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Abstract— Current software and hardware limitations prevent 
Many-Task Computing (MTC) workloads from leveraging 
hardware accelerators (NVIDIA GPUs, Intel Xeon Phi) boasting 
Many-Core Computing architectures. Some broad application 
classes that fit the MTC paradigm are workflows, MapReduce, 
high-throughput computing, and a subset of high-performance 
computing. MTC emphasizes using many computing resources 
over short periods of time to accomplish many computational 
tasks (i.e. including both dependent and independent tasks), 
where the primary metrics are measured in seconds. MTC has 
already proven successful in Grid Computing and 
Supercomputing on MIMD architectures, but the SIMD 
architectures of today’s accelerators pose many challenges in the 
efficient support of MTC workloads on accelerators. This work 
aims to address the programmability gap between MTC and 
accelerators, through an innovative middleware that enables 
MIMD programmability of SIMD architectures. This work will 
enable a broader class of applications to leverage the growing 
number of accelerated high-end computing systems. 

Index Terms— GPGPU, MTC, CUDA, Swift, Accelerator, 
Workflows 

I. INTRODUCTION 
This research involves pursuing the integration between 

data- flow driven parallel programming systems (e.g. Many-
Task Computing - MTC)[1] and hardware accelerators (e.g. 
NVIDIA GPUs, AMD GPUs, and the Intel Xeon Phi). MTC 
aims to bridge the gap between two computing paradigms, high 
throughput computing (HTC) and high-performance computing 
(HPC).! MTC emphasizes using many computing resources 
over short periods of time to accomplish many computational 
tasks (i.e. including both dependent and independent tasks), 
where the primary metrics are measured in seconds. Swift[2] is 
a particular implementation of the MTC paradigm, and is a 
parallel programming system that has been successfully used in 
many large-scale computing applications. The scientific 
community has adopted Swift as a great way to increase 
productivity in running complex applications via a dataflow 
driven programming model, which intrinsically allows implicit 
parallelism to be harnessed based on data access patterns and 
dependencies. Swift is a parallel programming system that fits 
the MTC model, and has been shown to run well on tens of 
thousands of nodes with task graphs in the range of hundreds of 
thousands of tasks.[2] This work aims to enable Swift to 
efficiently use accelerators (such as NVIDIA GPUs, AMD 
GPUs, and the Intel Xeon Phi) to further accelerate a wide 
range of applications, on a growing portion of high-end 
systems. GPUs are one of the most effective ways to provide 

acceleration on HPC resources. However, a programmability gap still 
exists between applications and accelerators. Researchers and 
developers are forced to work within the constraints of closed 
environments such as the CUDA GPU Programming Framework[3] 
(for NVIDIA GPUs). The goal of this work is to improve the 
performance of MTC workloads running on GPUs through the use of 
the GEMTC framework. The CUDA framework can only support 
16 kernels running concurrently, one kernel per streaming 
multiprocessor (SM). One problem with this approach is that 
all kernels must start and end at the same time, causing extreme 
inefficiencies in heterogeneous workloads. By working at the 
warp level, (which sits between cores and SMs) I can trade 
local memory for concurrency, and I am able to run up to 200 
concurrent kernels. Our middleware allows independent 
kernels to be launched and managed on many-core 
architectures that traditionally only supported SIMD. Our 
preliminary results in the costs associated with managing and 
launching concurrent kernels on NVIDIA Kepler GPUs show 
that our framework is able to achieve a higher level of 
efficiency for the MTC workloads I tested. I expect results to 
be applicable to the many HPC resources where GPUs are now 
common. Finally, I plan to explore applications from different 
domains such as medicine, economics, astronomy, 
bioinformatics, physics, and many more. I will continue to 
push the performance envelope by enabling many MTC 
applications and systems to leverage the growing number of 
accelerated high-end computing systems. I also expect this 
work to enable other classes of applications to leverage 
accelerators, such as MapReduce and ensemble MPI. I also 
hope to influence future accelerator architectures by 
highlighting the need for hardware support for MIMD 
workloads. 

 
This work contains the following contributions: 
 

1) I present GEMTC, a framework for enabling MTC 
workloads to run efficiently on NVIDIA GPUs. 

