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Abstract— It has been widely accepted that software 

virtualization has a big negative impact on high-performance 

computing (HPC) applications performance. This work explores 

the potential use of Infiniband hardware virtualization in an 

OpenNebula cloud towards the efficient support of MPI-based 

workloads. We have implemented, deployed, and tested an 

Infiniband network on the FermiCloud private IaaS cloud. To 

avoid software virtualization towards minimizing the 

virtualization overhead, we employed a technique called Single 

Root Input/Output Virtualization (SR-IOV). Our solution 

spanned modifications to the Linux’s Hypervisor as well as the 

OpenNebula manager. We evaluated the performance of the 

hardware virtualization on up to 56 virtual machines connected 

by up to 8 DDR Infiniband network links, with micro-

benchmarks (latency and bandwidth) as well as with a MPI-

intensive application (the HPL Linpack benchmark). 

Keywords: Infiniband; virtualization; Cloud Computing; 

OpenNebula; SR-IOV; Linpack; HPC.  

I.  INTRODUCTION 

FermiCloud is a private cloud providing Infrastructure-as-a-
Service services to Fermilab employees and users and it 
manages dynamically allocated services for both interactive 
and batch processing. As part of the computing infrastructure 
of the Laboratory, this distributed computing system 
complements the bigger FermiGrid project, a distributed 
campus infrastructure that manages conversely statically 
allocated compute and storage resources for batch processing. 
In particular FermiGrid is used to run compute-intensive jobs 
related to experiments conducted here at Fermilab as well as in 
other locations that collaborate with it like the LHC. 
FermiCloud provides additional resources to the Grid by 
providing Virtual Machines that run on the Cloud Infrastructure 
and increase the computing capacity. These virtual machines 
(VM) imitate a physical computer in all its features and 
functionalities and it is possible to run several of them on a 
physical machine, sharing its resources and so optimizing its 
resource utilization. Nevertheless, the usage of VMs implies 
managing the virtualization and sharing of the physical 
hardware (HW) and resources. This virtualization introduces 
overheads in performance. 

As part of a national laboratory, the FermiCloud team is 
especially interested on expanding its functionality to provide a 
useful platform to the scientific investigation performed on 
Fermilab. A big part of it comes from being able to run 
scientific applications and models. However, scientific 
computing relies on compute-intensive and data-intensive jobs 
that have to be coordinated among several nodes. Although 
cloud computing provides a better utilization of the resources, 
the overhead introduced by the virtualization can make the 
application too inefficient and as of today, most scientific 
computing is still done on High Performance Computing 
(HPC) clusters and supercomputers which do not support 
virtualization. These applications are also distributed among 
several nodes, usually using the Message Passing Interface 
Protocol (MPI) that is very sensitive to changes in latency, such 
as the virtualization overhead. [12, 26] 

A fast and reliable network in and among virtual machines 
is a key element for a cloud system to be capable of running 
scientific applications, facilitating the transfer of data and 
communication between VMs [12]. Infiniband is an especially 
interesting technology since it is one of the interconnect links 
offering one of the highest throughputs and lowest latency, 
guaranteeing QoS and scalability. It is often used in 
supercomputers and high performance computing [19]. 

The main challenge to overcome in the deployment of the 

network is the already discussed overhead introduced when 

virtualizing the hardware of a machine to be used (and shared) 

by the VMs. This overhead slows drastically the data rate 

reducing the efficiency of using a fastest technology like 

Infiniband. To overcome the virtualization overhead we used a 

technology called SRIOV that achieves device virtualization 

without using device emulation by enabling a device to be 

shared by multiple virtual machines. With SR-IOV, a PCIe 

device can export multiple virtual functions besides physical 

functions. These virtual functions that reside in the device 

itself actually share the resources that are provided by the 

device. This model allows the hypervisor to simply map 

virtual functions to virtual machines, which can achieve the 

native device performance even without using pass through 

[6]. 



Using SR-IOV with Mellanox InfiniBand cards means 
installing new firmware in the devices [17] and changes in 
Cloud system, OpenNebula [25] in our case. [14]. This work 
focuses on how this Infiniband network was implemented and 
deployed on the VMs adapting it to the existent FermiCloud 
infrastructure by deploying it in the host machines, configuring 
the SR-IOV and migrating this work to OpenNebula, the cloud 
manager, focusing on simplicity and compatibility with the rest 
of functionalities. After the deployment, a battery of tests was 
performed to test the efficiency of this virtualization (SR-IOV).  

