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ABSTRACT 

    Efficiently scheduling large number of jobs over large-scale distributed systems is critical in achieving high system utilization and 

throughput. Today’s state-of-the-art job management systems have predominantly Master/Slaves architectures, which have inherent 

limitations, such as scalability issues at extreme scales (e.g. petascales and beyond) and single point of failure. In designing the next-

generation distributed job management system, we must address new challenges such as load balancing. This paper presents the design, 

analysis and implementation of a distributed execution fabric called MATRIX (MAny-Task computing execution fabRIc at eXascale). 

MATRIX utilizes an adaptive work stealing algorithm for distributed load balancing, and distributed hash tables for managing task 

metadata. MATRIX supports both high-performance computing (HPC) and many-task computing (MTC) workloads, as well as task 

dependencies in the execution of complex large-scale workflows. We have evaluated it using synthetic workloads up to 4K-cores on an 

IBM Blue Gene/P supercomputer, and have shown high efficiency rates (e.g. 85%+) are possible with certain workloads with task 

granularities as low as 64ms. MATRIX has shown throughput rates as high as 13K tasks/sec at 4K-core scales (one to two orders of 

magnitude higher than existing centralized systems). We also explore the feasibility of adaptive work stealing up to 1M-node scale through 

simulations.   

1. INTRODUCTION 
    The Many-Task Computing (MTC) paradigm [12][13][57][61] bridges the gap between High Performance Computing (HPC) and High 

Throughput Computing (HTC).  MTC was defined in 2008 to describe a class of applications that did not fit easily into the categories of 

traditional HPC or HTC.  

    Many MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. 

In many cases, the data dependencies will be files that are written to and read from a file system shared between the compute resources; 

however, MTC does not exclude applications in which tasks communicate in other manners. MTC applications often demand a short time 

to solution, may be communication intensive or data intensive [58]. Tasks may be small or large, uniprocessor or multiprocessor, compute-

intensive or data-intensive. The set of tasks may be static or dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. 

The aggregate number of tasks, quantity of computing, and volumes of data may be extremely large. For many applications, a graph of 

distinct tasks is a natural way to conceptualize the computation. Structuring an application in this way also gives increased flexibility. For 

example, it allows tasks to be run on multiple different supercomputers simultaneously; it simplifies failure recovery and allows the 

application to continue when nodes fail, if tasks write their results to persistent storage as they finish; and it permits the application to be 

tested and run on varying numbers of nodes without any rewriting or modification.  

    Examples of MTC systems are various workflow systems (e.g. Swift [14][60][1], Nimrod [15], Pegasus [16], DAGMan [17], BPEL [18], 

Taverna [19], Triana [20], Kepler [21], CoG Karajan [22], Dryad [23]). Other examples of MTC are MapReduce systems (e.g. Google’s 

MapReduce [24], Yahoo’s Hadoop [25], Sector/Sphere [26]), and distributed run-time systems such as Charm++ [27], ParalleX [28]. 

Finally, light-weight task scheduling systems also fit in this category for enabling MTC applications (e.g. Falkon [29] , Condor GlideIns [4] 

, Coaster [30], Sparrow [31]). For completeness, job management systems (e.g. Slurm [2], Condor [3][4], PBS [5], SGE [6]) can also be 

used to support a subset of MTC workloads (e.g. HTC). Unfortunately, most of these systems have centralized Master/Slaves architecture 

(with the exception of Falkon supporting hierarchical architecture and Sparrow supporting a distributed architecture), where a centralized 

server is in charge of the resource provisioning and job/task execution. These systems have worked well in clusters, grids, and 

supercomputers with coarse granular workloads [1], but it has poor scalability at the extreme scales of petascale systems (and beyond) with 

fine-granular workloads [13][29].  

    With the dramatically increase of the scales of today’s distributed systems, it is critical to develop efficient job schedulers. Predictions 

are that by the end of this decade, we will have exascale system with millions of nodes and billions of threads of execution [1].One 

approach towards more efficient job managers is to depart from centralized scheduling towards complete decentralization. Although this 

addresses potential single point of failures, and increases the overall performance of the scheduling system, issues can arise in load 

balancing work across many schedulers and compute nodes.  

