
PVFS simulation using CODES/ROSS simulator
Sughosh Divanji*, Raghav Kapoor*, Dongfang Zhao*, Ioan Raicu*†

*Department of Computer Science, Illinois Institute of Technology, Chicago, IL,USA

†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

sdivanji@hawk.iit.edu, rkapoor7@hawk.iit.edu, dzhao8@iit.edu, iraicu@cs.iit.edu

ABSTRACT
HPC applications are becoming data-intensive in that
they consume large amounts of data and have complex
data dependencies. Current resource managers are not
aware of data location (local vs remote parallel file
system) and the cost to move it. In this project, as the first
stage of implementing a data-aware scheduler on top of
Slurm[2] resource manager with burst buffer architecture,
we have simulated the PVFS[12] parallel file system for a
IBM BG/P machine[22]. We have simulated the PVFS[12]
parallel file system using CODES[14] and ROSS[13]
parallel discrete event simulators from Argonne National
Laboratory. We evaluate the performance of our
simulation for I/O operations with different dataset sizes
and for metadata operations. We also compare the
performance of our simulation with FusionFS[11] and
NFS[23] file systems. Finally, we measure the accuracy of
our simulations by comparing the I/O operation
throughput with actual deployment of GPFS[24] and by
comparing metadata throughput with actual deployment of
PVFS. The file system simulation models implemented in
this project will be used to develop simulation of burst
buffer architecture and eventually to simulate a data
aware scheduler on top of Slurm[2] resource manager.

Categories and Subject Descriptors
D.4.8 [Performance]: Simulation

General Terms
Measurement, Performance, Design.

Keywords
HPC, data-intensive, PVFS, simulation, CODES, ROSS.

1. INTRODUCTION
Recent trend in HPC applications is that they are becoming
data-intensive that consume and produce large volumes of
data and have complex data dependencies. Examples of
these applications are VISTA(Astronomy)[26], LIGO
(Astrophysics)[27], BLAST(Bioinformatics)[28] and
ATLAS(High Energy Physics)[29]. Current resource
managers are ignorant of data location (local vs remote
parallel file systems like PVFS[12], Lustre[30] etc) and the
cost to move it. Accessing and retrieving large amounts of
data is currently is just a remarkable side effect on
scheduling computations.

Burst buffer architecture has been proposed to handle
bursty I/O patterns in HPC systems [1]. Burst buffers are
high-throughput, low-capacity storage devices that act as a
staging area or a write-behind cache for HPC storage
systems. The approach we follow to incorporate burst
buffers is to place these buffers on I/O nodes that connect

to the external storage system and to manage these buffers
as part of the I/O forwarding services. If burst buffers are
sufficiently large and fast, they can absorb I/O bursts. [1].
Burst buffers will integrate at HPC I/O nodes and will be
managed by I/O forwarding software. By aggregating and
absorbing the I/O requests into the burst buffer layer,
applications can overlap computations that follow I/O
bursts while asynchronously pushing data to the storage
for persistence. Without the burst buffers, applications
would block until all I/O requests are completed and would
allow no potential for optimization or overlapping
computation and I/O activity.

Before we simulate burst buffer architecture and measure
its effect on scheduler performance we need to simulate
existing parallel file system on a HPC machine. So, in this
project we simulate PVFS[12] file system on a IBM BG/P
architecture[22]. PVFS is a open-source parallel file
system developed by Argonne National Lab and Clemson
University. In the PVFS architecture the compute nodes act
as clients and the I/O nodes act as servers. The application
resides on the client and triggers I/O requests to the PVFS
client daemon running on the client. The PVFS client
daemon communicates with the PVFS server daemon
running on the servers to handle I/O operations and
metadata operations. The servers are again classified into
I/O servers which handle I/O operations and metadata
servers which handle metadata operations. Originally
PVFS had a single centralized metadata server and
multiple distributed I/O servers. PVFS2 has a distributed
metadata architecture. Each server can either function as a
I/O server or a metadata serevr or both. The server type is
configured in software. PVFS also implements a file
striping mechanism, with each file divided into multiple
stripes with each stripe being stored in a different disk.
The file distribution information includes both the file
location and location of the disk in the cluster. The
location of the file is specified with three parameters, base
I/O node number, number of nodes and the stripe size. We
have implemented our simulation using CODES(Co-
Design of Multilayer Exascale Storage Architectures)[14]
and ROSS(Rensselaer Optimistic Simulation System)[13]
simulation frameworks from Argonne National Laboratory
and Rensselaer Polytechnic Institute. ROSS is a parallel
discrete event simulator which uses time warp
protocols[31] to simulate discrete events in parallel. ROSS
also allows reverse computations to rollback changes for
timestamp mismatches. Because of this feature ROSS can
achieve very high performance as it can execute events in
parallel. CODES is built on top of ROSS and provides
various network models for torus and dragonfly networks
and supports MPI collective communication operations

