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Abstract -- Technology developments in the storage 
and processing of data have spurred the development of 
distributed computing with distributed compute-
clusters and supercomputers processing massive data 
that typically accompanies scientific experiments in the 
sciences. This has led to increasing demands for data 
transfers, with a requirement for high speed as well as 
requirements for Quality of Service, reliability, and 
security. These issues become more important in high-
speed networks. A major consideration in the design of 
any parallel systems is the set of pathways over which 
the nodes communicate with each other. A Torus 
interconnect is a network topology for connecting 
processing nodes in a parallel computer system. A 
number of supercomputers on the TOP500 list use 3D 
Torus networks. In this work we benchmark the Torus 
network through appropriate performance metrics 
under different workloads using the ROSS(Rensselaer’s 
Optimistic Simulation System)simulator. ROSS is a 
parallel discrete-event simulator that executes on 
shared-memory multiprocessor systems which is geared 
for running large-scale simulation models (i.e., 
supporting millions of object models is feasible). 
Through synthetic benchmarks, we have studied the 
communication imbalance generated by the common 
static single path routing in Torus interconnects. The 
long term goals are to demonstrate that multi-path 
dynamic routing could have significantly positive 
impact on both the end-to-end application performance 
as well as the aggregate system wide performance.  

I. INTRODUCTION 
Supercomputers process demanding computational loads 

(process and data). It consists of numerous high 

performance processors for parallel processing. The 

processing power is paramount but the key aspect of 

parallel computers is the communication network that 

interconnects the computing nodes. 

A. Torus Topology 

Switch-less interconnection topology for connecting 

processing nodes in a parallel computer system. It can be 

visualized as a mesh interconnect with nodes arranged in a 

rectilinear array of N = 2, 3, or more dimensions, with 

processors connected to their nearest neighbors, and 

corresponding processors on opposite edges of the array 

connected. A Torus interconnect has a rich topology with 

many paths between any pair of nodes in the system. This 

configuration allows the addition of nodes to a system 

without degrading performance. Each new node is joined as 

an addition of a grid, linked to it with no extensive cabling 

or switches. It scales linearly, with little or no performance 

loss is strictly true for those problems that heavily rely on 

next neighbor communication. The addition of a node in a 

large system happens with much less working and potential 

troubles. Being the connections between nodes short and 

direct, the latency of the links is very low. 

B. ROSS Simulator 

ROSS is an acronym for Rensselaer’s Optimistic 

Simulation System. It is a parallel discrete-event simulator 

that executes on shared-memory multiprocessor systems. 

ROSS is geared for running large-scale simulation models 

(i.e., 100K to even 1 million object models).The 

synchronization mechanism is based on Time Warp [2, 3, 

4]. It uses a detection-and-recovery protocol to synchronize 

the computation. Any time an LP determines that it has 

processed events out of timestamp order, it “rollsback” 

those events, and re-executes them. ROSS was modeled 

after a Time Warp simulator called GTW or Georgia Tech 

Time Warp[5].  

C. CODES 

CODES is accurate and highly parallel simulation toolkit 

for exascale storage and is built on ROSS. CODES is 

divided into codes-base and codes-net. Codes-base is the 

utility library for construction of storage models and 

Codes-net is collection of network interconnect models and 

shared abstraction layer. CODES currently provide APIs 

for Torus and Dragonfly topology. 

II.EXPERIMENTS & RESULTS 
We ran experiments on 48 cores 250 GB ram machine with 

x86_64 architecture. We used ROSS simulator in parallel 

optimistic mode. Each server in the torus network 

communicates with its own pair. Server pairs are generated 

by Fisher–Yates shuffle algorithm. Each server sends and 

receives 100 messages.  

In all experiments, we used the following configuration. 

Only the dimension length was varied from 2*2*2 to 

16*16*16 and the values were extrapolated till 1 million 

based on the trend. 

Packet Size="512 Bytes" 

Modelnet="torus" 

Message Size="2048 Bytes"                       

Dimension="3" 

Dimension Length="X,X,X" 

Link Bandwidth="2.0 GB"   

Buffer Size="16384 Bytes"   

Number of Virtual Channels="1" 

Chunk Size="32" 

The three major experiments we ran are as follows. We 

measured network metrics by 

1. Varying the size of the network: As you can see 

from the below graphs the average throughput 

increases and number of hops increases with 

increase in the size of the network. It is evident from 



 

 

the graphs that there are a lot of hot spots in the 

network 

 
Figure 1: Average Throughput vs Network Size 

Figure 2 : Average Hops vs Network Size 

Figure 3 : CDF of Throughput on 4096 nodes(16*16*16) 

2. Varying the number of servers sending and 

receiving messages: Graph clearly shows that 

average throughput decreases and difference 

between average and maximum latency increases 

with increase in the increase in number of servers 

transferring messages. 

 

Figure 4 : Average Throughput vs Number of Servers 

Transferring Messages 

3. Varying the message size: The average 

throughput and latency increases with increase in 

message size. 

 
Figure 8 : Average Throughput vs Message Size 

III . CONCLUSION AND FUTURE WORK 
Through synthetic benchmarks, we have studied the 

communication imbalance generated by the common static 

single path routing in torus interconnects. In torus network 

latency increases and throughput decreases as the size of 

the torus network and number of servers participating in 

message transfer increase. It is also evident from our 

experiments that throughput increases with increase in the 

message size. Since torus uses static single path routing, 

transferring messages between random server pairs leads to 

a lot of congestion at some intermediate nodes via which 

most of the messages pass through. These nodes become 

hot spots, reduce the throughput and increase latency. This 

leads us to believe that multi-path routing could have a 

positive impact on the performance of the network 

compared to the traditional static single-path routing. 

The long term goals are as follows: 

1. Design and develop a monitoring framework to monitor 

the network state and indicate the hot spots. 

2. Demonstrate that multi-path dynamic routing could have 

significantly positive impact on both the end-to-end 

application performance as well as the aggregate system 

wide performance. 
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