 
2) The GEMTC Framework improves the programmability 
model of NVIDIA GPUs by more closely representing the 
MIMD model. 

 
3) Swift/T integration provides increased programmability, 
efficient scaling, and future support for real applications.  

 
This paper is organized as follows: Section 2 introduces 

related work and how the GEMTC framework differs and 
improves upon these works. In an effort to make this paper as 



self-contained as possible Section 3 provides the necessary 
background information for understanding the terms and 
technologies referenced in this paper. Section 4 introduces 
GEMTC, and the multiple components that make up the 
framework. Section 5 presents the evaluation method and 
results. Section 6 highlights future work directions, and Section 
7 concludes the paper. 

II. RELATED WORK 
The goal of this work is to provide support for MTC 

workloads on Accelerators. By providing this support I intend 
to improve the programmability of these devices and counter 
natural hardware drawbacks in the process. Currently, this 
work is unique due to its consideration of MTC workloads on 
accelerators. However, there are many related works regarding 
the improved programmability of Accelerators. This section 
categorizes related works in two ways 1) Frameworks and 2) 
Virtualization. First, frameworks are analyzed that aim to 
enable improved programmability of accelerators for 
workloads that closely match MTC. Next, the state of 
virtualization on accelerators is discussed as a means of 
providing support for improved accelerator performance. 

A. GPGPU Frameworks 
CrystalGPU[4] is a project for harnessing GPU power and 

the highest efficiencies available. CrystalGPU has similar goals 
to our project, improving programmability of GPUs, SMs are 
treated as workers and the level of control is not as low level as 
within the GeMTC framework.  

Grophecy[5] attempts to improve the ease of use of GPU 
programming through code skeletonization. Grophecy can 
analyze CPU code and determine if it will achieve speedup if 
ported to GPU code saving development time. 

StarPU is a task-programming library for hybrid 
architectures from Inria. 

B. Virtualization 
Pegasus[6] aims to improve GPU utilization through 

virtualization. The Pegasus project runs at the hypervisor level 
and promotes GPU sharing across virtual machines. The 
Pegasus project also includes its own custom DomA scheduler 
for GPU task scheduling. 

Ravi presents a framework to enable GPU sharing amongst 
GPUs in the cloud.[7] By computing the affinity score they are 
able to determine which applications can benefit from 
consolidation. 

III. BACKGROUND INFORMATION 
This section aims to provide the necessary background 

information to make this paper as self-contained as possible. 

A. Many-Task Computing (MTC) 
Many-task Computing (MTC)[1] is a programming 

paradigm that aims to bridge the gap between HPC and HTC. 
MTC focuses on running many tasks over a short period of 
time. Where tasks can be either dependent or independent, and 
are organized as Directed Acyclical Graphs (DAG)s. The 
primary metrics of these tasks are measures in seconds. There 

are several projects capable of supporting MTC workloads 
including Condor, Falkon[8], Swift[2, 9], Jets[10], 
Coasters[11], MapReduce, Hadoop, Boinc, and Cobalt. 

B. Swift and the dataflow model 
One solution that makes parallel programming implicit 

rather than explicit is the dataflow model. Conceived roughly 
35 years ago, the model comes and goes in and out of “vogue” 
as researchers try again to make it useful. I believe Swift 
successfully encompasses “implicitly parallel functional 
dataflow.” The Swift parallel scripting language has proven 
increasingly useful in scientific programming. This dataflow 
programming model has been characterized to be a perfect fit 
in the Many-Task Computing (MTC) paradigm. Swift is a 
parallel programming framework that has been widely adopted 
by many scientific applications.[1, 2, 8, 9, 12-14] The original 
implementation of Swift, Swift/K, had limitations in regards to 
scalability. Swift/T is a redesigned implementation of Swift 
and improves upon these limitations greatly while proving 
support for an arbitrary number of nodes. The GEMTC 
Framework interacts with Swift/T through a C API, which 
allows Swift script to call C function wrappers to CUDA code 
precompiled into the GEMTC framework before runtime. 

