
Achieving Data-Aware Load Balancing through

Distributed Queues and Key/Value Stores

Ke Wang
*
, Ioan Raicu

*†

*
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

†
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

kwang22@hawk.iit.edu, iraicu@cs.iit.edu

Abstract— Load balancing techniques (e.g. work stealing) are

important to obtain the best performance for distributed task

scheduling system. In work stealing, tasks are randomly

migrated from heavy-loaded schedulers to idle ones. However,

for data-intensive applications where tasks are dependent and

task execution involves processing large amount of data,

migrating tasks blindly would compromise the data-locality

incurring significant data-transferring overhead. In this work,

we propose a data-aware work stealing technique that combines

key-value stores and distributed queues enabling it to achieve

good load balancing, all while maximizing data-locality. We

leverage a distributed key-value store, ZHT, as a meta-data

service that stores task dependency and data-locality

information. We implement the proposed technique in MATRIX,

a distributed task execution fabric. We evaluate the work with

all-pairs application structured as direct acyclic graph from

biometrics, and compare with Falkon data-diffusion technique.

I. INTRODUCTION

As systems are growing exponentially in parallelism [1],
more data-intensive applications [2] are becoming loosely-
coupled containing many small jobs/tasks (e.g. per-core [16])
with shorter durations (e.g. sub-second). Future programming
models will likely employ over-decomposition [3] generating
even many more fined-grained tasks than available parallelism.
This poses significant challenges on task scheduling system to
make extremely fast scheduling decisions (e.g. millions/sec).
The Many-task computing (MTC) [4] [7][11] paradigm aims to
define and address the challenges of scheduling fine grained
data-intensive workloads [5]. MTC applications are structured
as direct acyclic graphs (DAG) of discrete tasks, with data
dependencies forming the graph edges.

The task scheduling system for MTC will need to be fully-
distributed [12][15][17]. Each compute node runs one
scheduler and one or more executors. The schedulers are fully-
connected, and receive workloads to schedule tasks locally.
Load balancing [6] is challenging for fully-distributed
architecture. This work adopts the work stealing technique
[20][10], in which, the idle schedulers communicate with
neighbors to balance their loads. However, as more
applications are experiencing data explosion [8] such that tasks
are dependent and task execution involves processing large
amount of data, data-aware scheduling and load balancing are
two indispensable yet orthogonal needs. In this work, We
propose a data-aware work stealing technique that combines
distributed key-value stores (DKVS) [12][19][15] and
distributed queues enabling it to satisfy both needs. We
leverage ZHT [9] as a meta-data service that stores task

dependency and data-locality information. We apply four
distributed task queues to keep tasks in different states. We
implement our technique in MATRIX [10][18].

II. DATA-AWARE WORK STEALING

A. DKVS Used as a Meta-Data Service

We apply a DKVS, i.e. ZHT, to store the data dependency
and locality information of all the tasks. The “key” is task id,
and the “value” is the important meta-data that is defined (see
Figure 1) as the following data structure conceptually:

Figure 1: Data structure of task metadata

Upon task submission, the client takes an application
workload (represented as a DAG), sends the task meta-data to
ZHT, and submits the tasks to MATRIX.

B. Distributed Queues in MATRIX

Each scheduler would maintain four local task queues: task
wait queue (WaitQ), dedicated local task ready queue
(LReadyQ), shared work stealing task ready queue (SReadyQ),
and task complete queue (CompleteQ). These queues hold
tasks in different states stored as meta-data in ZHT.

a) WaitQ

Initially, the scheduler would put all the incoming tasks to
the WaitQ. A thread keeps checking every task in the WaitQ to
see whether the dependency conditions for that task are
satisfied. Only if the value of the field of “num_wait_parent” in
the meta-data is equal to 0 would the task be ready to run.

b) LReadyQ and SReadyQ

When a task is ready to run, the scheduler makes decision
to put it in either the LReadyQ, or the SReadyQ, according to
the size and location of the data required by the task. The
LReadyQ stores the tasks that require large volume of data, and
the majority of the required data is located locally; these tasks
could only be executed locally. The SReadyQ stores the tasks
that could be migrated to any scheduler for load balancing’s
purpose; these tasks either don’t need any input data, or the

typedef TaskMetaData

{
int num_wait_parent; // number of waiting parents

vector<string> parent_list; // schedulers that run each parent task

vector<string> data_object; // data object name produced by each parent

vector<long> data_size; // data object size (byte) produced by each parent

long all_data_size; // all data object size (byte) produced by all parents

vector<string> children; // children of this tasks

} TMD;

demanded data volume is so small that the transferring
overhead is negligible. The executor keeps pulling ready tasks
to execute. It first pops tasks from LReadyQ, and then pops
tasks from SReadyQ if the LReadyQ is empty. When executing
a task, the executor first gets the data either from local or
remote nodes. If both queues are empty, the scheduler would
start doing work stealing.

c) CompleteQ

When a task is done, it is moved to the CompleteQ. A
thread is responsible for updating the meta-data for all the
children of each completed task. The thread first queries the
meta-data of the completed task to find out the children, and
then updates each child’s meta-data.