mailto:sdivanji@hawk.iit.edu
mailto:iraicu@cs.iit.edu
mailto:dzhao8@iit.edu
mailto:rkapoor7@hawk.iit.edu

using the optimistic event scheduling capability of ROSS.
We measure the performance of our simulation for I/O
operations and metadata operations. We have compared
our simulation with FusionFS[11] and NFS[23] file
systems through simulations. We have also measured the
accuracy of our simulations by comparing the read and
write throughput of our simulation with actual GPFS read
and write throughput and by comparing the metadata
throughput of our simulation with metadata throughput of
actual PVFS[12] implementation[11].

The rest of the paper is organized as follows. In section 2,
we explain our proposed solution. In section 3, we present
the evaluation of our solution. In section 4, we present the
related work. In section 5 we present our future work and
conclude the paper.

2. PROPOSED SOLUTION
As a first stage of implementing a data aware scheduler
using a burst buffer architecture [1] we simulate PVFS file
system[12] on a IBM BG/P[22] machine.

The architecture of our simulation is as below shown in
Figure 1.

In CODES/ROSS the basic unit of simulation is a Logical
Processor (LP). LPs are abstractions of simulated physical
processes. They act like real processes in the system and
are synchronized by Time Warp protocol[31]. In our
simulations we simulate each node as a LP and the arrows
which indicates communication between different nodes
are simulated as events taking place between the LPs.

Figure 1: PVFS simulation architecture.

Application resides on the compute node and triggers the
I/O request to the PVFS client daemon running on the
compute node. We model the client node in client LP in
our simulation. The servers are modeled in the server LP
in our simulation. PVFS servers are of two types: metadata
servers which handle metadata of the files and I/O servers
which handle actual application data. In PVFS the
metadata server and I/O server config is done in software.
A single I/O node can act as either a metadata server or
I/O server or both. In our simulation we assume that every
I/O node is acting as both metadata server and I/O server.

We consider disk as an overhead for the operations done in
our simulator and we will take up modeling disk as a
separate LP in our future work.

In the sections 2.1 to 2.4 we describe the various
operations in PVFS[12].

2.1 File Create
The file create operation takes as shown in Figure 2 below.

The steps for file creation are:

1. Application on compute node sends file_create()
request to pvfsd running on compute node.

2. pvfsd running on compute node sends
create_metafile() request to pvfsmgr running on a
random metadata server, say metadata_server_i.

3. pvfsmgr running on metadata_server_i returns
metadata handle through return_metadata().

4. pvfsd on compute node sends create_datafile()
requests to pvfsmgr on a set of IO servers.

5. Each io server receiving create_datafile() sends
create_dir_entry() to the metadata_server_i.

6. metadata_server_i sends metadata attributes to
the io servers through set_meta_attr()

7. Each io server returns data handle to pvfsd on
compute node through return_datahandle().

8. pvfsd informs application that file is created using
file_create_done().

Figure 2 : File Create.

2.2 File Open
The file open operation takes as shown below in Figure 3.

The steps for file open are as follows:

1. Application on compute node sends a file_open()
request to pvfsd on compute node.

2. pvfsd on compute node sends a lookup_request()
to all metadata servers.

3. The metadata server which has metadata for the
file, say metadata_server_i returns file handle
through return_file_handle().

4. pvfsd on compute node sends request_datafile() to
all io servers which have the data handle for the
file.

5. Each io server returns the handle for the stripe it
is handling to pvfsd on compute node.

6. pvfsd informs the application that the file has
been opened through file_open_done().

Figure 3: PVFS file open.

2.3 PVFS file read
In PVFS, file read operation takes place as shown below in
Figure 4.

Figure 4: PVFS file read.

The steps for file read as follows:

1. Application on compute node sends fread() request to
pvfsd on compute node.

2. pvfsd sends request_file() to each io server that has the
data handle for the file.

3. Each io server sends the stripe it is handling to the pvfsd
on compute node.

4. pvfsd informs the application that file read is done
through fread_done().

2.4 PVFS File write
PVFS file write operation is done as shown in Figure 5.

Figure 5: PVFS file write

The steps for file write as follows:

1. Application on compute node sends fwrite()
request to pvfsd on compute node.

2. pvfsd sends write_request() to io server.