    Load balancing is the technique of distributing workloads as evenly as possible across processors of a parallel machine, or across nodes 

of a supercomputer, so that no single processor or computing node is overloaded. Although extensive research about load balancing has 

been done with centralized or hierarchical methods, we believe that distributed load balancing techniques are potential approaches to 

extreme scale. This work adopts work stealing [7][8][9][1] to achieve distributed load balancing, where the idle processors steal tasks from 

the heavily-loaded ones. There are several parameters affecting the performance of work stealing, such as the number of tasks to steal, the 

number of neighbors of a node from whom it can steal tasks, static/dynamic neighbors, and the polling interval. We explore these 

parameters through a light-weight job scheduling system simulator, SimMatrix [10]. We explore work stealing as an efficient method for 

load balancing tasks in a real system, MATRIX, at scales of 1K-nodes and 4K-cores. We study the performance of MATRIX in depth, 

including understanding the network traffic generated by the work stealing algorithm. We also use simulations to explore the feasibility of 

adaptive work stealing up to 1M-node scales (the expected scales at exascales).    

    The main contributions of this paper are as follows: 



1. Proposed an adaptive work stealing algorithm, which applies dynamic multiple random neighbor selection, and adaptive polling 

interval techniques, as well as identified parameters for best work stealing performance  

2. Design and implement MATRIX to support distributed task scheduling and management through an adaptive work stealing 

algorithm for both MTC and HPC workloads 

3. Evaluate the functionality of MATRIX using different workload types (e.g. Bag of Tasks, Fan-In DAG, Fan-Out DAG, Pipeline 

DAG and Complex Random DAG) and granularity (e.g. 64ms to 8 seconds per task) at scales of 64 nodes up to 1024 nodes 

4. Compare MATRIX with Falkon (a light weight task execution framework that supports both a centralized and hierarchical 

architecture) at up to 1024 node scales 

5. Explored the feasibility of adaptive work stealing at millions of nodes and billions of core scales through the SimMatrix 

simulator 

2. RELATED WORK 
    The job schedulers could be centralized, where a single dispatcher manages the job submission, and job execution state updates; or 

hierarchical, where several dispatchers are organized in a tree-based topology; or distributed, where each computing node maintains its own 

job execution framework. The University of Wisconsin developed one of the earliest job schedulers, Condor [3], to harness the unused 

CPU cycles on workstations for long-running batch jobs. Slurm [2] is a resource manager designed for Linux clusters of all sizes. It 

allocates exclusive and/or non-exclusive access to resources to users for some duration of time so they can perform work, and provides a 

framework for starting, executing, and monitoring work on a set of allocated nodes. Portable Batch System (PBS) [5] was originally 

developed at NASA Ames to address the needs of HPC, which is a highly configurable product that manages batch and inter-active jobs, 

and adds the ability to signal, rerun and alter jobs. LSF Batch [43] is the load-sharing and batch-queuing component of a set of workload 

management tools from Platform Computing of Toronto. All these systems target as the HPC or HTC applications, and lack the granularity 

of scheduling jobs at node/core level, making them hard to be applied to the MTC applications. What’s more, the centralized dispatcher in 

these systems suffers scalability and reliability issues. In 2007, a light-weight task execution framework, called Falkon [29] was developed. 

Falkon also has a centralized architecture, and although it scaled and performed magnitude orders better than the state of the art, its 

centralized architecture will not even scale to petascale systems [13]. A hierarchical implementation of Falkon was shown to scale to a 

petascale system in [13], the approach taken by Falkon suffered from poor load balancing under failures or unpredictable task execution 

times. 

    Although distributed load balancing at extreme scales is likely a more scalable and resilient solution, there are many challenges that must 

be addressed (e.g. utilization, partitioning). Fully distributed strategies have been proposed, including neighborhood averaging scheme 

(ACWN) [44][45][46][47]. In [47], several distributed and hierarchical load balancing strategies are studied, such as Sender/Receiver 

Initiated Diffusion (SID/RID), Gradient Model (GM) and a Hierarchical Balancing Method (HBM). Other hierarchical strategies are 

explored in [46]. Charm++ [27] supports centralized, hierarchical and distributed load balancing. In [27], the authors present an automatic 

dynamic hierarchical load balancing method for Charm++, which scales up to 16K-cores on a Sun Constellation supercomputer for a 

synthetic benchmark.     

