
GEMTC: GPU Enabled Many-Task Computing

Scott Krieder, Ioan Raicu
Department of Computer Science
Illinois Institute of Technology

Chicago, IL USA
skrieder@iit.edu, iraicu@cs.iit.edu

Abstract— Current software and hardware limitations prevent
Many-Task Computing (MTC) workloads from leveraging
hardware accelerators (NVIDIA GPUs, Intel Xeon Phi) boasting
Many-Core Computing architectures. Some broad application
classes that fit the MTC paradigm are workflows, MapReduce,
high-throughput computing, and a subset of high-performance
computing. MTC emphasizes using many computing resources
over short periods of time to accomplish many computational
tasks (i.e. including both dependent and independent tasks),
where the primary metrics are measured in seconds. MTC has
already proven successful in Grid Computing and
Supercomputing on MIMD architectures, but the SIMD
architectures of today’s accelerators pose many challenges in the
efficient support of MTC workloads on accelerators. This work
aims to address the programmability gap between MTC and
accelerators, through an innovative middleware that enables
MIMD programmability of SIMD architectures. This work will
enable a broader class of applications to leverage the growing
number of accelerated high-end computing systems.

Index Terms— GPGPU, MTC, CUDA, Swift, Accelerator,
Workflows

I. INTRODUCTION
This research involves pursuing the integration between

data- flow driven parallel programming systems (e.g. Many-
Task Computing - MTC)[1] and hardware accelerators (e.g.
NVIDIA GPUs, AMD GPUs, and the Intel Xeon Phi). MTC
aims to bridge the gap between two computing paradigms, high
throughput computing (HTC) and high-performance computing
(HPC).! MTC emphasizes using many computing resources
over short periods of time to accomplish many computational
tasks (i.e. including both dependent and independent tasks),
where the primary metrics are measured in seconds. Swift[2] is
a particular implementation of the MTC paradigm, and is a
parallel programming system that has been successfully used in
many large-scale computing applications. The scientific
community has adopted Swift as a great way to increase
productivity in running complex applications via a dataflow
driven programming model, which intrinsically allows implicit
parallelism to be harnessed based on data access patterns and
dependencies. Swift is a parallel programming system that fits
the MTC model, and has been shown to run well on tens of
thousands of nodes with task graphs in the range of hundreds of
thousands of tasks.[2] This work aims to enable Swift to
efficiently use accelerators (such as NVIDIA GPUs, AMD
GPUs, and the Intel Xeon Phi) to further accelerate a wide
range of applications, on a growing portion of high-end
systems. GPUs are one of the most effective ways to provide

acceleration on HPC resources. However, a programmability gap still
exists between applications and accelerators. Researchers and
developers are forced to work within the constraints of closed
environments such as the CUDA GPU Programming Framework[3]
(for NVIDIA GPUs). The goal of this work is to improve the
performance of MTC workloads running on GPUs through the use of
the GEMTC framework. The CUDA framework can only support
16 kernels running concurrently, one kernel per streaming
multiprocessor (SM). One problem with this approach is that
all kernels must start and end at the same time, causing extreme
inefficiencies in heterogeneous workloads. By working at the
warp level, (which sits between cores and SMs) I can trade
local memory for concurrency, and I am able to run up to 200
concurrent kernels. Our middleware allows independent
kernels to be launched and managed on many-core
architectures that traditionally only supported SIMD. Our
preliminary results in the costs associated with managing and
launching concurrent kernels on NVIDIA Kepler GPUs show
that our framework is able to achieve a higher level of
efficiency for the MTC workloads I tested. I expect results to
be applicable to the many HPC resources where GPUs are now
common. Finally, I plan to explore applications from different
domains such as medicine, economics, astronomy,
bioinformatics, physics, and many more. I will continue to
push the performance envelope by enabling many MTC
applications and systems to leverage the growing number of
accelerated high-end computing systems. I also expect this
work to enable other classes of applications to leverage
accelerators, such as MapReduce and ensemble MPI. I also
hope to influence future accelerator architectures by
highlighting the need for hardware support for MIMD
workloads.

This work contains the following contributions:

1) I present GEMTC, a framework for enabling MTC
workloads to run efficiently on NVIDIA GPUs.

2) The GEMTC Framework improves the programmability
model of NVIDIA GPUs by more closely representing the
MIMD model.

3) Swift/T integration provides increased programmability,
efficient scaling, and future support for real applications.