3. pvfsmgr on io server informs pvfsd that write is
successfully completed through write_done()

4. pvfsd informs application that write is succesfully
completed through fwrite_done().

We have developed our simulation model in multiple
stages. In the first stage, We have developed and evaluated
a hardcoded model for PVFS file system in which each
node acts as both server and client . From the
CODES/ROSS simulation perspective our simulation
model consists of only one Logical Processor (LP). We
assume all remote I/O operations as per the architecture of
PVFS. We assume a constant I/O overhead of 5% for each
operation and add this overhead to the time taken to
complete each operation. We also take this value as the
seed for random I/O noise and add the I/O noise for the
execution time. We assume a constant metadata size of 32
bytes. We have measured the time taken to complete I/O
operations with different dataset sizes and different number
of nodes. From this value we calculate the aggregate
throughput.

In the second stage we have separated the client and server
nodes. As in the first stage, we assume all remote I/O
operations as per the architecture of PVFS. We assume a
constant I/O overhead of 5% for each operation and add
this overhead to the time taken to complete each operation.
We also take this value as the seed for random I/O noise
and add the I/O noise for the execution time. We assume a
constant metadata size of 32 bytes. In our simulation, the

server nodes communicate with the client nodes in a
round-robin fashion. In the configuration file used by the
simulator we specify the data size to be transferred in each
iteration through a variable called pvfs_file_size. By
default this value is set to 64KB which is the default stripe
size in PVFS[32]. We repeat this workload for a large
number of iterations. So, effectively we are sending one
stripe in each round of communication. In this way we
have simulated PVFS file striping. We have simulated an
event called request event in which we send a single stripe
in each iteration from client to server and repeat this
workload for a large number of iterations. Hence, this
event simulates file write. We have simulated another
event called ack event in which we send a single stripe in
each iteration from server to client and repeat this
workload for a large number of iterations. Hence, this
event simulates file read. Since, both request and ack
events happen in the same round of communication, file
read and write operations are simulated in a single round
of communication. We have another variable called
payload_size in the configuration file which is set to 32
bytes and this represents the file metadata. We simulated
metadata operations by sending payload_size as the data
size in the simulator event and repeating this workload for
only one iteration.

We have measured the time taken to complete I/O
operations and metadata with different dataset sizes and
different number of server nodes with the number of client
nodes fixed at 1024. From this we calculate the aggregate
throughput for I/O operations and metadata operations. We
have also compared the performance of PVFS[12] with
FusionFS[11] and NFS[23] file systems. We have evaluated
the performance of our simulation in terms of accuracy by
comparing the I/O throughput to actual GPFS[24] read
and write throughput from FusionFS paper[11] and
comparing the metadata performance to actual PFVS
metadata performance from FusionFS paper[11].

2.5 Implementation Details
We have implemented our code in C. The total project code
is around 550 lines of C code. The CODES/ROSS
framework consists of around 45K lines of C/C++ code.
We have used version 0.40 for codes-base and codes-net
libraries of CODES simulator and for the commit hash of
ROSS is 44b7b9a which is the latest version of ROSS at
the time of release of CODES 0.40. The code for the
project is available at https://github.com/sdivanji/pvfs_sim/

3. EVALUATION
3.1 Testbed
We have run our simulations on a single machine with a
AMD 4-core, 64-bit processor and 8GB of DDR3L RAM.
We have used MPICH2[25] version 3.04 from ANL as our
MPI library. We have run all experiments in the sequential
mode of ROSS as we have not implemented reverse
computations in our code. Since, our simulations do not

take a lot of time to run, the effort needed to code the
reverse computation is very high when compared to its
benefits.

3.2 Metrics
We have evaluated the performance of our simulations in
terms of Throughput(MB/s) and execution time(s) for read
and write operations and Throughput(Number of
operations per second) for metadata operations. We also
compare the performance of PVFS[12] with respect to
FusionFS[11] and NFS[23] in terms of Throughout(MB/s)
and execution time(s) for read and write operations. We
compare the performance of PVFS[12] with FusionFS[11]
for metadata operations in terms of Throughput(Number of
operations per second). We have measured the accuracy of
our simulation by comparing read and write throughputs
with actual GPFS read and write throughput of GPFS[24]
file system in terms of MB/s and by comparing metadata
throughput with PVFS[12] metadata throughput with data
obtained from FusionFS BigData 2014 paper[11].

3.3 Experiments
3.3.1 Throughput
We first evaluate the performance of our first stage model
in terms of throughput and execution time for read and
write operations. We vary the number of nodes from 8 to
64 and the dataset size from 64MB to 1GB which is
equally divided among all nodes. We use a 3D torus
network model for these experiments.

