enabled then, 

o Delete Tail node from Linked List 

o If sufficient space is unavailable in Cache, 

then  

 Store the Key – Value pair in Cache 

o If still there is no sufficient space in Cache, 

then 

 Store the Key – Value pair in Disk 

Logistic Regression 

This is a classification algorithm in which we predict / 

classify the data to its appropriate class label. It is one of 

the most popular and most widely used learning algorithms 

today.  Logistic Regression is used for predicting the 

probability of occurrence of an event by fitting the data to a 

logistic curve. For Albatross, we have focused on the binary 

classification problem in which there are only two classes 

having values, 0 and 1. 

For Logistic Regression to be implemented we have some 

parameters which play an important role in classification. 

These are:  

 The weight (parameter): θ 

 Learning Rate: η 

These two parameters help for convergence of the 

algorithm and generate a final weight parameter i.e. θ which 

is useful for further prediction.  

We have implemented Logistic Regression using Stochastic 

Gradient Descent rule.  

There are two equations which help to update the value of 

θ. This update occurs iteratively until maximum numbers of 

iterations are reached or convergence threshold is reached. 

The hypothesis takes the form of:  

Check if value 
corresponding to 
Key already exists 

in Disk?

Read existing Value 
from file on Disk 
using readFile api

Check if sufficient 
space is available in 
Cache to store the 
Key – Value pair?

Append the new 
Value to already 

stored Value to form 
a final Value to be 

stored

Start

No

Check if value 
corresponding to 
Key already exists 

in Cache?

Append the new 
Value to already 

stored Value to form 
a final Value to be 

stored

Yes
Read existing Value 

from Cache
Yes

Assign the new 
Value to form a final 
Value to be stored

No

Store the Key – 
Value pair in Cache 
using insertData api

Yes

Is LRU enabled?

No

Store the Key – 
Value pair in Disk 

using insertData api
No

Delete Tail node 
from Linked List 

using deleteData api
Yes

Check if sufficient 
space is available in 
Cache to store the 
Key – Value pair?

Store the Key – 
Value pair in Disk 

using insertData api

No

Store the Key – 
Value pair in Cache 
using insertData api

End



 

       
 

 

This is called as the logistic function or the sigmoid 

function. 

The stochastic gradient descent rule is given below, which 

is used to update θ. 

                        

 

   

 

The Summation part is called as “gradient”. 

Architecture 

 

Figure 3: Iterative Application Architecture in 

Albatross 

 

The figure above explains the Iterative application 

architecture in Albatross. Its based on the building blocks 

based architecture which uses components like FabriQ, 

ZHT and Caching mechanism as building blocks.  In case 

of Logistic Regression, we have multiple Mappers and a 

single reducer. 

Client 

 Puts the tasks into FabriQ for the workers to fetch. 

 These tasks are Map and Reduce tasks 

FabriQ 

 FabriQ is a queue which holds all the tasks generated 

by the client. 

 It puts the tasks which have pcount =0, onto the ready 

queue which can be fetched by the worker, the other 

tasks are kept in non-ready queue which are available 

once pcount=0 

 In case of logistic regression, for the first iteration the 

map tasks pcount = 0, while the reduce task pcount = 

no. of map tasks. 

 For next iteration onwards, the map task has a pcount = 

no. of reducers and so on. 

Map phase 

 Once a map task is fetched, the mapper firstly gets the 

data from disk in case of iteration no. 1, from next 

iteration onwards the data is available in cache to be 

fetched. 

 After data is fetched the worker get the value of θ from 

ZHT and starts computing the local gradient and writes 

it back to its own cache. 

 Every mapper calculates its local gradient and stores it 

in cache for the reducer to fetch. 

Reduce Phase 

 The reducer gets local gradient from all the mappers 

and sums the up to forma global gradient. 

 Then using the update equation, it updates the value of 

θ, and writes this updated value of θ into ZHT, for next 

iteration mappers to fetch. 

EVALUATION 

This section evaluates Albatross by measuring its 

throughput and latency using weak scaling mechanism. We 

have used Logistic Regression application to evaluate 

Albatross’ support for Iterative Applications. We executed 

50 iterations for Logistic Regression during evaluation. 

Each iteration is combination of Map phase executing 

multiple mapper tasks and Reduce phase executing a single 

reduce task. Mapper and Reduce tasks are distributed to 

workers using FabriQ queue. Each worker is setup with its 

own Cache to store the input and gradient data into memory 

for faster performance. The iterative application is run by 

keeping the data size constant per node (weak scaling). The 

size for input training data is 5GB per node. We have used 

twenty features for classification in logistic regression. We 

have benchmarked Albatross’ performance with Spark 

using the same dataset and same node configuration. The 

parameters considered for benchmarking are throughput, 

latency and average time per iteration. The following 

graphs explains the comparison of the referred parameters 

between spark and Albatross 

Testbed Configuration 

Albatross is developed in C++. All experiments use 

Amazon EC2 [5] m3.xlarge instances. These instances use 

High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge or 

Sandy Bridge) Processors with hyper-threading, SSD-based 

instance storage for fast I/O performance and they are 

balance of compute, memory, and network resources. Each 

of these instance offers 4 cores, 15 GB RAM and SSD 

storage up to 80 GB. 

