
A Survey of State-of-the-Art NVIDIA

GPU Profilers

Benjamin Walters

Dept. of Computer Science

Illinois Institute of Technology

bwalter4@hawk.iit.edu

 Overview of Profilers

NVIDIA Visual Profiler (NVVP) is a profiler with a
graphical user interface. It is included in the CUDA
Toolkit, and it does not require any code
modification.

CUDA Profiling Tools Interface (CUPTI) is a C library
that allows access to hardware counters of the
GPU. It also allows the user to attach user-defined
functions to CUDA API calls for more complicated
profiling functionality.

PAPI CUDA component is a C profiling library built
on top of CUPTI. It provides the low level
functionality of CUPTI with more built in features.

Proposed Work

 Profiler Comparison

Future work includes an in-depth study on GeMTC
framework. This future work would leverage the
tools surveyed in this work to evaluate the
efficiency of GeMTC warp workers. Currently, it is
unknown how much time is spent fetching
applications versus actually running them. Other
future work includes doing a similar survey for
tools that visualize and evaluate applications on
the Intel Xeon Phi coprocessor.

Dr. Ioan Raicu

Dept. of Computer Science

Illinois Institute of Technology

iraicu@cs.iit.edu

 Visualization

Conclusions

 Future Work

Profiler Pro Con

NVIDIA Visual
Profiler

Ease of Use Limited Functionality

CUPTI Functionality Difficult setup

PAPI
Functionality

(slightly better)
Difficult setup

This work aims to analyze the features and usability
of GPU-profiling tools. The focus of this work will
be on tools that profile NVIDIA GPUs running
CUDA. This work investigates the NVIDIA Visual
Profiler (NVVP), NVIDIA CUDA Profiling Tools
Interface (CUPTI), and Vampir. Visualization
features that will be sought include application
timelines and traces. Metrics that will be sought
will include number of instructions executed and
kernel efficiency.

• NVIDIA Visual Profiler (NVVP) is very easy to
use and fairly featureful. Only requires a
compiled binary (no code modification)

• CUPTI is complicated to use, but it provides
direct to access to all hardware counters.

• PAPI CUDA component is a slightly more
featured version of CUPTI, but is more
complicated to use.

• Overall, NVVP seems to be the best choice due
to that fact that it easy to use and has most of
the features that the others profilers have.

Scott J. Krieder

Dept. of Computer Science

Illinois Institute of Technology

skrieder@iit.edu
 High Parallelism

With the rapid growth of general purpose
computing on GPUs (GPGPU), many applications
are able to leverage the high parallelism of the
GPU. However, since applications can run on
hundreds of cores, it is difficult to visualize and
analyze their performance. Therefore, developers
need tools that allow them to do things such as
collect metrics and capture traces of application
runs.

 Metrics

This figure shows the instructions executed
metric collected using PAPI CUDA for a
Vector Addition kernel. The data was
collected for problem sizes from 215 to 220.
This figure is an example of the data, other
than visualization, that can be collected with
NVVP.

This figure shows throughput calculated
using the duration (collected in NVVP) and
the flops (collected in CUPTI). This is an
example of the type of metrics that can be
collected in CUPTI and NVVP. NVVP can
collect most of the same metrics much more
easily.

This figure shows a timeline for a GeMTC
histogram application generated by NVVP. It
clearly display asynchronous memory
transfers at the top and the kernel execution
in the middle. The bottom of the screen also
shows data such as throughput for each
memory transfer.

This figure shows a timeline for a Saxpy
application that launches 15 saxpy kernels
of varying sizes. This clearly illustrates the
fact that although there are multiple kernel
launches, data movement still takes the
most time. The bottom also shows some
metrics such as number of instructions
executed per kernel.