C. Acceleration: GPUs and Coprocessors 
General Purpose Computation on Graphics Processing 

Units (GPGPU)[15] is a great source of acceleration on high 
performance resources. Acceleration is achieved by offloading 
computations from the CPU host to a connected accelerator, 
which relieves the host of cycles. While acceleration can 
provide many benefits, in some cases the overheads associated 
with acceleration that may provide significant drawbacks, 
which are addressed in this work. Accelerators are now 
commonplace in many machines within the TOP500 and the 
Green500 due to both their performance and power advantages. 

CUDA, OpenCL, and OpenACC are some of the most 
interesting ways to program GPUs for HPC. However, these 
languages are specific to accelerators and do not provide a high 
a enough level of abstraction. 

While the Intel Xeon Phi coprocessor is still a relatively 
new product, the Texas Advanced Computing Center (TACC) 
recently launched Stampede, a resource built around the Xeon 
Phi coprocessor. The Xeon Phi coprocessor is an accelerator 
that supports several different programming models, including 
an offloading library which makes it appear similar to a GPU, 
but it also supports a native mode that allows for very 
interesting OpenMP programmability and avoids some 
common GPGPU drawbacks. 

D. GPGPU Drawbacks 
While GPUs are certainly an efficient source of 

acceleration, there are still drawbacks of accelerating with 
GPGPU technology. This work also aims to improve upon 
these shortcomings within the GEMTC framework. 

1) Data Transfers 
The time to transfer data is limited by the speed of the PCIe 

bus, these overheads become significant for data intensive 
tasks. The GEMTC framework attempts to coalesce data 



transfers and overlap data transfers with the execution of other 
tasks in attempts to mask data transfer times and latencies. 

2) Architecture 
GPUs are traditionally considered to be Single Input 

Multiple Data(SIMD) devices. The GEMTC Framework helps 
to facilitate a shift towards viewing GPUs as Multiple Input 
Multiple Data(MIMD) devices. There are many reasons why it 
would be beneficial to consider GPUs as MIMD. For example, 
viewing the GPU as MIMD allows access to the GPU as a 
small cluster. Through the use of the GEMTC framework, the 
GPU is represented as a MIMD collection of SIMD workers. 
Each worker runs on a single warp, the tightest level of control 
available on the GPU, which is an accumulation of 32 threads. 

3) Programmability 
GPU programming requires the use of specific languages 

and frameworks such as CUDA , OpenCL, or OpenACC. By 
making key GPU functionality available to parallel 
programming frameworks and workflow systems, such as 
Swift, I aim to improve the programmability and scalability of 
accelerators. 

4) Dynamic Memory Management 
The default CUDA programming framework was not 

designed for dynamic memory management. Our experiments 
show that the time required for a device allocation call grows in 
proportion to the number of device allocations already 
performed. Currently, CUDA applications generally allocate all 
memory requirements at the beginning of their lifetime to avoid 
this drop in performance. GEMTC incorporates a sub-allocator 
that allows the host to allocate device memory at a much faster 
rate than possible under the default CUDA framework. 

IV. GEMTC DESIGN 
This section discusses the approaches evaluated for MTC 

workloads on accelerators and introduces the GEMTC 
framework. This work evaluates 3 approaches 1) An initial 
naïve approach 2)  A batch middleware 3) The GEMTC 
Framework. 

A. NATIVE BLACK-BOX APPROACH 
To determine how the CUDA GPU Programming 

Framework would handle MTC workloads natively. I 
interacted with the GPU in a black box fashion, and launched 
MTC workloads with a simple scripting middleware and the 
command line interface. 

At this level, integration was done with Swift/K[2] for 
launching tasks. Swift scripts launched each task to the GPU as 
a separate application in parallel. 

The problem with this approach is that the GPU will only 
execute device kernels from a single process at any given time. 
So for the purpose of MTC, the many small tasks will have 
very poor utilization. Tasks that only use a fraction of the 
device are unable to run in parallel. There is also 100msec of 
overhead in launching each individual GPU application. This 
resulted in extremely poor efficiency for MTC workloads, 
which emphasize many smaller tasks. 