In this work, we define efficiency as the percentage of a 
metric in a virtualized environment compared with the same 
metric in the non-virtualized environment with the same 
resources. To measure the performance and efficiency of the 
virtualization, several tests were performed: micro-benchmarks 
to measure latency and bandwidth as well as the HPL Linpack 
benchmark to measure the efficiency of a real scientific 
oriented application. All these benchmarks were scaled to up to 
8 nodes with a maximum of 7 VMs per node, the maximum 
permitted by our hardware. The results were excellent, with 
VMs reaching the same throughput and the same latency 
(depending on the size of the messages transmitted) of the 
native machines. Some latency overhead in small messages 
lowered the efficiency of the Linpack benchmark to as low as 
70%. 

The rest of the paper is organized as follows. Section 2 
gives a small overview of the technologies used and describes 
how the deployment was done. Section 3 focus on the 
performance evaluation, describing the battery of tests and its 
results. Section 4 describes published work related with this 
topic like SR-IOV deployments on other networks or other 
Infiniband virtualizations. Finally in section 5, we present the 
conclusions based on the performance evaluation as well as 
possible future work.  

II. PROPOSED WORK 

This work explores the potential use of Infiniband hardware 

virtualization in an OpenNebula cloud [25] towards the 

efficient support of MPI-based workloads. We have 

implemented, deployed, and tested an Infiniband network on 

the FermiCloud private IaaS cloud. To avoid software 

virtualization towards minimizing the virtualization overhead, 

we employed a technique called SR-IOV. Our solution 

spanned modifications to the Linux’s Hypervisor as well as 

the OpenNebula manager. We first cover a high-level 

overview of Infiniband followed by a description of the SR-

IOV virtualization. We then continue drilling into the 

challenges brought by the network virtualization, requiring 

additional new functionality. 

A. Infiniband 

Infiniband provides point-to-point bidirectional serial links 
between processors or with high-speed peripherals (often time 
the bottleneck of a system) for a fast Input/Output (I/O) and has 
support for multicast operations. It uses a switched fabric 
topology (nodes connect using switches for a point-to-point 
communication, usually without the need of a hierarchical 
structure). Each processor has a Host Channel Adapter (HCA) 

and each peripheral has a Target Channel Adapter (TCA) that 
exchange data as well as metadata for security or QoS and that 
are the interface with the machine. These adapters can handle 
the entire Infiniband protocol stack without using CPU (more 
efficient) and bypassing the kernel, communicating directly 
with the application avoiding the corresponding overhead [19]. 

The throughput depends on the hardware. At a physical 
level there are several configurations with data rates ranging 
from 2.5 to 25.78125 Gb/s in each direction. Several links can 
links can be aggregated in sets of 4x of 12x, multiplying the 
corresponding data rates by these values. However, redundancy 
encoding slows this speed. Another attractive characteristic of 
Infiniband is offers very low latency that can go down to 
100ns, making the end-to-end latency usually in the order of 
microseconds [19]. 

Infiniband specification only includes a list functions that 
must be implemented in order to build the protocol stack. The 
de-facto standard implementation is called OFED, developed 
by OFA, that provides the entire protocol stack, the kernel 
modules used to manage the communication with the device, as 
well as several monitoring and configuration tools [17]. In our 
case, an implementation provided by the Linux distribution 
(Scientific Linux), containing most of the tools, had to been 
used since the one provided by the card manufacturer was not 
compatible with newer kernel versions. Another important 
element of an Infiniband deployment is the Subnet Manager 
and Administrator, in this case OpenSM, which provides and 
maintains routing tables on the IB hosts. The Switch we used is 
a dummy switch and does not have the necessary logic to do 
the routing. One Subnet Manager must run in one of the 
physical nodes in IB network.  

An interesting feature of the Infiniband stack is IPoIB (IP 
over Infiniband), the protocol that defines how to send IP 
packets using Infiniband by creating a normal IP network 
interface. This wastes some of the functionalities and efficiency 
of the higher layers of the Infiniband protocol stack and drops 
performance but the user can now use the much wider set of 
applications built for TCP-IP and overpass some of the virtual 
functions restrictions. 

Because of all the previous features, Infiniband is 
commonly used not only in super computing and HPC but also 
in clouds and datacenters that require a fast network. Infiniband 
is common in the TOP500 supercomputers, in military 
applications and in the financial sector [19]. 