    Work stealing has been used at small scales successfully in parallel languages such as Cilk [48], to load balance threads on shared 

memory parallel machines [8][9][1]. Theoretical work has proved that a work-stealing scheduler can achieve execution space, time, and 

communication bounds all within a constant factor of optimal [8][9]. However, the scalability of work stealing has not been well explored 

on modern large-scale systems. In particular, concerns exist that the randomized nature of work stealing can lead to long idle times and 

poor scalability on large-scale clusters [1]. The largest studies to date of work stealing have been at thousands of cores scales, showing 

good to excellent efficiency depending on the workloads [1].  

3. DESIGN AND IMPLEMENTATION OF MATRIX 
    MATRIX is a distributed many-Task computing execution framework, which utilizes the adaptive work stealing algorithm to achieve 

distributed load balancing. MATRIX uses ZHT (a distributed zero hop key-value store) [50] for job metadata management, to submit tasks 

and monitor the task execution progress. We have a functional prototype implemented in C/C++, and have scaled this prototype on a BG/P 

supercomputer up to 1024-nodes (4K-cores) with good results. 

3.1 Adaptive Work Stealing 

3.1.1 Dynamic Multi-Random Neighbor Selection 
    In work stealing, the selection of neighbors from which an idle node could steal tasks could be static or dynamic/random. In dynamic 

case, as the traditional work stealing randomly which selects one neighbor to steal tasks [1], could yield poor performance at extreme 

scales, a multiple random neighbor selection strategy is used which randomly selects several neighbors instead of one, and chooses the 

most heavily loaded neighbor to steal tasks. The optimal number of neighbors for both static and dynamic selection are identified through 

SimMatrix [10]. The multiple-random neighbor selection algorithm is given in Algorithm 1. The time complexity of Algorithm 1 is Ө(n), 

where n is the number of neighbors. 

3.1.2 Adaptive Poll Interval 
When a node fails to steal tasks from the selected neighbors it is either because all selected neighbors have no more tasks, or the most 

heavily loaded neighbor had already executed all the tasks at the time stealing. To keep a check on continuous failing, every node on failing 

waits for a period of time called poll interval before which it will attempt to steal again. Adaptive poll interval policy helps to achieve 

reasonable performance while still keeping the work stealing algorithm responsive. If the polling interval is very large, work stealing would 

not respond quickly to change conditions, and would lead to poor load balancing. Therefore, the poll interval of a node is changed 

dynamically similar to the exponential back-off approach in the TCP networking protocol [49]. The default poll interval is set to be a small 



value (e.g. 1 ms). Once a node successfully steals, the poll interval is set back to the initial small value. The specification of the adaptive 

work stealing algorithm is given in Algorithm 2.  

Algorithm 1. Dynamic Multi-Random Neighbor Selection for Work Stealing 

DYN-MUL-SEL(num_neigh,  num_nodes) 

1. let selected[num_nodes] be boolean array initialized false except the node itself 

2. let neigh[num_neigh] be array of neighbors 

3. for i = 1 to num_neigh 

4.   index = random () % num_nodes 

5.   while selected[index]  do 

6.    index = random() % num_nodes 

7.   end while 

8.   selected[index] = true 

9.   neigh[i] = node[index] 

10. end for 

11. return neigh 

Algorithm 2. Adaptive Work Stealing Algorithm 

ADA-WORK-STEALING(num_neigh, num_nodes) 

1. Neigh = DYN-MUL-SEL (num_neigh, num_nodes) 

2. most_load_node = Neigh[0] 

3. for i = 1 to num_neigh 

4.   if most_load_node. load < Neigh[i]. load then 

5.    most_load_node = Neigh[i] 

6.   end if  

7. end for 

8. if most_load_node.load = 0 then 

9.   sleep (poll_interval) 

10.   poll_interval = poll_interval * 2 

11.   ADA-WORK-STEALING(num_neigh, num_nodes) 

12. else 

13.   steal tasks from most_load_node 

14.   if num_task_steal = 0 then 

15.    sleep (poll_interval) 

16.    poll_interval = poll_interval * 2 

17.    ADA-WORK-STEALING(num_neigh, num_nodes) 

18.   else 

19.    poll_interval = 1 

20.    return 

21.   end if 

22. end if 

 

    Whenever a node has no tasks in its task waiting queue, it signals the adaptive work stealing algorithm, which first randomly selects 

several neighbors using the Algorithm 1, and then selects the most heavily loaded neighbor to steal tasks. If work stealing fails, the node 

would double the poll interval and wait for that period of time, after which the node tries to do work stealing again. This procedure 

continues until the node finally successfully steals tasks from a neighbor, and at which point, it sets the poll interval back to the initial small 

value (e.g. 1 sec). At the beginning, just one node (id = 0) has tasks, all the other nodes signal work stealing. Let’s say for m nodes, each 

one talks to n neighbors, so within log(m) steps, ideally the tasks should be distributed across all the nodes. 