 
Figure 1 - The flow of a native black box middleware using CUDA. 

With this native approach, the entire GPU is treated as a 
single worker. The above diagram demonstrates the drawbacks 
of launching single applications on the GPU. 

Because the GPU does not allow parallel execution of 
multiple applications, I decided to create a single application 
which would batch together tasks to be executed on the GPU.  

B. CPU BASED BATCH SCHEDULER 
Due to the inefficiencies in the black box approach, I 

developed a CPU based scheduler that would consolidate all 
the tasks into batches to then run through a single application 
on the GPU. The basic unit of offloading work to the GPU is a 
kernel. This approach will launch a kernel for every task that is 
handed to it by a workflow system. 

 
Figure 2 - The flow of a CPU based middleware that implements batching. 

The CPU based middleware is capable of launching 
multiple kernels concurrently to the GPU. It is also able to 
overlap the memory transfer of tasks with the execution of 
others.  

 
Figure 3 - Overlapping incoming data transfers with kernel execution. 

One limitation of the batch approach is the limitation on the 
number of concurrent kernels that are capable of executing in 
parallel. Even the highest end devices are limited to 16 
concurrent kernels. While NVIDIA has announced that number 
to be increased to 32 with Kepler, this still will not achieve the 
tightest level of control available on the device. In addition to 



the limitation on concurrency, this approach is limited by an 
age-old batching problem. The shortest running task cannot 
return a result until the longest running task has completed, 
which means that the results from any of the concurrent kernels 
will have to wait until the last task in that batch completes. 
Since a group or tasks must wait for the longest task to 
complete, a heterogeneous workflow will likely have poor 
utilization.  

Due to these limitations on the concurrency of kernels, I 
decided that a much higher level granularity and utilization 
could be achieved if the scheduler was integrated more closely 
to the GPU. This motivated the development of GEMTC, 
which works at a per task basis allowing almost 200 
independent workers to run heterogeneous workflows with 
high utilization.  

C. GPU BASED SCHEDULER 
The GPU based scheduler runs MTC workloads with a 

much higher level of efficiency compared to the previous 
approaches. 

 
Figure 4 - Flow of a task in GEMTC. 

In this approach a single kernel executes on the GPU, 
which I refer to as the SuperKernel. This is the GPU 
application that is seen by CUDA and the GPU. This kernel 
and the CPU component of the framework communicate 
through shared memory on the GPU. The host will copy task 
descriptions into a queue on the device, and then workers on 
the device will pick up that task and execute the work 
associated with that task. Finally, the task description now 
including the result is written into a result queue on the device, 
where the host thread will read it back to the CPU. I now 
introduce the major components included in the GEMTC 
framework. 

1) Task Descriptions 
Task descriptions are used to encode key information 

regarding the MTC workloads on the host and device. These 
are initially copied into an incoming work queue on the device, 
and tell the running SuperKernel to execute the task. After the 
work is completed then this particular TaskDescription is then 
placed on the results queue to inform the CPU that the task has 
completed. A task description is made up of the following 3 
subcomponents and represented as a struct in the source code 
1) A TaskID, a unique identifier for a particular task which 
distinguishes it from all other tasks. 2) The TaskType, is an 
integer value that refers to a particular pre-compiled micro-
kernel. All micro-kernels have a numerical number mapped to 
them and this indicates which precompiled micro kernel the 
task should execute. 3) numThreads, is the number of 

threads/workers the task will require. Threads are assigned in 
groups of 32, due to a hard limit on what the architecture can 
allow. At the lowest level, these groups of 32 threads execute 
in a SIMD fashion. For example, if a task requests 16 threads 
then 32 will be assigned, but half will be idle. Similarly, 
requesting 65 threads will result in 96 threads being assigned, 
but 31 idle threads. 4) params, a void pointer to device memory 
for the parameters of a given task. This includes both the input 
to a particular micro-kernel and it's resulting output. 

2) Worker Granularity 
A major advantage to the GEMTC framework is that it 

allows the execution of tasks at the warp level which is the 
lowest possible level of control on the device. Under the 
default CUDA framework, applications are normally 
programmed at the block level, which is a logical level similar 
to running at the physical SM level.  