Figure 6: Execution time for different datset sizes and
different number of nodes.

From the graphs we can see that at lower file sizes,
execution time increases and throughput decreases with
increase in the no. of nodes because the overhead of
network communications is large when compared to file
size. However, for larger file sizes the cost of network
communication gets amortized and we see improved
performance with increase in the number of nodes.

Next we evaluate the performance of our second stage
model. We measure the performance in terms of execution
time and throughput for read and write operations. We fix
the number of clients at 1024 and vary the number of
servers from 8 to 64. For each client we vary the file size
from 64MB to1GB. So, in total our system will have
dataset size varying from 64GB to 1TB. We have used
simplenet network model available in CODES as the torus

https://github.com/sdivanji/pvfs_sim/

network model does not scale for more than 8 servers and
32 clients. The results are as shown in Figure 8 and Figure
9.

Figure 7: Throughput for different dataset sizes and
different number of nodes.

Figure 8: Execution time for 1024 clients with different
number of servers and different dataset sizes.

From the graphs we can see that at larger dataset sizes the
cost of remote communication is small enough that it gets
amortized and we get a linear scalability with the increase
in the number of servers.

From the graphs we can see that at larger dataset sizes the
cost of remote communication is small enough that it gets
amortized and we get a linear scalability with the increase
in the number of servers.

From these experiments we can conclude that PVFS is
more suited to handle larger dataset sizes as it scales
almost linearly at larger dataset sizes.From these
experiments we can conclude that PVFS is more suited to
handle larger dataset sizes as it scales almost linearly at
larger dataset sizes.

3.3.2 Ideal Stripe Size
Next we evaluate the performance in terms of throughput
by varying the stripe size. We keep the number of servers
fixed at 64, number of clients fixed at 1024 and the dataset
size in the file system at 64GB. We vary the stripe size
from 1KB to 1MB and measure the throughput for each
stripe size. The results are as shown below in Figure 10.

Figure 9: Throughput for 1024 clients with different
number of servers and different dataset sizes.

Figure 10: Throughput for different stripe sizes.

From the graph we can see that at very low stripe sizes, the
throughput is low. This is because to perform read and
write operations we need many cycles of communication
between clients and servers. The overhead of this reduces
the throughput. The throughput improves with increase in
stripe sizes till 64KB as the clients need to make less
number of requests to the servers. However after 64KB the
throughput keeps on dropping as we increase the stripe
size. This is because the packet size of the client and server
networks is very less compared to the stripe size. The
client network has a packet size of 8KB and the server
network has a packet size of 2KB. So, at higher stripe sizes

each stripe consists of larger number of packets and this
packetization overhead reduces the throughput at higher
stripe sizes.

From this experiment we conclude that 64KB is the ideal
stripe size. The real PVFS 2.0 deployments also have
64KB as the ideal stripe size[32]. Our simulations confirm
this.

3.3.3 Metadata
We measure the metadata performance of our PVFS
simulation in terms of operations per second. To simulate
the metadata operations we send very small amount of
traffic (32 bytes) through our models and measure the
number of operations per second. We keep the number of
clients fixed at 1024 and vary the number of servers from 1
to 64. The results are as shown below in Figure 11.

From the figure we can see that the metadata performance
saturates at 32 servers. This is because the data being
transferred is so small that the overhead of adding
additional nodes saturates the performance.

3.3.4 Throughput Comparison
We compare the performance of different file systems
namely FusionFS[11] , PVFS and NFS[23]. These file
systems represent different types of file systems with
FusionFS for distributed file systems, PVFS for parallel
file systems and NFS for centralized file systems. So, this
experiment also gives us insight into the performance of
different file system architectures.

We compare the performance of the file systems in terms
of throughput for I/O operations for different file systems.
For FusionFS we measure the throughput at 1024 nodes,
for PVFS we meausre the throughput for 64 servers and
1024 clients and for NFS we measure the throughput with
1 server and 1024 clients. We vary the dataset size from
64GB to 1TB. The results are as shown below in Figure
12.

Figure 11: Metadata performance with different
number of servers.

The Y-axis is plotted in a logarithmic scale to better show
the difference in performance.

From the graph we can see that FusionFS outperforms
PVFS and NFS at all scales. This is because FusionFS has

a fully distributed architecture with each node capable of
running the client and server proesses. Thus, there is a 1:1
mapping between clients and servers. Also, FusionFS
enables write locality. So, FusionFS performs much better
than PVFS and NFS.