3.2 Architecture Overview 
    The components of MATRIX and the communication signals among all the components are shown in Figure 1. For the purpose of 

evaluation, there are two kinds of components, the client and the compute node. The client is just a benchmarking tool that issues request to 

generate a set of tasks to be executed on a cluster of nodes. The benchmarking tool has a task dispatcher for which allows the client to 

submit workload to the compute nodes. A compute node can also be referred as worker node and can be used interchangeably. Each 

compute node has a task execution unit along with a NoSQL data store for managing the metadata of every task. The task execution unit is 

the core component of MATRIX and the data store is possible through ZHT. 

    MATRIX supports single core tasks, single node tasks, or multi-node tasks. It also supports task dependency, which means the order of 

execution among a workload’s tasks can be specified as a part of task description and MATRIX would enforce the execution order. For 

example the workload can be a Directed Acyclic Graph (DAG) [54]  where each node in the DAG is a task and the edges among the nodes 

specify the dependency. This can be easily translated to give the order of execution among tasks similar to topological sort.  

    Upon request from the client, the task dispatcher initializes the workload of given type and submits the workload to the one or more 

compute nodes. With the help of ZHT, the task dispatcher could submit tasks to one arbitrary node, or to all the nodes in a balanced 

distribution. The compute nodes execute the tasks in a specific order (based on task dependencies) or in arbitrary order (if no dependencies 



are specified). In the background all compute nodes distribute the workload among themselves until the load is balanced using the adaptive 

work stealing algorithm. The client periodically monitors the status of workload until all the tasks present in the workload are executed and 

completed. 

 

Figure 1. MATRIX components and communications among components 

        ZHT records the instantaneous information of every task and this information is distributed across all the compute nodes. Every time 

when a task is moved from one compute node to other due to work stealing, this information is updated instantly. Thus task migration can 

be considered as an atomic process that involves updating ZHT followed by the actual movement of task from one compute node to other. 

So the client can look up the status information of any task by performing a “lookup” operation on ZHT. 

3.3 Types of Messages 
There are different kinds of messages caused by the work stealing algorithm as shown in section 3.1 . 

ZHT Insert: The metadata of tasks such as task-id, task-description, task submission time etc. are inserted into ZHT before submitting the 

actual tasks for execution. 

MATRIX Insert: After the metadata of all tasks is stored in ZHT, then the workload can be submitted to the queue of execution unit to 

execute the workload. 

ZHT Lookup: This provides an interface to retrieve the existing information from ZHT. For instance, it can be used by the execution unit to 

check for a given task, if all the dependency conditions are met so that the task is ready to be executed or to get the task description when 

the task is about to be executed. 

ZHT Update: If any part of metadata of the task existing in ZHT needs to modified, then this API can be used to update the given field. For 

instance after a task has finished its execution, the execution unit can signal all the children tasks that were waiting for this task to finish its 

execution. This is also useful, to update the current node information of a task, when it is migrating to a different compute node due to 

work stealing. 

Load Information: Idle nodes can poll a subset of compute nodes for knowing the load on all those nodes. 

Work Stealing: After getting the load information of neighboring nodes, the idle node can pick the node with maximum load and send a 

request to steal tasks from that node. Then the chosen node will send some of its load to the requested node. 

Client Monitoring: The client periodically monitors the system utilization and the rates of completion of task execution. 

3.4 Task Assignment 
    Broadly, MATRIX supports two types of task assignment: best case and worst case assignment. The architectures are shown in Figure 2. 

For simplicity, the ids of all nodes are represented as consecutive integer numbers ranging from 0 to the number of nodes N-1. 

    In the best case situation (Figure 2 left part), the dispatcher initializes the tasks and submit them one by one to the compute nodes in 

round-robin fashion. This is possible due to the hashing mechanism in ZHT that maps each task to a compute node based on the task-id. 