The transition to executing at a warp level allows for a 
much higher granularity within tasks, without hindering the 
performance of tasks which might need large amounts of the 
device to execute. Furthermore, by viewing the device as a 
collection of separate warps executing separate operations, the 
device can be treated very similar to a MIMD device, except 
that the basic computational unit is a 32 core SIMD processor 
rather than a single core. This fundamental shift will enable 
systems like Swift/T to more easily and efficiently assign work 
to the device.  

3) Memory Transfers 
Due to the fact that the communication between the host 

component of the framework and the SuperKernel is through 
shared memory, it is critical to have fast memory transfer times 
for small amounts of data. It requires three memory copies to 
en-queue a single task (one to read the queue metadata, one to 
write the task description, and one to update the queue 
metadata). Similarly it takes three memory copies to de-queue a 
task from the resulting queue. 

To evaluate the cost of memory copies on the GPU, I ran a 
series of benchmarks copying to and from the device, including 
both asynchronous and synchronous calls. Figure 5 shows that 
memory copies to the device take 2µsec and copies from the 
device take 10µsec. 

  
Figure 5 - Average time to copy data to and from the device as either an 
asynchronous or synchronous call.  



     These results are significantly faster than the required time 
for a cudaMalloc() and cudaFree() and is the motivation for 
having a sub-allocator within the framework. 

D. Dynamic Memory Management 
The GEMTC framework also requires efficient device 

memory allocation. Each task that is en-queued requires one 
device allocation and then the task itself may need to allocate 
memory for its own parameters and results. 

The existing CUDA memory management system was not 
designed for dynamic memory management. This resulted in 
poor performance of workloads that required a large number of 
device allocations. To evaluate the existing memory 
management, measurements were taken for the average time to 
cudaMalloc() a small amount of memory repeatedly and to 
cudaMalloc() and free a small amount of memory, these results 
are shown in figure 6. 

In the best case, a cudaMalloc() and cudaFree() takes more 
than 100µsec to execute. The GeMTC framework must allocate 
memory on a per task basis. The overhead of using this 
memory management is substantial compared to other 
overheads (e.g. memory copies). To reduce the cost of 
cudaMalloc() on device memory, the GEMTC framework has 
its own sub-allocator designed to efficiently handle many 
requests for dynamic memory allocation. GEMTC uses 
cudaMalloc() to allocate large contiguous pieces of device 
memory. The pointers to these free chunks and their sizes are 
stored in a linked list on the CPU. 

 
Figure 6 - A memory mapping of free memory available to the device. 

Upon memory allocation requests, the sub-allocator will 
find a large enough chuck of free device memory in its list, or 
request more using cudaMalloc(). Next, it will write a header to 
the device memory indicating its size immediately before the 
free chuck. This operation takes roughly the same time as a 
memory copy to device. 

 
Figure 7 - The effects of gemtcMalloc() on free memory. 

When device memory is freed, a header is read to identify 
the size of memory and adds it into the list of free memory. 
Freeing device memory takes roughly the same amount of time 
as a memory copy from the device. 

To evaluate GEMTC’s memory management, I measured 
the average time to malloc a small amount of memory 
repeatedly and to malloc and free some memory. Shown in 
figure 7. This sub-allocator scales very well and has an 
execution time on the same order of magnitude as a memory 
transfer to/from the device. 

 
Figure 8 - CUDA memory management execution times. 

 
Figure 9 - Average GEMTC memory management execution times. 

E. GEMTC Architecture 
The SuperKernel is the single kernel that runs on the entire 

device and will execute all tasks. It is composed of many warps 
(32 thread SIMD groups) that execute independently. All 
computations are done by the warps that make up the 



SuperKernel. Warps will busy wait on the incoming task queue 
when no tasks are available to execute. 

All tasks descriptions are enqueued in a queue located in 
device memory. All of the SuperKernels free warps will wait 
on this queue for a task to be enqueued. When a task arrives, 
the requested number of warps (obtained from the 
numThreads) will dequeue and execute the task. Once it 
finishes, the warps will enqueue the task description into a 
finished work queue in device memory. A thread on the CPU, 
which manages the results, reads this queue. 