B. SR-IOV Overview 

SR-IOV is a standard developed by the PCI Special Interest 
Group for Virtualized Servers. It uses the concepts of physical 
and virtual functions. A Physical Function (PF) is a full-
featured PCIe function discovered, managed and manipulated 
like any other physical PCIe device. PFs can control the PCIe 
device and have full configuration capabilities (besides doing 
the I/O). A Virtual Function (VF) is a lightweight function that 
lacks the configuration resources and is limited to processing 
the I/O streams, to move data. VFs cannot be configured since 
they don’t have access to the physical device. A VF is 
subordinated to a PF and all the VFs that depend on that PF 
have the same configuration. If a VF could change its 



configuration options, would also change the options of its PF 
as well as all the other VFs that depend of it [6,8]. 

The virtualization consists on dividing the card on a set of 
PFs and VFs that appear in the bare metal machine as a set of 
independent PCIe Infiniband devices. In this environment, we 
can associate each VF directly to a virtual machine that has the 
exclusive use of that function, and therefore sharing a physical 
IB resource without using any device emulation in hypervisor 
or in user space. [22] 

The virtualization is mostly done in hardware (needing 
support by the device as well as the BIOS. Each PF and VF 
receive a unique PCI Express Requester ID that allows the I/O 
Memory Management Unit (IOMMU) to differentiate the 
traffic going to the different VFs resulting in non privileged 
data flows from the PF to one VF without affecting the others 
[17]. Since a VF cannot be treated as a full PCIe device, the OS 
or hypervisor must also be aware that it is not to block any 
configuration options or tools that can change the other VFs [6, 
17]. The specification indicates that each device can have up to 
256 VFs. These numbers are theoretical maximums since the 
virtualization needs hardware resources, and thus the practical 
upper bound is 63 VFs (plus 1 PF) [22]. 

This solution is much more efficient than device emulations 
in hypervisor which when receiving or sending data must 
interrupt a CPU core to inspect the packet and determine which 
VM should receive it, the data packet to the CPU core that 
serves the corresponding VM and interrupt it to process the 
I/O. This process introduces a significant latency and CPU 
workload. By using SR-IOV, we bypass this virtualization 
assigning a physical port directly and exclusively to a VM 
maximizing the utilization of the HW virtualized device [6, 
22]. 

C. SR-IOV Implementation 

The virtualization configuration in the bare metals is a 
simple process but very poorly documented, probably because 
it is fairly recent. It requires a change in the different 
components involved in the virtualization. To enable it on the 
hardware, a Firmware change is required that enables the 
functionality and specifies the number of PFs and VFs to be 
shown to the machine, each one appearing as an independent 
device with its own PCI address. The maximum number of VFs 
supported by our card is 7 and it only has 1 PF (is a single port 
card). 

The process is sensitive since it is very low-level software 
that doesn’t have any error check. A wrong configuration may 
cause the card not to load when the system boots and can lead 
to a crash of the entire system. Recovering the card after a bad 
Firmware update requires special manufacturer HW. 

Since the virtualization also has to be supported by the OS, 
we have to enable it and specify the proper options in the BIOS 
as well as in the Infiniband card modules. Besides, the kernel 
has to have the IOMMU (I/O Memory Management Unit) 
activated to allow the communication of the VFs with memory 
and the PFs without using the CPU. 

After this, the bare metal appears to have 8 Infiniband cards 
and we can pass each one of them directly to a VM. To manage 

the virtualization we used the Linux’s Kernel-based Virtual 
Machine (KVM), a virtualization solution, and libvirt, the 
virtualization API that OpenNebula[25] uses and that lets us 
create, personalize, destroy and manage VMs.  

To use Infiniband in the virtual machines, it is necessary to 
acknowledge that virtual functions have several limitations. As 
it was discussed before, virtual functions cannot be configured 
since they emulate one physical function. Because of that, 
some Infiniband tools do not work on VFs, mainly the 
configuration ones and the ones that belong to higher layers of 
the protocol stack. To overcome this, Infiniband offers the 
possibility of using the already mentioned IP protocol over 
Infiniband (IPoIB). Most applications use IPoIB to establish 
the connection and then change to the Infiniband protocol 
stack. This maintains the original Infiniband performance but 
uses the familiar IP directions, much more simple than the 
Infiniband’s LID. Besides, the Subnet Manager doesn’t assign 
individual directions to the Virtual Functions and so they are 
not visible from other hosts [1]. The applications used in our 
tests use this technique like OpenMPI, the MPI application 
used or Perftest, a ping-pong benchmark. To use IPoIB is 
necessary to create an Infiniband network interface with its IP 
and load the corresponding modules that recognize that 
interface and make the translation of the IP to the 
corresponding HCA.  