III. EVALUATION

We evaluate our technique on the Kodiak cluster from the
PROBE [21] of Los Alamos National Laboratory with all-pairs
application, and compare with Falkon [22] data-diffusion
technique [13][14] up to 200 cores. All-Pairs is a common
benchmark in Biometrics that describes the covariance of two
sequences of gene codes. In this workload, each task execute
for 100-ms to compare two 12MB files with one from each set.
We run strong-scaling experiments with a 500*500 workload
size (250K tasks). This is the same workload referenced in [14].

Figure 2: Comparison between Data Diffusion and DAWS

Figure 3: Utilization graph at 200 cores

We compare our data-aware work stealing (DAWS)
technique with Data-Diffusion [14] in Figure 2. We see that for
100-ms tasks, our technique improved Data Diffusion by
14.21% (85.9% vs 75%), and it is quite close to the best case
using active storage (85.9% vs 91%). Data diffusion applies a
centralized index-server for data-aware scheduling, while our

technique utilizes DKVS that is much more scalable. In
addition, we show the utilization graph running the all-pairs
workload in Figure 3. The utilization (read area / green area) is
high. At beginning, it takes very little time for balancing the
load (the short ramp-up period), and our technique does not
exhibit long-tail problem at the final stage.

REFERENCES

[1] V. Sarkar et al. “ExaScale Software Study: Software Challenges in
Extreme Scale Systems”, ExaScale Computing Study, DARPA IPTO,
2009.

[2] I. Raicu et al. “Many-Task Computing for Grids and Supercomputers”,
Invited Paper, IEEE MTAGS 2008.

[3] X. Besseron and T. Gautier. “Impact of Over-Decomposition on
Coordinated Checkpoint/Rollback Protocol”, Euro-Par 2011: Parallel
Processing Workshops, Volume 7156, 2012, pp 322-332.

[4] I. Raicu. “Many-Task Computing: Bridging the Gap between High
Throughput Computing and High Performance Computing”, ISBN: 978-
3-639-15614-0, VDM Verlag Dr. Muller Publisher, 2009.

[5] I. Raicu et al. “Toward Loosely Coupled Programming on Petascale
Systems”, IEEE/ACM Supercomputing 2008.

[6] M. H. Willebeek et al. “Strategies for dynamic load balancing on highly
parallel computers,” In IEEE Transactions on Parallel and Distributed
Systems, volume 4, September 1993.

[7] K. Wang et al. “Paving the Road to Exascale with Many-Task
Computing”, Doctoral Showcase, IEEE/ACM Supercomputing/SC 2012.

[8] A. S. Szalay et al. “GrayWulf: Scalable Clustered Architecture for Data-
Intensive Computing”, Proceedings of the 42nd Hawaii International
Conference on System Sciences, Hawaii, 5 to 8 January 2009, paper no.
720; available as Microsoft Tech Report MSR-TR-2008-187 at
http://research.microsoft.com/apps/pubs/default.aspx?id=79429.

[9] T. Li et al. “ZHT: A Light-weight Reliable Persistent Dynamic Scalable
Zero-hop Distributed Hash Table”, IPDPS 2013.

[10] K. Wang, et al. “MATRIX: MAny-Task computing execution fabRIc at
eXascale,” tech report, IIT, 2013.

[11] K. Wang et al. “SimMatrix: Simulator for MAny-Task computing
execution fabRIc at eXascales,” ACM HPC 2013.

[12] K. Wang et al. “Using Simulation to Explore Distributed Key-Value
Stores for Extreme-Scale Systems Services,” IEEE/ACM
Supercomputing/SC 2013.

[13] I. Raicu et al. “Accelerating Large-scale Data Exploration through Data
Diffusion”, International Workshop on Data-Aware Distributed
Computing 2008, co-locate with ACM/IEEE HPDC 2008.

[14] I. Raicu et al. “The Quest for Scalable Support of Data Intensive
Workloads in Distributed Systems”, ACM HPDC 2009.

[15] K. Wang et al. “Next Generation Job Management Systems for
Extreme-Scale Ensemble Computinig”, short paper, ACM HPDC 2014.

[16] K. Wang et al. “Modeling Many-Task Computing Workloads on a
Petaflop IBM Blue Gene/P Supercomputer.” IEEE 27th International
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW) 2013.

[17] K. Wang et al. “Exploring Design Tradeoffs for Exascale System
Services through Simulation.” Tech Report, LANL 2013.

[18] K. Ramamurthy et al. “Exploring Distributed HPC Scheduling in
MATRIX.” Tech Report, IIT, 2013.

[19] X. Zhou et al. “Exploring Distributed Resource Allocation Techniques
in the SLURM Job Management System.” Tech Report, IIT, 2013.

[20] K Wang et al. “Centralized and Distributed Job Scheduling System
Simulation at Exascale.” Tech Report, IIT, 2011.

[21] G. Grider. “Parallel Reconfigurable Observational Environment
(PRObE),” available from http://www.nmc-probe.org, October 2012.

[22] I. Raicu et al. “Falkon: A Fast and Light-weight tasK executiON
Framework,” IEEE/ACM SC 2007.