This paper is organized as follows: Section 2 introduces

related work and how the GEMTC framework differs and
improves upon these works. In an effort to make this paper as

self-contained as possible Section 3 provides the necessary
background information for understanding the terms and
technologies referenced in this paper. Section 4 introduces
GEMTC, and the multiple components that make up the
framework. Section 5 presents the evaluation method and
results. Section 6 highlights future work directions, and Section
7 concludes the paper.

II. RELATED WORK
The goal of this work is to provide support for MTC

workloads on Accelerators. By providing this support I intend
to improve the programmability of these devices and counter
natural hardware drawbacks in the process. Currently, this
work is unique due to its consideration of MTC workloads on
accelerators. However, there are many related works regarding
the improved programmability of Accelerators. This section
categorizes related works in two ways 1) Frameworks and 2)
Virtualization. First, frameworks are analyzed that aim to
enable improved programmability of accelerators for
workloads that closely match MTC. Next, the state of
virtualization on accelerators is discussed as a means of
providing support for improved accelerator performance.

A. GPGPU Frameworks
CrystalGPU[4] is a project for harnessing GPU power and

the highest efficiencies available. CrystalGPU has similar goals
to our project, improving programmability of GPUs, SMs are
treated as workers and the level of control is not as low level as
within the GeMTC framework.

Grophecy[5] attempts to improve the ease of use of GPU
programming through code skeletonization. Grophecy can
analyze CPU code and determine if it will achieve speedup if
ported to GPU code saving development time.

StarPU is a task-programming library for hybrid
architectures from Inria.

B. Virtualization
Pegasus[6] aims to improve GPU utilization through

virtualization. The Pegasus project runs at the hypervisor level
and promotes GPU sharing across virtual machines. The
Pegasus project also includes its own custom DomA scheduler
for GPU task scheduling.

Ravi presents a framework to enable GPU sharing amongst
GPUs in the cloud.[7] By computing the affinity score they are
able to determine which applications can benefit from
consolidation.

III. BACKGROUND INFORMATION
This section aims to provide the necessary background

information to make this paper as self-contained as possible.

A. Many-Task Computing (MTC)
Many-task Computing (MTC)[1] is a programming

paradigm that aims to bridge the gap between HPC and HTC.
MTC focuses on running many tasks over a short period of
time. Where tasks can be either dependent or independent, and
are organized as Directed Acyclical Graphs (DAG)s. The
primary metrics of these tasks are measures in seconds. There

are several projects capable of supporting MTC workloads
including Condor, Falkon[8], Swift[2, 9], Jets[10],
Coasters[11], MapReduce, Hadoop, Boinc, and Cobalt.

B. Swift and the dataflow model
One solution that makes parallel programming implicit

rather than explicit is the dataflow model. Conceived roughly
35 years ago, the model comes and goes in and out of “vogue”
as researchers try again to make it useful. I believe Swift
successfully encompasses “implicitly parallel functional
dataflow.” The Swift parallel scripting language has proven
increasingly useful in scientific programming. This dataflow
programming model has been characterized to be a perfect fit
in the Many-Task Computing (MTC) paradigm. Swift is a
parallel programming framework that has been widely adopted
by many scientific applications.[1, 2, 8, 9, 12-14] The original
implementation of Swift, Swift/K, had limitations in regards to
scalability. Swift/T is a redesigned implementation of Swift
and improves upon these limitations greatly while proving
support for an arbitrary number of nodes. The GEMTC
Framework interacts with Swift/T through a C API, which
allows Swift script to call C function wrappers to CUDA code
precompiled into the GEMTC framework before runtime.

C. Acceleration: GPUs and Coprocessors
General Purpose Computation on Graphics Processing

Units (GPGPU)[15] is a great source of acceleration on high
performance resources. Acceleration is achieved by offloading
computations from the CPU host to a connected accelerator,
which relieves the host of cycles. While acceleration can
provide many benefits, in some cases the overheads associated
with acceleration that may provide significant drawbacks,
which are addressed in this work. Accelerators are now
commonplace in many machines within the TOP500 and the
Green500 due to both their performance and power advantages.

CUDA, OpenCL, and OpenACC are some of the most
interesting ways to program GPUs for HPC. However, these
languages are specific to accelerators and do not provide a high
a enough level of abstraction.

While the Intel Xeon Phi coprocessor is still a relatively
new product, the Texas Advanced Computing Center (TACC)
recently launched Stampede, a resource built around the Xeon
Phi coprocessor. The Xeon Phi coprocessor is an accelerator
that supports several different programming models, including
an offloading library which makes it appear similar to a GPU,
but it also supports a native mode that allows for very
interesting OpenMP programmability and avoids some
common GPGPU drawbacks.