PVFS follows a parallel architecture with number of
servers an order of magnitude less than the number of
clients. Also, all writes are remote in PVFS. NFS, on the
other hand has a centralized architecture with a single
centralized server. Hence, NFS doesn't scale very well and
though PVFS outperforms NFS its performance is much
less when compared to FusionFS.

Figure 12: Comparison between PVFS, NFS and
FusionFS for I/O throughput.

3.3.5 Metadata Comparison
We also compare the metadata performance of PVFS with
FusionFS in terms of number of operations per second. We
simulate PVFS metadata performance by sending very less
amount of traffic(32 bytes) through our models. We keep a
1-1 mapping between clients and servers and vary the
number of nodes from 1 to 64 for both PVFS and FusionFS
so that we keep similarity in the workloads to compare.
For FusionFS we use the data from FusionFS paper[11].

The results are as shown below in Figure 13.

 Figure 13: Metadata performance comparison between
FusionFs and PVFS.

The Y-axis is in logarithmic scale to better show the
difference in performance.

From the graph we can see that FusionFS outperforms
PVFS at all scales. This is because FusionFS implements
metadata optimization operations like update->append[11]
which are highly effective. On the other hand, in PVFS no
metadata optimization operations are implemented. Thus,
this experiment shows that only increasing the number of
metadata servers does not necessarily improve the ability
to handle higher concurrency.

3.3.6 Throughput Accuracy
We measure the accuracy of our simulations by comparing
throughput for read and write operations and metadata
performance with actual parallel file system
implementations. We compare read and write throughput
of our simulation with GPFS[24] deployed on IBM Blue
Gene[22]. We fix the number of servers at 128 and vary
the number of clients from 1 to 1024. The results are as
shown below in Figure 14 and 15.

Figure 14: Comparison of read throughput with GPFS .

Figure 15: Comparison of write throughput with GPFS

From these experiments we can see that at lower scales our
simulation matches closely with actual deployments. At
higher scales there is a difference between our results and
actual deployments. We attribute this difference to the fact
that we were not able to use torus network models at
higher scales as we ran out of memory and had to use
simplified network models at larger scales.

3.3.7 Metadata Accuracy
We have compared the accuracy of our simulation for
metadata performance by comparing the number of
operations per second obtained from our simulation with
actual PVFS deployment. We keep a 1-1 mapping between
clients and servers and vary the number of nodes from 1 to
64. The results are as shown in Figure 16.

From the graph we see that at higher scales the
performance of our simulations resemble closely with that
of the actual deployment. At lower scales there is a
difference in performance because, in our simulations we
add random I/O noise and this creates a few stragglers.
The effect of the stragglers is more prominent at lower
scales and brings down the performance of our simulation.

Figure 16: Comparison of metadata performance with
actual PVFS implementation.

3.3.8 Effect of adding more clients
We have measured the effect of adding more clients
keeping the number of servers constant. We keep the
number of servers fixed at 8 and vary the number of clients
from 1 to 32 and measure the I/O throughput. The results
are as shown below in Figure 17.

Figure 17: Different number of clients with servers
fixed at 8.

From the graph we can see that when the number of clients
is less than the number of servers, some servers are

underutilized and throughput is low. We can also see that
when the clients and servers are in a 1:1 mapping we get
the best performance. At scale of 16 clients 50% of nodes
in become stragglers and this brings down the performance
when compared to 24 clients scale which has less than
25% of nodes as stragglers.

4. Related Work
As part of studies going on exascale design, there is
significant interest in understanding how parallel system
software such as MPI/MPI-IO and the associated
supercomputing applications will scale on future
architectures. For example, Perumalla’s µπ system [33]
will allow MPI programs to be transparently executed on
top of the MPI modeling layer and simulate the MPI
messages. µπ has executed MPI jobs with over 27 million
tasks which was executed on 216,000 Cray XT5 cores.[33]
A number of universities and national labs have together
developed the Structural Simulation Toolkit (SST) [34].
SST includes a collection of hardware component models
including processors, memory and network at different
accuracy. These models use parallel component-based
discrete event simulation based on MPI. The users are able
to leverage multi-scale nature of SST by trading off
between accuracy, complexity, and time to solution.
BigSim [35] focuses on the model and prediction of
sequential execution blocks of large scale parallel
applications. The model is trace-driven and it uses the
scalable trace gained from machine learning for predicting
overall performance. While our simulator accurately
captures the large-scale parallel file system characteristics,
these systems are more focused on providing accurate,
large-scale computational performance models.
Researchers have also developed a number of parallel file
system simulators. The IMPIOUS simulator [36] was
developed for fast evaluation of parallel file system
designs. It simulates PVFS, PanFS, and Ceph file systems
based on user-provided file system specifications,
including data placement strategies, replication strategies,
locking disciplines, and caching strategies. The HECIOS
simulator [37] is an OMNeT++ simulator for PVFS.
HECIOS was used to evaluate scalable metadata operations
and file data caching strategies for PVFS. PFSsim [38] is
an OMNeT++ PVFS simulator that allows researchers to
explore I/O scheduling algorithm design. PVFS and ext3
file systems have been simulated using colored Petri nets
[39]. This simulation method yielded low simulation error,
with less than 10% error reported for some simulations.
The focus of CODES sets it apart from these related
simulation tools. One of the goals of CODES is to
accurately and quickly simulate large-scale storage
systems. To date, CODES has been used to simulate up to
131,072 application processes, 9512 PVFS file system
clients, and 123 PVFS file servers [19]. The existing
simulators limited their simulations to smaller parallel
systems (up to 10,000 application processes and up to 100
file servers).