In the bare metals, it is not even necessary to install the 
entire set of Infiniband support but only to load the kernel 
modules that handle the communication with the card 
(including the ones managing IPoIB). In our Linux distribution 
that can be done by activating a service called Rdma, also 
activated in the VMs. Besides, at least one of the host machines 
(can be more than one to avoid having a single point of failure) 
must be running the already mentioned subnet manager to 
handle the routing. Because of the previous experience with 
OFED and its incompatibilities with the driver, we focused 
here and throughout the entire project on finding RPMs that 
were already tested on this Linux distribution and avoided 
compiling applications since that makes the deployment more 
complex and fail more often because of the referred 
incompatibilities. By using libvirt, a virtualization API, it is 
possible to create VMs with the virtualized devices assigned 
from each host machine. To automate it and centralize it, the 
work must be migrated to OpenNebula[25], FermiCloud’s 
cloud manager. 

D. SR-IOV and OpenNebula 

OpenNebula and its KVM need to be changed because SR-
IOV needs the support of the hypervisor since it has to be 
aware that the VFs are not real devices. Besides, it must 
support the integration and manage the assignment of different 
VFs to each Virtual Machine: The configuration of its network, 
how to handle the different actions (migration, live migration, 
saving, killing, etc). For that, the South African Center for High 
Performance Computing implemented a VMM (Virtual 
Machine Monitor) driver for OpenNebula that addressed these 
issues. The driver is similar to the KVM used in FermiCloud 
but includes the management of SR-IOV Infiniband devices 
[14]. However, FermiCloud has some particularities that 
required modifying it before replacing it for the old VMM. 



The driver required changing some configuration and 
permission options (like running the libvirt API as root) that we 
wanted to avoid, mainly to handle the assignment of VFs to a 
virtual machine. Secondly, OpenNebula deployment in 
FermiCloud is using a customized base directory while the new 
VMM assumes the OpenNebula standard directory. 

Finally, the driver was developed for OpenNebula 4.0 and 
currently FermiCloud uses the 3.2 version. Although it is 
backwards compatible there are some differences such as the 
contextualization scripts that are used to start the machines. To 
use the driver we had to change completely the way the 
machines are contextualized in FermiCloud and update the old 
scripts to new version, while maintaining all the configuration 
options and customization of FermiCloud.  

The driver required changing the physical machines 
configuration to use the new VMM. It also required the 
creation of a new virtual network on OpenNebula with the IPs 
that are going to be assigned to the Infiniband interfaces. This 
network uses a predetermined bridge and so, when a VM is 
launched in OpenNebula that includes this network, the driver 
is aware that one of the VFs available in the physical machine 
has to be assigned to that virtual machine. The IP of that 
network is passed from OpenNebula to the VM by creating an 
Ethernet dummy interface (turned off and not used) on the VM 
that has codifies the IP as part of a fake MAC Address. With 
this information, after launching the machine, the 
contextualization scripts recognize the dummy interface and 
translate this fake MAC into the IP that is used to create and 
start the Infiniband’s network interface. 

Finally, to be able to create VMs in OpenNebula with this 
new functionality, virtual machine images also need changes so 
that virtual machines can be launched with proper 
configurations to become part of IB cluster. These include 
software installation, network configurations, and ssh server 
configurations. 

During the deployment of the new VMM driver, one 
challenge was to simplify the procedure and minimize 
necessary changes so that the new system can be integrated 
with the rest of the system. A lot of parallel work was done too 
related with improving some aspects of FermiCloud and 
adapting them. This is very visible in the process that 
OpenNebula uses to deploy machines where changes were 
made that involved the entire deployment process. Once we 
understand the basic technical details of the new VMM driver 
and necessary changes and modifications to FermiCloud 
deployment, we could optimize and automate the process with 
the Puppet environment in FermiCloud. 