D. GPGPU Drawbacks
While GPUs are certainly an efficient source of

acceleration, there are still drawbacks of accelerating with
GPGPU technology. This work also aims to improve upon
these shortcomings within the GEMTC framework.

1) Data Transfers
The time to transfer data is limited by the speed of the PCIe

bus, these overheads become significant for data intensive
tasks. The GEMTC framework attempts to coalesce data

transfers and overlap data transfers with the execution of other
tasks in attempts to mask data transfer times and latencies.

2) Architecture
GPUs are traditionally considered to be Single Input

Multiple Data(SIMD) devices. The GEMTC Framework helps
to facilitate a shift towards viewing GPUs as Multiple Input
Multiple Data(MIMD) devices. There are many reasons why it
would be beneficial to consider GPUs as MIMD. For example,
viewing the GPU as MIMD allows access to the GPU as a
small cluster. Through the use of the GEMTC framework, the
GPU is represented as a MIMD collection of SIMD workers.
Each worker runs on a single warp, the tightest level of control
available on the GPU, which is an accumulation of 32 threads.

3) Programmability
GPU programming requires the use of specific languages

and frameworks such as CUDA , OpenCL, or OpenACC. By
making key GPU functionality available to parallel
programming frameworks and workflow systems, such as
Swift, I aim to improve the programmability and scalability of
accelerators.

4) Dynamic Memory Management
The default CUDA programming framework was not

designed for dynamic memory management. Our experiments
show that the time required for a device allocation call grows in
proportion to the number of device allocations already
performed. Currently, CUDA applications generally allocate all
memory requirements at the beginning of their lifetime to avoid
this drop in performance. GEMTC incorporates a sub-allocator
that allows the host to allocate device memory at a much faster
rate than possible under the default CUDA framework.

IV. GEMTC DESIGN
This section discusses the approaches evaluated for MTC

workloads on accelerators and introduces the GEMTC
framework. This work evaluates 3 approaches 1) An initial
naïve approach 2) A batch middleware 3) The GEMTC
Framework.

A. NATIVE BLACK-BOX APPROACH
To determine how the CUDA GPU Programming

Framework would handle MTC workloads natively. I
interacted with the GPU in a black box fashion, and launched
MTC workloads with a simple scripting middleware and the
command line interface.

At this level, integration was done with Swift/K[2] for
launching tasks. Swift scripts launched each task to the GPU as
a separate application in parallel.

The problem with this approach is that the GPU will only
execute device kernels from a single process at any given time.
So for the purpose of MTC, the many small tasks will have
very poor utilization. Tasks that only use a fraction of the
device are unable to run in parallel. There is also 100msec of
overhead in launching each individual GPU application. This
resulted in extremely poor efficiency for MTC workloads,
which emphasize many smaller tasks.

Figure 1 - The flow of a native black box middleware using CUDA.

With this native approach, the entire GPU is treated as a
single worker. The above diagram demonstrates the drawbacks
of launching single applications on the GPU.

Because the GPU does not allow parallel execution of
multiple applications, I decided to create a single application
which would batch together tasks to be executed on the GPU.

B. CPU BASED BATCH SCHEDULER
Due to the inefficiencies in the black box approach, I

developed a CPU based scheduler that would consolidate all
the tasks into batches to then run through a single application
on the GPU. The basic unit of offloading work to the GPU is a
kernel. This approach will launch a kernel for every task that is
handed to it by a workflow system.

Figure 2 - The flow of a CPU based middleware that implements batching.

The CPU based middleware is capable of launching
multiple kernels concurrently to the GPU. It is also able to
overlap the memory transfer of tasks with the execution of
others.

Figure 3 - Overlapping incoming data transfers with kernel execution.

One limitation of the batch approach is the limitation on the
number of concurrent kernels that are capable of executing in
parallel. Even the highest end devices are limited to 16
concurrent kernels. While NVIDIA has announced that number
to be increased to 32 with Kepler, this still will not achieve the
tightest level of control available on the device. In addition to

the limitation on concurrency, this approach is limited by an
age-old batching problem. The shortest running task cannot
return a result until the longest running task has completed,
which means that the results from any of the concurrent kernels
will have to wait until the last task in that batch completes.
Since a group or tasks must wait for the longest task to
complete, a heterogeneous workflow will likely have poor
utilization.

Due to these limitations on the concurrency of kernels, I
decided that a much higher level granularity and utilization
could be achieved if the scheduler was integrated more closely
to the GPU. This motivated the development of GEMTC,
which works at a per task basis allowing almost 200
independent workers to run heterogeneous workflows with
high utilization.