Micro-kernels are the pre-compiled CUDA codes that tasks 
request to run. Micro-kernels are designed to run at the warp 
level on the GPU. The TaskType within a TaskDescription 
specifies a particular numerical value which maps to a certain 
micro-kernel that the worker needs to execute for that task. 

V. EVALUATION AND RESULTS 
The framework is evaluated with multiple micro-kernels, 

where micro-kernels serve as MTC applications that are pre-
compiled into the GEMTC framework. The micro-kernels that 
available within GEMTC are shown in the chart below. Note 
that while final results are not shown for all of the following 
micro-kernels in this paper, preliminary results have already 
tested all of the following micro-kernels. 
# Micro-Kernel Parameters Demonstrates 
1 Sleep(t) Time to sleep. Mass parallelism 
2 Matrix-

Square(m) 
Matrix Compute and Data 

Transfer 
3 FFT() Multidimensional 

arrays 
Compute and Data 
Transfer 

4 Array 
Min/Max/Ave. 

Array Compute and Data 
Transfer 

5 Matrix 
Inversion 

Matrix Compute and Data 
Transfer 

6 Matrix 
Transpose 

Matrix Compute and Data 
Transfer 

7 Matrix Multiply Matrix Compute and Data 
Transfer 

8 Matrix Vector Matrix Compute and Data 
Transfer 

9 Linear Algebra 
Solver (Gauss 
Jordan) 

Data Matrices 
and Vectors 

Advanced 
mathematical 
manipulation 

10 Vector Add (Vector1, 
Vector2) 

Compute and Data 
Transfer 

11 Vector Dot Vector Compute and Data 
Transfer 

12 Stencil 
Algorithm 

Data Stencil Advanced 
mathematical 
manipulation 

13 Black Scholes Economic 
modeling data 

Economics 
manipulation 

14 PI calc. (Monte 
Carlo Method) 

Integer values Advanced 
mathematical 
manipulation 

Figure 10 - Chart of available Micro-Kernels within GEMTC. 

A. Environment 
This paper evaluates the sleep micro-kernel currently within 

the GEMTC framework on the following environment: 
• A single node workstation with a 6 core AMD 3.0 

GHz CPU, 8 GB of DDR3 RAM, and a NVIDIA 
GTX-670 GPU. 

B. Micro-Kernel Benchmarking 
1) Sleep 

This is a micro-kernel that executes for a given number of 
microseconds. It serves to provide benchmarking data on the 
efficiency that the framework can achieve with workloads of 
different length tasks. It sleeps with a busy wait on all of the 
threads executing within a warp worker. The wait consists of a 
number of additions based on the sleep time and the number of 
additions the specific GPU hardware can do per unit time. The 
latter value was found experimentally by testing GPU 
hardware.  

The results from executing sleep tasks indicate that there is 
minimal overhead in launching a single task. With a single 
warp executing, high efficiency is achieved for tasks that 
execute >80µsec (See figure 9). When running the shortest 
tasks (10 µsec), the average time per task is 63µsec. This 
indicates that the framework has approximately this much 
overhead, which is roughly the same amount of time it takes to 
do all the memory copies involved in each tasks en-queuing 
and de-queuing. These results indicate that the framework is 
able to handle 15,000 tasks per second internally. After an 
externally available API is placed on top of the framework this 
number levels out at 7,000 tasks per second. 

Similarly, with the entire GPU working to execute sleep 
tasks, the framework can achieve high efficiency for tasks of 
>5000µsec (See figure 10). This result is justified by the need 
for enough tasks to keep all warps busy (i.e. Task Duration 
>Number of warps*Overhead per task).  

 
Figure 11 - Efficiency of sleep task workloads with 1 warp executing all tasks. 



 
Figure 12 - Efficiency of sleep task workloads with many warps executing. 