E. Limitations 

SR-IOV has some limitations worth discussing. The VFs 
must have the same configuration as the PF and cannot be 
customized and so they cannot change the configuration of the 
physical device. The specification, however, gives some 
freedom to the implementation to manage the communication 
in the device. There are some devices, for example, that have 
VF switching that allows the VFs that belong to the same 
device to talk between themselves without the need of a 
physical switch connected to that device, making the 

communication between them faster. Another limitation is the 
potential interference between VFs under concurrent data 
transfers, which might affect the individual data rate due to 
sharing significant parts of the device’s hardware.  Both 
characteristics are observed in the following evaluation.  

III. PERFORMANCE EVALUATION 

We evaluated the performance of the hardware 

virtualization on up to 56 virtual machines connected by up to 

8 DDR Infiniband network links, with micro-benchmarks 

(latency and bandwidth) as well as with a MPI-intensive 

application (the HPL Linpack benchmark). 

A. Testbed 

The Infiniband card used in this test is the MHRH19B-
XTR ConnectX-2 running with firmware version ConnectX2-
rel-2_9_1000. This model has a single port with QSFP (Quad 
Small Form-factor Pluggable) and connects to the machine 
using PCI Express 2.0 8x. It uses 4x (4 Infiniband links) with a 
DDR data rate for a total theoretical speed of up to 20 Gb/s and 
after the 8b/10b codification 16 Gb/s. It has 1 μs latency when 
used with MPI. It has Virtual Port Interconnect that gives the 
possibility of using it for Infiniband or Ethernet. This model 
has 8 virtual lanes that can create 1 physical function and 7 
virtual functions via SR-IOV. 

The servers are Koi Computers with 2 quad core Intel 
E5640 Westmere processors, 48Gb of RAM and 600Gb of 
SAS Disk, 12TB of SATA, an 8 port RAID Controller, 2 1Gb 
Ethernet networks and Brocade FiberChannel HBA besides the 
already mentioned HCA. 

Our IB HCA cards are interconnected via a 24 port 

Mellanox InfiniScale III DDR switch that can take up to 24 

20Gb/s DDR 4x connections with a total capacity of 960Gb/s.  

All of the above resources are part of FermiLab’s 

computing resources spread among 2 buildings in its facilities 

and that also include the much bigger FermiGrid. Together 

they process all of the data of the experiments performed on 

the Department of Energy’s Lab (as well as its collaborations), 

focusing on High-Energy Physics. 

 

B. InfiniBand Network Level Evaluations 

The first test is a simple ping-pong benchmark that 

allowed us to measure the bandwidth and latency of the 

communication between VMs and between native hosts. The 

benchmark used was the OFED Perftest package [24] that has 

the advantage of allowing a lot of customization like changing 

message sizes, type of connection (Infiniband provides 2 

different transmission modes, datagram and connected mode 

and in the latter is gives the option of reliable or unreliable 

transmission), size of buffers or functionalities (send, remote 

read and write from memory).  

Figure 1 shows a send operation between 2 host machines. 

As we can see there is not a significant difference between 

measured throughput and theoretical maximum of 16 Gb/s. It 

is possible to observe in Figure 1 the linear evolution of both 



the latency and bandwidth respect of the size of the sent 

message, as one would expect.  

 

Figure 1.  Infiniband Performance between 2 Host Machines 

In Figures 2 and 3, we represent the results of the same 

ping-pong tests in the host machines varying options in the 

tool such as the size of the receiving and transmitting buffers, 

the transmission mode or the type of transmission: 

 

Figure 2.  Infiniband throughput between 2 hosts under different 

configurations and modes 

 

Figure 3.  Infiniband latency between 2 hosts under different configurations 

and modes 

It is also interesting to observe that there is very little 

difference between reliable and unreliable mode (likely due to 

the reliable network connection that resulted in 0 packet loss) 

or with different buffer sizes; furthermore, the final measured 

throughput is very close to the theoretical maximum, 16Gb/s 

certifying the efficiency of the protocol stack and the 

deployment. The only observable difference is in the remote 

read from memory that has a slightly larger latency since the 

read operation has to fetch some user data from the receiver 

side main memory before start reading, introducing an 

overhead that in small messages represents an important 

percentage [23]. 

Figure 4 represents virtualization efficiency calculated 

from the ratio of bandwidth and latency measurements of IB 

communication between two VMs in different hosts and 

separate measurements of direct IB channel between two 

hosts. 