Research has also been done in simulating PVFS using
older versions of CODES and ROSS. Ning Liu et al [19]
and Bo Feng at al [20] have developed simulation models

to simulate PVFS[12] file system on a IBM Blue Gene[22]
machine. The difference in our work is that these
simulations use their own simplified network models. We
build our simulations on top of latest version of
CODES[14] which is built on top of ROSS and provides
realistic network models like Torus, Dragonfly etc.

5. Conclusion and Future Work
In this paper we present a simulation of PVFS[12] parallel
file system using CODES[14]/ROSS[13] simulator from
ANL. We measure the performance of our simulation in
terms of throughput in MB/s for I/O operations and
number of operations per second for metadata operations.
We compare the performance of PVFS[12] with
FusionFS[11] and NFS[23] file systems for I/O operations
throughput and with FusionFS[11] file system for metadata
operations through simulations. We measure the accuracy
of our simulation by comparing it with real deployment of
GPFS[24] file system for read and write operations and by
comparing with real deployment of PVFS[12] file system
for metadata operations. This work will act as a first stage
in the implementation of a data aware scheduling system
which will be built on top of slurm[2] resource manager
and will use burst buffer architecture[1].

In future we plan to run the simulations with torus network
models on large scale on a cluster to get more accurate
results. We plan to separate disk into a separate LP so that
network latency of remote disks is also considered. The
next step in this project is to simulate burst buffer models
and measure the effect of adding burst buffers on
performance. Once, this is done we will simulate data
aware scheduling on top of slurm[2] resource manager.

6. References
[1] Liu, Ning, et al. "On the role of burst buffers in
leadership-class storage systems." Mass Storage Systems
and Technologies (MSST), 2012 IEEE 28th Symposium on.
IEEE, 2012.

[2] Yoo, Andy B., Morris A. Jette, and Mark Grondona.
"Slurm: Simple linux utility for resource
management." Job Scheduling Strategies for Parallel
Processing. Springer Berlin Heidelberg, 2003

[3] B. Van Essen, R. Pearce, S. Ames, and M. Gokhale. On
the role of NVRAM in data-intensive architectures: an
evaluation. In International Symposium on Parallel and
Distributed Processing (to appear), 2012.

[4] N. Master, M. Andrews, J. Hick, S. Canon, and N.
Wright. Performance analysis of commodity and enterprise
class flash devices. In Proceedings of the 5th Parallel
Data Storage Workshop (PDSW’10), November 2010.

[5] S. Alam, H. El-Harake, K. Howard, N. Stringfellow,
and F. Verzelloni. Parallel I/O and the metadata wall. In
Proceedings of the 6th Parallel Data Storage Workshop
(PDSW’11), November 2011.

[6] J. He, J. Bennett, and A. Snavely. DASH-IO: and
empirical study of flash-based IO for HPC. In Proceedings
of TeraGrid’10, August 2010.

[7] L. Gomez, M. Maruyama, F. Cappello, and S.
Matsuoka. Distributed diskless checkpoint for large scale
systems. In Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud, and Grid
Computing (CCGrid’10), May 2010.

[8] P. Nowoczynski, N. Stone, J. Yanovich, and J.
Sommerfield. Zest: Checkpoint storage system for large
supercomputers. In 3rd Petascale Data Storage Workshop,
November 2008.

[9] J. Bent and G. Grider. Usability at Los Alamos
National Lab. In The 5th DOE Workshop on HPC Best
Practices: File Systems and Archives, September 2011.

[10] K.Wang, X.Zhou, K.Qiao, M.Lang, B. McClelland, I.
Raicu. Slurm++: a Distributed Workload Manager for
Extreme- Scale High-Performance Computing Systems.