C. GPU BASED SCHEDULER
The GPU based scheduler runs MTC workloads with a

much higher level of efficiency compared to the previous
approaches.

Figure 4 - Flow of a task in GEMTC.

In this approach a single kernel executes on the GPU,
which I refer to as the SuperKernel. This is the GPU
application that is seen by CUDA and the GPU. This kernel
and the CPU component of the framework communicate
through shared memory on the GPU. The host will copy task
descriptions into a queue on the device, and then workers on
the device will pick up that task and execute the work
associated with that task. Finally, the task description now
including the result is written into a result queue on the device,
where the host thread will read it back to the CPU. I now
introduce the major components included in the GEMTC
framework.

1) Task Descriptions
Task descriptions are used to encode key information

regarding the MTC workloads on the host and device. These
are initially copied into an incoming work queue on the device,
and tell the running SuperKernel to execute the task. After the
work is completed then this particular TaskDescription is then
placed on the results queue to inform the CPU that the task has
completed. A task description is made up of the following 3
subcomponents and represented as a struct in the source code
1) A TaskID, a unique identifier for a particular task which
distinguishes it from all other tasks. 2) The TaskType, is an
integer value that refers to a particular pre-compiled micro-
kernel. All micro-kernels have a numerical number mapped to
them and this indicates which precompiled micro kernel the
task should execute. 3) numThreads, is the number of

threads/workers the task will require. Threads are assigned in
groups of 32, due to a hard limit on what the architecture can
allow. At the lowest level, these groups of 32 threads execute
in a SIMD fashion. For example, if a task requests 16 threads
then 32 will be assigned, but half will be idle. Similarly,
requesting 65 threads will result in 96 threads being assigned,
but 31 idle threads. 4) params, a void pointer to device memory
for the parameters of a given task. This includes both the input
to a particular micro-kernel and it's resulting output.

2) Worker Granularity
A major advantage to the GEMTC framework is that it

allows the execution of tasks at the warp level which is the
lowest possible level of control on the device. Under the
default CUDA framework, applications are normally
programmed at the block level, which is a logical level similar
to running at the physical SM level.

The transition to executing at a warp level allows for a
much higher granularity within tasks, without hindering the
performance of tasks which might need large amounts of the
device to execute. Furthermore, by viewing the device as a
collection of separate warps executing separate operations, the
device can be treated very similar to a MIMD device, except
that the basic computational unit is a 32 core SIMD processor
rather than a single core. This fundamental shift will enable
systems like Swift/T to more easily and efficiently assign work
to the device.

3) Memory Transfers
Due to the fact that the communication between the host

component of the framework and the SuperKernel is through
shared memory, it is critical to have fast memory transfer times
for small amounts of data. It requires three memory copies to
en-queue a single task (one to read the queue metadata, one to
write the task description, and one to update the queue
metadata). Similarly it takes three memory copies to de-queue a
task from the resulting queue.

To evaluate the cost of memory copies on the GPU, I ran a
series of benchmarks copying to and from the device, including
both asynchronous and synchronous calls. Figure 5 shows that
memory copies to the device take 2µsec and copies from the
device take 10µsec.

Figure 5 - Average time to copy data to and from the device as either an
asynchronous or synchronous call.

 These results are significantly faster than the required time
for a cudaMalloc() and cudaFree() and is the motivation for
having a sub-allocator within the framework.

D. Dynamic Memory Management
The GEMTC framework also requires efficient device

memory allocation. Each task that is en-queued requires one
device allocation and then the task itself may need to allocate
memory for its own parameters and results.

The existing CUDA memory management system was not
designed for dynamic memory management. This resulted in
poor performance of workloads that required a large number of
device allocations. To evaluate the existing memory
management, measurements were taken for the average time to
cudaMalloc() a small amount of memory repeatedly and to
cudaMalloc() and free a small amount of memory, these results
are shown in figure 6.

In the best case, a cudaMalloc() and cudaFree() takes more
than 100µsec to execute. The GeMTC framework must allocate
memory on a per task basis. The overhead of using this
memory management is substantial compared to other
overheads (e.g. memory copies). To reduce the cost of
cudaMalloc() on device memory, the GEMTC framework has
its own sub-allocator designed to efficiently handle many
requests for dynamic memory allocation. GEMTC uses
cudaMalloc() to allocate large contiguous pieces of device
memory. The pointers to these free chunks and their sizes are
stored in a linked list on the CPU.

Figure 6 - A memory mapping of free memory available to the device.