 

Figure 4.  Performance efficiency between 2 VMs and 2 hosts 

The bandwidth efficiency is always around 100% and the 

latency efficiency is also close to that value (sometimes even 

slightly above that value, since the tests have some noise) for 

messages bigger than that 128B. In fact, there is a jump in 

latency between 128B and 256B in the host machines that 

does not exist in the VMs as is shown in Table 1. 

TABLE I.  LATENCY IN HOST MACHINES AND VMS BEFORE AND AFTER 

BEFORE THE LATENCY JUMP IN THE FORMER 

Size (B) Hosts (us) VMs (us) Efficiency (%) 

128 1.69 2.235 75.61% 

256 2.475 2.47 100.2% 

 This jump in the host machines is explained by how the 

card’s Connect X architecture packages messages under 256B 

inside the doorbell used to warn the receiver end that the user 

wants to send a message (in the Infiniband architecture the 

receiver must be warned before receiving data to create the 

corresponding receiving queue) [19,23]. In virtual functions, 

this optimization does not exist (the so called max inline data 

is 0) what results in the higher latency for small messages [4]. 



Essentially using 256B messages will guarantee that latency 

performance is close to the native performance speed.  

It is also interesting to see how these results change 

completely if the 2 VMs are in the same host like it is shown 

on Figure 5:  

 

Figure 5.  Performance efficiency between 2 VMs in the same host and 2 

hosts. 

Again, because we are using VFs, the just mentioned 

optimization for small messages not available making the 

latency for small messages larger in the VMs, but both 

throughput and latency can have up to 150% efficiency and 

reduction respectively compared to the hosts. Although it may 

seem counterintuitive to have a efficiency higher than 100%, 

the performance in the virtualized environment is actually 

better than in the host machines because, as was explained 

before, provide of a characteristic called VF switching that 

optimizes the communication between VFs belonging to the 

same device so that the communication does not need to use 

the interconnect. 

C. MPI Performance on MicroBenchmarks 

After these ping-pong tests between 2 hosts or 2 VMs, the 

goal is to scale the tests up to see if the performance that we 

observe in the ping-pong tests is maintained at larger scales. 

For that, we used the Ohio State University Benchmarks [4], 

in particular the tests osu_multi_lat and osu_mbw_mr to 

measure latency and bandwidth respectively among several 

nodes. We show the efficiency (defined as before) depending 

on the message size for different cluster configurations (1, 2, 4 

and 7 VMs per host) in Figures 6, 7 and 8 for a 2, 4 and 8 host 

machine cluster respectively.  

These graphs have some interesting characteristics. First of 

all, the behavior is similar in 2, 4 and 8 hosts which indicates 

that the latency efficiency is scalable with increased number of 

hosts.. However, there is a slight drop in performance when 

increasing the number of VFs per host (the efficiency having 7 

VFs in use simultaneously in one machine is around 80% of 

the efficiency if it there is only 1 VF). That drop suddenly 

increases in big messages when the message size is over the 

MTU and so the message has to be divided in several packets. 

If we are working on the host machines or have only 1 VM per 

host that means having one more package in the queue, 

however if we have 7 VMs per host, it means 7 more packages 

to send. The difference between packages in the queue is 

worse when we increase the number of packets per message. 

Besides, when the message reaches this size, even in host 

machines, the latency increase is much faster (Figure 1). That 

increase rate is even bigger if we have more than 1 VM per 

machine since there are much more packets and the HCA 

routing to each VF is more complex. Except for this drop in 

performance in intensive communication, the curve is similar 

to the tests with the initial performance tests between 2 native 

hosts with the efficiency improving significantly after 128B. 

 

Figure 6.  Latency efficiency between 2 hosts and 1,2,4 and 7 VMs/host 

 

Figure 7.  Latency efficiency between 4 hosts and 1,2,4 and 7 VMs/host 

 

Figure 8.  Latency efficiency between 8 hosts and 1,2,4 and 7 VMs/host 

In Figures 9, 10 and 11 we can see the same graphs as 

before but for throughput. Regarding the bandwidth 

efficiency, the results do not show dependency on the number 

of hosts, but we see dependency on the number of VMs per 

host. In this case, having more machines means a throughput 

speedup, where an increase of 2x in the number of machines 

can mean an increase of 2x in speed. As before, here the 



efficiency is above 100% for small messages. This is mainly 

because, for small messages, the latency is much bigger than 

the actual time of transmission and so it is possible to handle 

the transmission of several messages at the same time. 