[11] D Zhao, Z Zhang, X Zhao, T Li, K Wang, D Kimpe, P
Carns, R Ross, I Raicu. FusionFS: Toward Supporting
Data-Intensive Scientific Applications on Extreme-Scale
High-Performance Computing Systems. In IEEE BigData
2014 .

[12]. P Carns, W Lingon, R Ross, R Thakur, PVFS: A
Parallel File System for Linux Clusters. In Proc. of the
Extreme Linux Track: 4th Annual Linux Showcase and
Conference, October 2000.

[13] Carothers, Christopher D., David Bauer, and Shawn
Pearce. "ROSS: A high-performance, low-memory,
modular Time Warp system." Journal of Parallel and
Distributed Computing 62.11 (2002): 1648-1669.

[14] Mubarak, Misbah, et al. "Using massively parallel
simulation for MPI collective communication modeling in
extreme-scale networks." Proceedings of the 2014 Winter
Simulation Conference. IEEE Press, 2014.

[15] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T.
J. T. Kwan. Ultrahigh performance three-dimensional
electromagnetic relativistic kinetic plasma simulation.
Physics of Plasmas, 15(5):7, 2008.

[16]C Nieter,JR Cary. VORPAL: a versatile plasma
simulation code - Journal of Computational Physics, 2004
– Elsevier

[17] https://www.alcf.anl.gov/projects/climate-weather-
modeling-studies-using-prototype-global-cloud-system-
resolving-model-0

[18]Philip Carns, Robert Latham, Robert Ross, Kamil
Iskra, Samuel Lang, and Katherine Riley. 24/7
characterization of petascale I/O workloads.
In Proceedings of 2009 Workshop on Interfaces and
Architectures for Scientific Data Storage, September 2009.

[19]Liu, N., Carothers, C., Cope, J., Carns, P., Ross, R.,
Crume, A., & Maltzahn, C. (2011, September). Modeling a
leadership-scale storage system. InProceedings of the 9th
international conference on Parallel Processing and
Applied Mathematics-Volume Part I (pp. 10-19). Springer-
Verlag.

[20]Feng, Bo, Ning Liu, Shuibing He, and Xian-He Sun.
"HPIS3: towards a high-performance simulator for hybrid

parallel I/O and storage systems." InProceedings of the 9th
Parallel Data Storage Workshop, pp. 37-42. IEEE Press,
2014.

[21] Haddad, Ibrahim F. "Pvfs: A parallel virtual file
system for linux clusters." Linux Journal 2000.80es
(2000): 5.

[22]Gara, Alan, et al. "Overview of the Blue Gene/L
system architecture." IBM Journal of Research and
Development 49.2.3 (2005): 195-212

[23]Sandberg, Russel. "The Sun network file system:
Design, implementation and experience." Distributed
Computing Systems: Concepts and Structures (1987):
300-316

[24]Schmuck, Frank B., and Roger L. Haskin. "GPFS: A
Shared-Disk File System for Large Computing
Clusters." FAST. Vol. 2. 2002

[25]Gropp, William. "MPICH2: A new start for MPI
implementations." Recent Advances in Parallel
Virtual Machine and Message Passing Interface.
Springer Berlin Heidelberg, 2002. 7-7.

[26]Emerson, J., and W. Sutherland. "The Visible and
Infrared Survey Telescope for Astronomy (VISTA):
Looking Back at Commissioning." The
Messenger 139 (2010): 2-5.

[27]Abbott, B. P., et al. "LIGO: the laser interferometer
gravitational-wave observatory." Reports on Progress
in Physics 72.7 (2009): 076901

[28]Oehmen, Chris, and Jarek Nieplocha. "ScalaBLAST: a
scalable implementation of BLAST for high-
performance data-intensive bioinformatics
analysis." Parallel and Distributed Systems, IEEE
Transactions on 17.8 (2006): 740-749.

[29]ATLAS, Collaboration, et al. "ATLAS high-level
trigger, data acquisition and controls technical design
report." ATLAS Technical Design Reports (2003).

[30]Halbwachs, Nicholas, et al. "The synchronous data
flow programming language LUSTRE." Proceedings
of the IEEE 79.9 (1991): 1305-1320.

[31]Jefferson, David R. "Virtual time." ACM Transactions
on Programming Languages and Systems
(TOPLAS) 7.3 (1985): 404-425.

[32]http://www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc/pvfs2-
tuning/pvfs2-tuning.html

[33]Perumalla, Kalyan S. "μπ: a scalable and transparent
system for simulating MPI programs." Proceedings of
the 3rd International ICST Conference on Simulation
Tools and Techniques. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering), 2010.