This is the best case situation in terms of system utilization because the hashing function of ZHT does most of the load balancing. Another 

way to realize this situation is to have as many dispatchers as compute nodes and divide the total tasks among the dispatchers so that there 

is 1:1 mapping between a task dispatcher and a compute node. Then let each task dispatcher submit the tasks to corresponding compute 

node. Here work stealing is useful only at the end of the experiment, when there are very few tasks left to be executed, and they are 

concentrated at only few compute nodes.  

In the worst case situation (Figure 2 right part) there is only one dispatcher which initializes all tasks into a single package and submits 

the package to a single arbitrary compute node. This is the worst case situation in terms of system utilization because the entire load is on a 

single compute node. Thus work stealing thread runs from the start to ensure that all the tasks get quickly distributed among all compute 

nodes evenly to reduce the time for completing the execution of a workload. Thus it generates considerable network traffic for initial load 

balancing when compared to the best case situation. Then throughout the experiment the network traffic caused by work stealing reduces as 

the system has converged with evenly distribution of workload. It increases again at the end of experiment similar to the best case situation 

when there are very few tasks left to be executed which might be concentrated at only few compute nodes and needs to be balanced evenly 

among all other compute nodes. 

The system can also be configured for tuning the number of dispatchers. It can be equal to square root, or log2 of number of compute 

nodes. The best case and worst case situation can thus be treated as special cases. The greater the number of dispatchers the faster the load 

gets distributed evenly among the workers. 



 

Figure 2. MATRIX architecture for both best case and worst case scheduling 

3.5 Execution Unit 
    The worker running on every compute node maintains three different queues: a wait queue, a ready queue and a complete queue. This is 

shown in Figure 3. The wait queue is used to hold all the incoming tasks. The tasks remain in the wait queue as long as they have 

dependency conditions than needs to be satisfied. Once they are satisfied, the tasks can be moved from wait queue to the ready queue. Once 

in ready queue, the execution unit can then execute them one by one in the FIFO way.  After completing task execution, the task is then 

moved to the complete queue. For each task in the complete queue, the execution unit is responsible for sending the ZHT update messages 

to all children tasks of that particular task to satisfy the dependency requirements. 

 

Figure 3. Execution Unit in MATRIX 

3.6 Load Balancing 
    Anytime when a node has no waiting tasks, it will ask the load information of all the neighbors in turn, and try to steal tasks from the 

heaviest loaded neighbor. When a node receives a load information request, it will send its load information to the neighbor. If a node 

receives work stealing request, it then checks its queue, if which is not empty, it will send some tasks (e.g. half of the tasks) to the neighbor, 

or it will send information to signal a steal failure. When a node fails to steal tasks, it will wait some time, referred to as the poll interval, 

and then try again. The execution unit can be configured to perform work stealing for any queue. 

    Each compute node has the knowledge of every other nodes, and can choose to have a subset of neighbors to for work stealing. The 

amount of neighbors is same for every worker and is configured at the time of initialization. The number of neighbors from which to steal 

and the number of tasks to steal were set to values discovered in Section 1.1. It concluded that the optimal parameters for the MTC 

workloads and adaptive work stealing are to steal half the number of tasks from their neighbors, and to use the square root number of 

dynamic random neighbors. These parameters are tunable though and are set during initialization time. 

3.7 Monitoring 
    Regardless of the number of dispatchers used to submit tasks to compute nodes, only one dispatcher keeps monitoring the system 

utilization and status of submitted tasks, while all other task dispatchers exit. The monitoring dispatcher periodically sends requests 

messages to determine the current load on all compute nodes and calculate the number of tasks that have completed its execution. The 

termination condition is that all the tasks submitted by client are finished. The monitoring dispatcher is only used for debugging and for 

ease of visualization of the system state. It is not used as part of the work stealing algorithm.  

3.8 Distributed Scheduling for HPC Workloads 
    In order to support HPC workloads (multi-node jobs), we modified the adaptive work stealing algorithm to support mutli-node tasks. 

This allows the client to submit jobs that require multiple nodes. We modified the implementation by having a fixed number of compute 

slots on every node. Every job description has two key things: m - number of compute slots and the task to be run on every compute slot. 



For every job in the ready queue, if the current node has the sufficient number of compute slots for that job, then the execution unit just 

launches the job in that node itself. Else, it does “resource stealing”.  