VI. FUTURE WORK 

A. Alternative Accelerator Support 
While NVIDIA GPUs make up a large presence of 

accelerators in HPC resources, there are many different types 
of accelerators. Other accelerators include AMD based GPUs 
and the Intel Xeon Phi coprocessor. Intel recently launched the 
Xeon Phi hardware as a response to the recent drive towards 
GPGPU computing in HPC. The Xeon Phi is a PCIe 
coprocessor accelerator, which physically appears similar to a 
GPU but is quite unique due to the programming model. 
Ongoing work is currently evaluating how MTC workloads are 
handled on the Xeon Phi through both the offloading libraries 
and the native programmability. 

B. Real Application Support 
This paper demonstrated the potential of the GEMTC 

framework through the use of micro-kernels. However, the 
importance of supporting real applications is a strong 
motivator. Ongoing work is currently evaluating the following 
two real science applications. 

A chemistry glass material modeling application: Glen 
Hocky of the Reichman group at Columbia is currently 
evaluating a glass material modeling application.[16] This 
application has already been programmed to run in Swift. The 
computationally intensive portions have been identified and 
ongoing work is integrating GEMTC calls for improved 
performance. 

The Open Protein Simulator (OOPS) builds on the Protein 
Library (PL). Currently, the OOPS application makes use of an 
array of python scripts running in parallel. Ongoing work is 
developing a swift version of the application and identifying 
computationally intensive portions of the code that could be 
integrated with GEMTC. 

C. Evaluating MTC on Simulators 
Evaluating MTC workloads on real systems is critical, but it 

is also important to evaluate simulation as another means of 
further understanding MTC workloads.[17, 18] Analyzing 
MTC workloads through GEMTC on GPU simulators such as 
GPGPU-SIM[19] allows the ability to test the framework under 
varying system configurations. 

D. Many Node/GPU Evaluation 
Through a collaboration with the University of Chicago I 

have gained access to a 20 node cluster "Breadboard" and a 28 
node Cray Supercomputer "Raven." Ongoing work is 
evaluating the GEMTC framework on both of these resources. 
I am also evaluating the Amazon compute cloud with GPU 
nodes as a means of providing a readily accessible test bed of 
up to 100 nodes. 

I currently lack a test bed larger than 100 nodes, to further 
evaluate our GEMTC framework. There is an ongoing project 
evaluating MTC and Swift/T on Blue Waters[20] a Cray based 
high performance resource with over 25k compute nodes. 

VII. CONCLUSIONS 
In conclusion I have presented GEMTC, a framework for 

enabling MTC workloads to run efficiently on NVIDIA GPUs. 
The GEMTC framework encompasses the entire GPU running 
as a single GPU application similar to a daemon. The GEMTC 
framework is responsible for receiving work from a host 
though the use of the C API, scheduling and running that work 
on many independent GPU workers. Finally, results are 
returned back through the C API to the host and the workflow 
system. The GEMTC API enables the framework to integrate 
closely with workflow systems such as Swift/T. 

The GEMTC framework has simplified the programming 
model of the GPU by allowing GPUs to be treated as a 
collection of independent SIMD workers, enabling a MIMD 
view of the device. 

The novel sub-allocator implemented within GEMTC 
allows for an efficient dynamic allocation of memory once an 
application is running. In addition GEMTC provides an 
alternative to cudaMalloc() that runs 8 times faster. 

Finally, I have shown that GEMTC has a throughput of 
roughly 7k tasks per second. Integration with Swift/T improves 
programmability of accelerators, while demonstrating the 
ability to increase scalability to many nodes with many cores in 
clusters, clouds, grids, and HPC resources. I will continue to 
push the envelope in enabling applications from many different 
domains to run on such resources. 

REFERENCES 
 

[1] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, 
K. Iskra, et al., "Toward loosely coupled 
programming on petascale systems," presented at the 
Proceedings of the 2008 ACM/IEEE conference on 
Supercomputing, Austin, Texas, 2008. 

[2] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. 
S. Katz, and I. Foster, "Swift: A language for 
distributed parallel scripting," Parallel Comput., vol. 
37, pp. 633-652, 2011. 

[3] (2012, October 3). Parallel Programming and 
Computing Platform | CUDA | NVIDIA. Available: 
http://www.nvidia.com/object/cuda_home_new.html 

[4] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and 
M. Ripeanu, "A GPU accelerated storage system," 
presented at the Proceedings of the 19th ACM 



International Symposium on High Performance 
Distributed Computing, Chicago, Illinois, 2010. 