The graph in figure 4 shows that the throughput of 

Albatross and Spark is quite similar even with the increase 

in the scale. Initially, for small number of nodes the 

throughput is the almost the same. It can also be seen that 

as the number of nodes increases the throughput increases 

with the constant and consistent scale for both Albatross 

and Spark. Spark seems to slightly better than Albatross 

with increase in scale. 



Throughput 

 

Figure 4: Throughput comparison between Albatross 

and Spark 

Latency 

 

Figure 5: Latency comparison between Albatross and 

Spark 

 

The graph in figure 5 above has similar trend. The initial 

value for latency is quite high and it decreases with increase 

in number of nodes. The trend is the same for both 

Albatross and Spark, but Spark performs much better than 

Albatross. 

Average Iteration Time 

 

Figure 6: Average Iteration Time comparison between 

Albatross and Spark 

 

The graph in figure 6 above shows the average time taken 

for a single iteration of Logistic Regression. The average 

iteration time is calculated by dividing the total time with 

the number of iteration. Albatross’ average iteration time is 

constant and is higher than Spark initially. However, as the 

number of worker nodes and data volume is increased, 

Spark’s average iteration time starts increasing and 

approaches that of Albatross, the trend shows that if the 

scale is increased further, Spark may even take more time 

to complete an iteration than Albatross. 

Evaluation Summary 

Summary for our analysis and comparison between 

Albatross and Spark is listed below. 

 Spark’s better throughput is achieved only if Spark’s 

library function for Logistic Regression is used which 

is highly optimized. In case if we try define our own 

Mapper and Reducer for Logistic Regression then same 

efficiency will not be achieved 

 On a larger scale, the latency for Albatross and Spark 

goes towards zero 

 The difference between Albatross and Spark 

Throughput can be explained as time required for 

multiple conversions (like string to vector, string to 

matrix, matrix to string, vector to string, etc.) required 

to communicate the data between various mappers and 

reducers 

 As discussed earlier, average iteration time for Spark 

will increase further as an effect of increased scale 

 In addition, Albatross serves its main purpose of 

avoiding bottleneck of centralized scheduler 

 

CONCLUSION & FUTURE WORK 

Machine learning applications like Logistic Regression 

being very compute intensive and requires in-memory data 

to perform computations. Logistic Regression being 

iterative in nature requires the intermediary data from 

previous computations to be stored in memory. Hadoop on 

the other hand flushes this intermediary data onto disk 

which causes it to be slow when compared with Spark and 

Albatross.  Albatross enhanced its architecture to support 

these in-memory CPU bound computations by adding 

Caching concept. The in-memory cache helps to store the 

intermediary results in memory and helps in performing 

faster computations.  

Our evaluation proves Albatross to be a better choice for a 

larger scale system with better performance and flexibility. 

We can always consider difference in throughput as trade-

off between centralized (Spark) and distributed (Albatross) 

scheduling system. 

Furthermore, improvements like Distributed Cache, 

avoiding multiple data conversions for communicating the 

data across nodes can definitely improve Albatross 

performance and make it a better choice over Spark. 



Link to the repo: https://bitbucket.org/schopr10/albatorss-

iterativeapplication 

 

ACKNOWLEDGMENTS 

We gratefully acknowledge the support and guidance of our 

advisor Prof. Ioan Raicu and Iman Sadooghi. Without their 

thoughtful encouragement, supervision and guidance, this 

research would never have taken shape. We are grateful to 

them for providing us their timely feedbacks and showing 

us the correct directions to make this research a useful one. 

We will also like to thank Sami Ahmad Khan for 

supporting us in Spark evaluation and share its results. 

 

REFERENCES 

1. Iman Sadooghi, Geet Kumar, Ke Wang, Dongfang 

Zhao, Tonglin Li, Ioan Raicu. "Albatross: an Efficient 

Cloud-enabled Task Scheduling and Execution 

Framework using Distributed Message Queues" 

2. Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin 

Li, Ke Wang, Dries Kimpe, Philip Carns, Robert Ross, 

and Ioan Raicu. "FusionFS: Towards Supporting Data-

Intensive Scientific Applications on Extreme-Scale 

High-Performance Computing Systems", IEEE 

International Conference on Big Data 2014; 18% 

acceptance rate 

3. Iman Sadooghi, Ke Wang, Dharmit Patel, Dongfang 

Zhao, Tonglin Li, Shiva Srivastava, Ioan Raicu. 

“FaBRiQ: Leveraging Distributed Hash Tables towards 

Distributed Publish-Subscribe Message Queues”, 

IEEE/ACM BDC 2015 

4. T. Li, X. Zhou, et. Al. “ZHT: A light-weight reliable 

persistent dynamic scalable zero-hop distributed hash 

table,” in Proceedings of the IEEE IPDPS, 2013. 

5. Amazon EC2 Instance Types 

(https://aws.amazon.com/ec2/instance-types/) 

6. Andrew Ng - CS 229 

(http://cs229.stanford.edu/notes/cs229-notes1.pdf) 

7. Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, 

Dhruba Borthakur, Srikanth Kandula, Scott Shenker, 

Ion Stoica “PACMan: Coordinated Memory Caching 

for Parallel Jobs” 

https://bitbucket.org/schopr10/albatorss-iterativeapplication
https://bitbucket.org/schopr10/albatorss-iterativeapplication
https://aws.amazon.com/ec2/instance-types/
http://cs229.stanford.edu/notes/cs229-notes1.pdf