Besides, if there is more than one VM per machine, part of the 

communication is between VMs in the same machine that, as 

it was discussed before, is much faster because of VF 

Switching. However, for bigger message sizes, as we saturate 

the network, the average bandwidth is the same in the host and 

the VMs regardless of the number of VMs per host. 

 
Figure 9.   Throughput efficiency between 2 hosts and 1,2,4 and 7 VMs/host 

 
Figure 10.   Throughput efficiency between 4 hosts and 1,2,4 and 7 VMs/host 

 
Figure 11.   Throughput efficiency between 8 hosts and 1,2,4 and 7 VMs/host 

D. Real Application (LINPACK) 

After testing the performance of the network, it is 

interesting to see how a real application behaves. We used 

the HPL implementation of the Linpack benchmark over 

OpenMPI. For the tuning, we wanted to test the worst-case 

scenario and so we used a small block size (32). This small 

block size also made the application more communication-

intensive. This small block size also made the application 

more communication-intensive, which allowed us to 

understand the network performance better.  

Each one of our hosts had 16 hardware threads that were 

split between the VMs of that host. If we had 4 VMs, for 

example, each one would have 4 dedicated HW threads. In 

the case of 7 VMs, 2 of the VMs had 3 hardware threads 

and the other 5 had 2. When assigning memory, we 

followed the same rule. The total number of processes of 

each execution depended of the number of hosts and not of 

the number of VMs per host since the VMs split the 

resources available in its host. The problem size should 

depend on the available memory so the approach is the 

same. To assign its value, we searched the optimal value on 

2 hosts and multiplied it by √2 every time we doubled the 

number of hosts. Since Linpack is a squared matrix 

multiplication and the problem size is the dimension of the 

matrix, a matrix with √2 more rows has twice more 

elements (and so there it uses approximately the double of 

memory). 

In Figures 12, 13 and 14, we can see the efficiency, 

again defined as the percentage of the result of running the 

benchmark with VMs (1, 2, 4 and 7 per host) and the result 

of running the same test only on the corresponding hosts (2, 

4 and 8). However, the metric analyzed is the output of 

HPL, which is the metric of how fast a given cluster can 

conduct numerical operations per second. Previous sections 

present simple metrics, bandwidth and latency.  

 

Figure 12.  Linpack efficiency between 2 hosts and 1,2,4 and 7 VMs/host 

 

Figure 13.  Linpack efficiency between 4 hosts and 1,2,4 and 7 VMs/host 



There is a difference when increasing the number of nodes. 

With 8 nodes, the efficiencies are around 70%, far from the 

efficiency measurements around 90 % that we observe with 

two hosts. Part of the drop in efficiency comes from the CPU 

virtualization efficiency. In fact, when doing the test in 1 host, 

without communication, the efficiency was about 90% too. 

However, we believe that the main drop in efficiency comes 

from the latency overhead that VFs introduce in small 

messages discussed earlier and that does not scale as we 

increase the network traffic. 

The CPU usage of all the machines was at 100% 

throughout the entire duration of the tests with less than 28 

VMs when we believed the network saturated (More VMs 

means more communication). In fact, there is a drop in 

efficiency in the tests with 28, 32 and 56 VMs. Regarding the 

number of VMs in each host, it seems that 2 and 4 VMs give 

the best results. The worse configuration is 7 VMs per 

machine because it is more communication and also because 

in this case not all the VMs have the same memory and CPU. 

 

Figure 14.  Linpack efficiency between 8 hosts and 1,2,4 and 7 VMs/host 

IV. RELATED WORK 

Cloud Computing has increased its popularity in recent 

years. This is due to big improvements in the virtualization 

techniques [12] as well as a very comfortable model that 

maximizes resource usage (by sharing the resources among 

several Virtual Machines) and a provisioning scheme based on 

an on-demand delivery through the network that is 

comfortable, very customizable, elastic, scalable and 

immediate with very little interaction with the service provider 

[1, 11, 12]. Although there is clearly a shift, its adoption is 

slow in the HPC domain that is still sensitive to the overheads 

inherently introduced by the virtualization process [11]. 

Several techniques are helpful in overcoming or minimizing 

these overheads (for example, dedicated CPUs) but the big 

bottleneck is still the I/O Virtualization [18], especially high-

speed network devices [4]. This is especially concerning on 

HPC applications, often distributed and where fast 

communication between nodes is fundamental. 