    This is similar to work stealing with the difference that instead of stealing tasks, it steals compute slots. The algorithm for neighbor 

selection and stealing is the same. Every time when a node receives a resource-steal request, it locks half of its compute slots and sends 

these slot-ids to the node who requested for resource. The reason we have chosen the number of slots to be locked as half is because we 

believe that stealing half tasks in the work stealing gives optimal results. So we adopted the same number for resource stealing. After 

receiving the list of slot-ids from all neighbors, the execution unit checks if there are sufficient number of compute slots for the job. If 

unsuccessful, it releases all the locked slots. Otherwise it launches the job on the first m slots and releases any excess slots. Every compute 

slot, after the completion of task, sends the result back to the node which launched the job. This node after receiving the result from all the 

m slots, sends the acknowledgement to the client. Every compute slot after execution of a task, is automatically released.  

    We have verified the functionality of the resource stealing algorithm at small scales (16-nodes). However, more work is needed to scale 

up the HPC support to 1K-node scales as we have done for the MTC workload support.   

4. PERFORMANCE EVALUATION  
    This section presents the experimental hardware and software environments, the evaluation metrics, the workloads generation, the 

throughput of dispatcher, the throughput of the run-time system, the comparison of MATRIX with Falkon [29] and SimMatrix [10], and the 

study of scalability of the adaptive work stealing algorithm. 

4.1 Experiment Environment, Metrics, Workloads 

4.1.1 Testbed 
    MATRIX is implemented in C++; the dependencies are Linux, ZHT [50], NoVoHT , Google Protocol Buffer [52], and a modern gcc 

compiler. 

    All the experiments in this section were performed on the IBM Blue Gene/P supercomputer [51]. Each node on the BG/P uses a quad-

core, 32-bit, 850 MHZ IBM Power PC 450 with 2GB of memory. A 3D torus network is used for point-to-point communication among 

computing nodes. For validation of MATRIX against Falkon, Falkon runs on the IBM Blue Gene/P supercomputer [51] on a scale of 64 

nodes up to 1024 nodes in powers of 2. 

    All the simulations for SimMatrix were performed on fusion.cs.iit.edu, which boasts 48 AMD Opteron cores at 1.93GHz, 256GB RAM, 

and a 64-bit Linux kernel 2.6.31.5. 

4.1.2 Metrics 
    We use important metrics to evaluate the performance of the adaptive work stealing algorithm. They are listed below: 

 Throughput: Number of tasks finished per second. Calculated as total-number-of-tasks/ execution -time.  

 Efficiency: the ratio between the ideal execution time of completing a given workload and the real execution time. The ideal 

execution time is calculated by taking the average task execution time multiplied by the number of tasks per core.  

 Load Balancing: We adopted the coefficient variance [53] of the number of tasks finished by each node as a measure of the load 

balancing. The smaller the coefficient variance is, the better the load balancing would be. It is calculated as the standard-

deviation/average of number of tasks finished by each node.  

 Scalability: Total number of tasks, number of nodes, and number of cores supported. 

 Utilization: This is another way of looking the efficiency of load balancing by visualizing the utilization of the compute nodes in 

the system. 

 Number of messages: is the count of the various messages flowing across the network caused by the work stealing algorithm 

4.1.3 Workloads 
    First for testing the functionality of MATRIX we used four different workload: Bag of tasks, Fan-In DAG, Fan-Out DAG and Pipeline 

DAG. All the tasks in the DAG had a run-time of 1 second. These different workloads are shown in Figure 4. 

 

Figure 4. Different Types of Workload for evaluating functionality of MATRIX 



    Bag of Tasks: This is the simplest workload where there are no dependencies among the tasks and every task is always ready to execute. 

For such a workload, the task dispatcher inserts them directly into the ready queue instead of inserting them into wait queue first and then 

moving to ready queue. So some of the ZHT operations are skipped for the Bag of Tasks workload. Hence, in terms of efficiency, this gives 

the best performance among all the workloads due to less communication overhead to keep track of the dependencies. 

    Fan-In DAG: This workload introduces simpler dependencies among the tasks in the workload and thus adds a little bit of complexity 

for the execution system. Since not all the tasks in the workload are readily available at any given instant of time, the system utilization is 

lesser when compared to Bag of Tasks workload. The performance of the execution unit depends also the number of tasks that are ready to 

execute at any instant of time. 