[5] J. Meng, V. A. Morozov, K. Kumaran, V. 
Vishwanath, and T. D. Uram, "GROPHECY: GPU 
performance projection from CPU code skeletons," 
presented at the Proceedings of 2011 International 
Conference for High Performance Computing, 
Networking, Storage and Analysis, Seattle, 
Washington, 2011. 

[6] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. 
Ranganathan, "Pegasus: coordinated scheduling for 
virtualized accelerator-based systems," presented at 
the Proceedings of the 2011 USENIX conference on 
USENIX annual technical conference, Portland, OR, 
2011. 

[7] V. T. Ravi, M. Becchi, G. Agrawal, and S. 
Chakradhar, "Supporting GPU sharing in cloud 
environments with a transparent runtime consolidation 
framework," presented at the Proceedings of the 20th 
international symposium on High performance 
distributed computing, San Jose, California, USA, 
2011. 

[8] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. 
Wilde, "Falkon: a Fast and Light-weight tasK 
executiON framework," presented at the Proceedings 
of the 2007 ACM/IEEE conference on 
Supercomputing, Reno, Nevada, 2007. 

[9] Z. Yong, M. Hategan, B. Clifford, I. Foster, G. von 
Laszewski, V. Nefedova, et al., "Swift: Fast, Reliable, 
Loosely Coupled Parallel Computation," in Services, 
2007 IEEE Congress on, 2007, pp. 199-206. 

[10] J. M. Wozniak and M. Wilde, "JETS: Language and 
System Support for Many-Parallel-Task Computing," 
in Parallel Processing Workshops (ICPPW), 2011 
40th International Conference on, 2011, pp. 249-258. 

[11] M. Hategan, J. Wozniak, and K. Maheshwari, 
"Coasters: Uniform Resource Provisioning and 
Access for Clouds and Grids," in Utility and Cloud 

Computing (UCC), 2011 Fourth IEEE International 
Conference on, 2011, pp. 114-121. 

[12] I. Raicu, I. T. Foster, and Z. Yong, "Many-task 
computing for grids and supercomputers," in Many-
Task Computing on Grids and Supercomputers, 2008. 
MTAGS 2008. Workshop on, 2008, pp. 1-11. 

[13] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhao, A. 
Espinosa, et al., "Parallel Scripting for Applications at 
the Petascale and Beyond," Computer, vol. 42, pp. 50-
60, 2009. 

[14] Z. Yong, I. Raicu, and I. Foster, "Scientific Workflow 
Systems for 21st Century, New Bottle or New 
Wine?," in Services - Part I, 2008. IEEE Congress on, 
2008, pp. 467-471. 

[15] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. 
Kr�ger, A. E. Lefohn, et al., "A Survey of 
General�Purpose Computation on Graphics 
Hardware," Computer Graphics Forum, vol. 26, pp. 
80-113, 2007. 

[16] J. DeBartolo, G. Hocky, M. Wilde, J. Xu, K. F. Freed, 
and T. R. Sosnick, "Protein structure prediction 
enhanced with evolutionary diversity: SPEED," 
Protein Science, vol. 19, pp. 520-534, 2010. 

[17] K. Wang and I. Raicu, "SimMatrix: SIMulator for 
MAny-Task computing execution fabRIc at 
eXascales," 2012. 

[18] K. Wang, J. C. H. Munuera, I. Raicu, and H. Jin, 
"Centralized and Distributed Job Scheduling System 
Simulation at Exascale," 2011. 

[19] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, 
and T. M. Aamodt, "Analyzing CUDA workloads 
using a detailed GPU simulator," in Performance 
Analysis of Systems and Software, 2009. ISPASS 
2009. IEEE International Symposium on, 2009, pp. 
163-174. 

[20] D. S. Katz, T. G. Armstrong, Z. Zhang, M. Wilde, and 
J. M. Wozniak, "Many-Task Computing and Blue 
Waters," Arxiv preprint arXiv:1202.3943, 2012. 

 
 