[34]Rodrigues, Arun F., et al. "The structural simulation
toolkit." ACM SIGMETRICS Performance Evaluation
Review 38.4 (2011): 37-42.

http://www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc/pvfs2-tuning/pvfs2-tuning.html
http://www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc/pvfs2-tuning/pvfs2-tuning.html
https://www.alcf.anl.gov/projects/climate-weather-modeling-studies-using-prototype-global-cloud-system-resolving-model-0
https://www.alcf.anl.gov/projects/climate-weather-modeling-studies-using-prototype-global-cloud-system-resolving-model-0
https://www.alcf.anl.gov/projects/climate-weather-modeling-studies-using-prototype-global-cloud-system-resolving-model-0
http://www.sciencedirect.com/science/article/pii/S0021999103006041
http://www.sciencedirect.com/science/article/pii/S0021999103006041

[35]Zheng, Gengbin, Gunavardhan Kakulapati, and
Laxmikant V. Kalé. "Bigsim: A parallel simulator for
performance prediction of extremely large parallel
machines." Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International.
IEEE, 2004.

[36]Molina-Estolano, E., et al. "Building a parallel file
system simulator." Journal of Physics: Conference
Series. Vol. 180. No. 1. IOP Publishing, 2009.

[37]Scott, Joe. "Towards Building a Scalable Parallel
Simulation of PVFS3."

[38]Liu, Yonggang, et al. "Towards simulation of parallel
file system scheduling algorithms with
PFSsim." Proceedings of the 7th IEEE International
Workshop on Storage Network Architectures and
Parallel I/O (May 2011). 2011.

[39]Nguyen, Hai, and Amy Apon. "Hierarchical
performance measurement and modeling of the linux
file system." ACM SIGSOFT Software Engineering
Notes. Vol. 36. No. 5. ACM, 2011.

Appendix
A. Contributions:
Sughosh Divanji(sdivanji@hawk.iit.edu):

1. Background study.

2. Develop first stage model in which client and
server is on the same node.

3. Develop second stage model in which clients and
servers are separated.

4. Debug the issues that were seen in development.

5. Evaluation of the simulation for I/O Throughput,
Metadata Throughput, Comparison with
FusionFS and NFS simulation and comparison
with actual GPFS and PVFS deployments.

Raghav Kapoor (rkapoor7@hawk.iit.edu)

1. Background study.

2. Try to run Darshan workloads on the simulation.

3. Try to fix scaling issues by running torus network
models on Fusion(fusion.cs.iit.edu) and
Jarvis(jarvis.cs.iit.edu).

4. Debug the issues that were seen in development.

B. Challenges
The challenges that we faced in this project are:

1. We started with an assumption that file system
models and storage system models already existed

in the simulator. However, this turned out to be
incorrect. So, we had to change the scope of the
project from modeling burst buffers and data-
aware scheduling to developing a parallel file
system model from scratch.

2. CODES/ROSS is a project still under active
development. So, the developers have not
documented the APIs. Because of this we had to
read the source code to understand the simulator.
This made the learning curve a lot steeper.

3. Because CODES/ROSS is a project under
development, there are bugs that exist in the
simulator. Whenever, we found bugs we were
blocked till they were fixed. We had to work with
developers from ANL to report the bugs and
provide them testcases to reproduce the bugs and
get them fixed so that we could make progress on
our work.

C. Acknowledgements
We would like to thank Ning Liu from SCS lab for helping
us understand the simulator environment and previous
work done in this area using CODES/ROSS. We would
like to thank Jonathan Jenkins from Argonne National Lab
for helping us to debug the issues we encountered and the
quick turnaround on the bugs that we reported.

mailto:rkapoor7@hawk.iit.edu
mailto:sdivanji@hawk.iit.edu

	1. INTRODUCTION
	2. PROPOSED SOLUTION
	2.1 File Create
	2.2 File Open
	2.3 PVFS file read
	2.4 PVFS File write
	2.5 Implementation Details

	3. EVALUATION
	3.1 Testbed
	3.2 Metrics
	3.3 Experiments
	3.3.1 Throughput
	3.3.2 Ideal Stripe Size
	3.3.3 Metadata
	3.3.4 Throughput Comparison
	3.3.5 Metadata Comparison
	3.3.6 Throughput Accuracy
	3.3.7 Metadata Accuracy
	3.3.8 Effect of adding more clients
	4. Related Work

	5. Conclusion and Future Work
	6. References
	Appendix
	A. Contributions:
	B. Challenges
	C. Acknowledgements