    Fan-Out DAG: This workload is similar to Fan-In DAG, except the Fan-Out DAG is obtained be reversing the Fan-In DAG. The 

performance of this workload depends on the out-degree of nodes in the graph. 

    Pipeline DAG: This workload is a collection of “pipes” where each task in a pipe is dependent on the previous task. Here the system 

utilization depends on the number of pipelines as at any instant of time the number of ready tasks is equal to the number of pipelines due to 

the fact that only one task in a pipeline can execute at any given time.  

    Second, in order to study the adaptive work stealing algorithm through MATRIX, the experiments were run using synthetic workloads 

composed of sleep tasks of different durations. We tested the scalability of MATRIX using two sets of sleep tasks. First we tested it will 

sleep tasks of duration 1 second up to 8 seconds on a scale of 64 nodes up to 1024 nodes. We also tested the scalability of the system for 

fine granular workload using sub-second tasks of duration 64ms up to 512ms on a scale of 1 node up to 1024 nodes.  

    In both cases, the sleep duration and the type of workload is specified as an argument to task dispatcher which then initializes the set of 

tasks of the given type and submit the workload to the one or more worker nodes. To amortize the potential slow start and long trailing 

tasks at the end of experiment, we fixed the number of tasks such that the each experiment runs for about 1000 seconds. For example, for 

an experiment with a workload of tasks of 1 second duration, and with 1024 nodes, where each node has 4 cores, the number of tasks in the 

workload would be 4M (1024×4×1000). 

4.2 Evaluating the Adaptive Work Stealing Algorithm with MATRIX 
    All the experiments in this section were performed using Bag of Tasks workload. 

4.2.1 Validation: MATRIX vs. SimMatrix 
    Before evaluating the performance of the work stealing in the real system, the throughput of the system on a sleep 0 workload was 

compared with SimMatrix. Figure 5 shows the validation results comparing SimMatrix and MATRIX for raw throughput on a sleep 0 

workload. The real performance data matched the simulation with 5.8% difference.  

 

Figure 5. Comparison of MATRIX and SimMatrix throughput from 256 to 4K-cores 

 

Figure 6. Comparison of MATRIX and SimMatrix performance up to 1024 nodes 

    We also validated the performance of the implementation against SimMatrix up to 1024 nodes. Since the average runtime of every task 

in the MTC workload used for simulation was 95.20 seconds, we evaluated MATRIX with a workload of sleep tasks where each task runs 

for 100 seconds. The comparison is shown in Figure 6. The real performance data matched the simulation with 2.6% difference. This 

shows that the work stealing algorithm has the potential to achieve distributed load balancing, even at exascales with millions of nodes and 

billions of cores. 



4.2.2 Comparison: MATRIX vs. Falkon 
    Figure 7 shows the results from a study of how efficient we can utilize up to 2K-cores with varying size tasks using both MATRIX and 

the distributed version of Falkon (which used a naïve hierarchical distribution of tasks); MATRIX are the solid lines, while Falkon are the 

dotted lines. We see MATRIX outperform Falkon across the board with across all size tasks, achieving efficiencies starting at 92% up to 

97%, while Falkon only achieved 18% to 82%.  

 

Figure 7. Comparison of MATRIX and Falkon efficiency across 256 to 2K-cores 

4.2.3 Scalability of Adaptive Work Stealing 
    In all the following experiments, we use the sleep workloads, where each node has 4 cores, and the number of tasks is 1000 times of the 

number of cores. Figure 8 shows the scalability of the adaptive work stealing up to 1024 nodes for tasks of duration 1 second up to 8 

seconds, in terms of efficiency and coefficient variance. 

 

Figure 8. Scalability of Adaptive Work Stealing algorithm for long tasks 

    The results show that up to 1024 nodes, the adaptive work stealing actually works quite well, given the right work stealing parameters. 

We see an efficiency of 88% at a 1024 node scale, with a co-variance of less than 0.05 (e.g. meaning that the standard deviation of the 

number of tasks run being a relatively low 500 tasks when on average each node completed 4K tasks). 