Infiniband is an especially attractive interconnect to 

virtualize because of its very low latency, high bandwidth, 

reliable transmission, remote DMA capabilities, among other 

features [19]. It is also widely adopted among the Top500 

Supercomputers [4]. However, it presents some problems with 

virtualization mainly because of its architecture [19]. There is 

part of the connection information stored in the hardware and 

the OS or the software only use handles to access the device, 

making much more difficult the actions where the device is 

changed, like a VM live migration. Besides, the application 

can talk directly with the device complicating the task of 

updating application information if there is a change. Finally, 

Infiniband doesn’t use MAC addresses or IPs. The port 

addresses are referred by LIDs controlled by an external 

subnet manager that may be in other machine and cannot be 

changed [1]. 

There have been some attempts to perform software 

virtualization but with very poor results. Virtio, a Linux 

standard to virtualize I/O devices, can be used to paravirtualize 

Infiniband, with results under one order of magnitude worst 

[21]. There have been attempts to improve this standard like 

Virt-IB, described on [1], but they are still in an early phase 

and only get a performance efficiency of 50% in ping-pong 

throughput and latency tests. 

The solution to all the previous problems seems to be SR-

IOV, a low-level virtualization available in a big percentage of 

the Infiniband cards nowadays. Because it is handled at a 

lower level, mostly by the device, the virtualization problems 

discussed before are mostly handled in the device [6]. Besides 

it provides very good performance results, not only on 

Ethernet cards [6,8] but also on Infiniband networks, both in 

Xen [2,10] and in KVM [4] environments (early results) 

getting the same bandwidth in a VM of the native Infiniband 

connection as well as a small latency overhead. 

We perform simple tests called ping-pong tests [4] with 

similar results than [4]. Nevertheless, we scaled up to more 

than 2 nodes getting the results from the previous section, a 

perfect throughput equal or even better than the native one and 

a latency efficiency of more than 70% in small messages that 

goes up to 100% in mid size messages. We also tried real 

scientific benchmarks. In particular we used HPL, a Linpack 

implementation available online following recommendations 

of clustering testing [7,8,9] and getting efficiencies compared 

with a non-virtualized environment of always over 70%.  

V. CONLCUSIONS AND FUTURE WORK 

In this paper, we analyzed the worse case scenario 

choosing a benchmark configuration that sent small messages 

that, as was seen earlier, have smaller latency efficiency. An 

interesting study would be to analyze in depth how the 

network virtualization reacts to applications that send larger 

messages as well as other scientific applications and with 

other MPI implementations. 

The studies here were done on only 8 host machines, 

although FermiCloud has 23 servers available, for now only 8 

were in the same building and connected in an Infiniband 

network. Furthermore, the Infiniband cards only allow 7 VFs 

per host. However, the new Mellanox cards allow up to 63 

VFs per card so it would be interesting to scale up and repeat 

the tests with more hosts and VMs per host, not possible with 

the current hardware in Fermilab. However, based on our 



results so far with 7 VMs per node, we are not optimistic that 

the efficiency results will be great at 63 VMs per node scale.   

SR-IOV is still in its infancy, it is poorly documented, and 

it has poor support from the manufacturers. For example, even 

the drivers that support it are fairly recent. Nevertheless, this 

virtualization technology has good results, and can deliver 

almost 100% of efficiency in bandwidth and in latency 

benchmarks. Small messages are the exception because of 

limitations of the VFs, related with the process used to pack 

small messages, and not necessarily with the virtualization 

itself. 

With 8 hosts and 56 VMs, the Linpack efficiency we 

measured was around 70%, a value close to the latency 

overhead for small messages and so a value that may be a 

lower bound. This value, the worst we had, using the worst 

case possible (small messages), is still much better than all the 

software virtualizations analyzed for this work and more than 

one order of magnitude better than virtio, the Linux standard 

for virtualizing I/O devices. 

Virtualization has many advantages, such as isolation, 

protection, adaptation, customization, and flexibility. Virtual 

machines deliver management control such as elasticity, 

scalability, better utilization of resources and dynamic 

provisioning – all essential advantages brought on by Cloud 

Computing platforms. These results are definitely promising 

and open the door for further research that would improve 

them and lead to advances in the technologies used while 

adding to the debate of running scientific applications in the 

Cloud.  
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