    The efficiency drops from 100% to 88% (12 percentages) from 1 node to 1024 nodes.  The reason that efficiency decreases with the 

scale is because the run time of 1000 seconds is still not perfectly enough for amortizing the slow start and long trailing tasks at the end of 

experiment. We believe that the more tasks per core we set, the higher the efficiency will be, within an upper bound (there are 

communication overheads, such as the time taken to submit all the tasks from the client), but the longer it takes to run large scale 

experiments. We found that run time of 1000 seconds (or a workload of 4 million tasks – 1000 tasks * 1024 nodes * 4 cores) could balance 

well between the efficiency (88%) and the running time to run large scale experiments.   

Figure 9 shows the scalability of the adaptive work stealing up to 1024 nodes for fine granular tasks of duration 64ms up to 512ms, in 

terms of efficiency and coefficient variance. 

4.2.4 Evaluating functionality of MATRIX 
    This section explains the experiments performed to test the functionality of MATRIX. Based on the workload type, the task dispatcher 

generates a Directed Acyclic Graph for that type and then submits it to the execution unit. All tasks in the workload were sleep tasks and 

had a run-time of 8 seconds. The efficiency of system was measured and is shown in the Figure 10. 

The Bag of tasks has highest efficiency because there is no dependency among any tasks and each task is always in the ready queue. So 

the system utilization for bag of tasks reaches maximum immediately at the start of the experiment. 

    For Fan-In and Fan-Out DAG, completion of one task might satisfy the dependencies of many other tasks thus providing lot of ready 

tasks at any instant of time. This number keeps increasing till the point where the system utilization can reach its maximum. For Pipeline 

DAG, the efficiency depends on system utilization which is in turn depends on the number of pipelines. So if we have greater number of 

pipelines, then the efficiency will be greater. 



 
Figure 9. Scalability of Adaptive Work Stealing algorithm for fine granular tasks 

 
Figure 10. Analysis of work stealing using different workload types via MATRIX 

5. CONCLUSION AND FUTURE WORK 
    Large scale distributed systems require efficient job scheduling system to achieve high throughput and system utilization. Distributed 

load balancing is critical for designing job schedulers. Work stealing is a potential technique to achieve distributed load balancing across 

many concurrent threads of execution, from many-core processors to exascale distributed systems. The work stealing algorithm was 

implemented in a real system called MATRIX, and a preliminary evaluation up to 4K-core scales was performed for different types of 

workload namely Bag of Tasks, Fan-In DAG, Fan-Out DAG, Pipeline DAG and Complex Random DAG. The parameters of adaptive work 

stealing algorithm was configured using the simulation-based results from SimMatrix [10] (the number of tasks to steal is half and there 

must be a squared root number of dynamic neighbors) and its performance was analyzed in terms of system utilzation and network traffic. 

    We modified the MATRIX implementation and developed a job launch framework to add scheduling support for HPC workloads. We 

plan to evaluate it and integrate it with the Slurm job manager [2]. We plan to integrate MATRIX with Swift [14] (a data-flow parallel 

programming systems) for running real application Directed Acyclic Graphs. 

    Some of the features in MATRIX such as Message Batching, Atomic updates, Distribued Queue and selective lookups can be added to 

ZHT [50] to make it more general so that many new applications can benefit from it. Also the current version of ZHT has a N-N network 

topology where each compute node can communicate with every other node. We plan to add new network topologies such as logarithmic 

topology to allow each compute node select neighbors based on location. This can help optimize the network traffic. 

 
Figure 11. Building blocks for future parallel programming systems and distributed applications 

    We will also continue to develop the MATRIX system. Based on the simulation results, we expect that MATRIX should scale to 

160Kcores on the IBM Blue Gene/P supercomputer we conducted our preliminary evaluation. We also plan to test it on the newly built 

IBM Blue Gene/Q supercomputer at a full 768K-core (3M hardware threads) scale. MATRIX will also be integrated with other projects, 

such as large-scale distributed file systems [59] FusionFS [56] and large scale programming runtime systems Charm++ [27]. A potential 

future software stack is shown in Figure 11. The gray areas represent the traditional HPC-stack. The green areas are additional components, 



such as support for many-task computing applications, using lower level components such as MATRIX, ZHT [50], and FusionFS [56]. The 

yellow areas represent the simulation components aiming to help explore peta/exascales levels on modest terascale systems. Once 

SimMatrix is extended more complex network topologies, we could address the remaining challenge of I/O and memory through data-

aware scheduling [55]. 
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