Upon memory allocation requests, the sub-allocator will
find a large enough chuck of free device memory in its list, or
request more using cudaMalloc(). Next, it will write a header to
the device memory indicating its size immediately before the
free chuck. This operation takes roughly the same time as a
memory copy to device.

Figure 7 - The effects of gemtcMalloc() on free memory.

When device memory is freed, a header is read to identify
the size of memory and adds it into the list of free memory.
Freeing device memory takes roughly the same amount of time
as a memory copy from the device.

To evaluate GEMTC’s memory management, I measured
the average time to malloc a small amount of memory
repeatedly and to malloc and free some memory. Shown in
figure 7. This sub-allocator scales very well and has an
execution time on the same order of magnitude as a memory
transfer to/from the device.

Figure 8 - CUDA memory management execution times.

Figure 9 - Average GEMTC memory management execution times.

E. GEMTC Architecture
The SuperKernel is the single kernel that runs on the entire

device and will execute all tasks. It is composed of many warps
(32 thread SIMD groups) that execute independently. All
computations are done by the warps that make up the

SuperKernel. Warps will busy wait on the incoming task queue
when no tasks are available to execute.

All tasks descriptions are enqueued in a queue located in
device memory. All of the SuperKernels free warps will wait
on this queue for a task to be enqueued. When a task arrives,
the requested number of warps (obtained from the
numThreads) will dequeue and execute the task. Once it
finishes, the warps will enqueue the task description into a
finished work queue in device memory. A thread on the CPU,
which manages the results, reads this queue.

Micro-kernels are the pre-compiled CUDA codes that tasks
request to run. Micro-kernels are designed to run at the warp
level on the GPU. The TaskType within a TaskDescription
specifies a particular numerical value which maps to a certain
micro-kernel that the worker needs to execute for that task.

V. EVALUATION AND RESULTS
The framework is evaluated with multiple micro-kernels,

where micro-kernels serve as MTC applications that are pre-
compiled into the GEMTC framework. The micro-kernels that
available within GEMTC are shown in the chart below. Note
that while final results are not shown for all of the following
micro-kernels in this paper, preliminary results have already
tested all of the following micro-kernels.
Micro-Kernel Parameters Demonstrates
1 Sleep(t) Time to sleep. Mass parallelism
2 Matrix-

Square(m)
Matrix Compute and Data

Transfer
3 FFT() Multidimensional

arrays
Compute and Data
Transfer

4 Array
Min/Max/Ave.

Array Compute and Data
Transfer

5 Matrix
Inversion

Matrix Compute and Data
Transfer

6 Matrix
Transpose

Matrix Compute and Data
Transfer

7 Matrix Multiply Matrix Compute and Data
Transfer

8 Matrix Vector Matrix Compute and Data
Transfer

9 Linear Algebra
Solver (Gauss
Jordan)

Data Matrices
and Vectors

Advanced
mathematical
manipulation

10 Vector Add (Vector1,
Vector2)

Compute and Data
Transfer

11 Vector Dot Vector Compute and Data
Transfer

12 Stencil
Algorithm

Data Stencil Advanced
mathematical
manipulation

13 Black Scholes Economic
modeling data

Economics
manipulation

14 PI calc. (Monte
Carlo Method)

Integer values Advanced
mathematical
manipulation

Figure 10 - Chart of available Micro-Kernels within GEMTC.

A. Environment
This paper evaluates the sleep micro-kernel currently within

the GEMTC framework on the following environment:
• A single node workstation with a 6 core AMD 3.0

GHz CPU, 8 GB of DDR3 RAM, and a NVIDIA
GTX-670 GPU.

B. Micro-Kernel Benchmarking
1) Sleep

This is a micro-kernel that executes for a given number of
microseconds. It serves to provide benchmarking data on the
efficiency that the framework can achieve with workloads of
different length tasks. It sleeps with a busy wait on all of the
threads executing within a warp worker. The wait consists of a
number of additions based on the sleep time and the number of
additions the specific GPU hardware can do per unit time. The
latter value was found experimentally by testing GPU
hardware.

The results from executing sleep tasks indicate that there is
minimal overhead in launching a single task. With a single
warp executing, high efficiency is achieved for tasks that
execute >80µsec (See figure 9). When running the shortest
tasks (10 µsec), the average time per task is 63µsec. This
indicates that the framework has approximately this much
overhead, which is roughly the same amount of time it takes to
do all the memory copies involved in each tasks en-queuing
and de-queuing. These results indicate that the framework is
able to handle 15,000 tasks per second internally. After an
externally available API is placed on top of the framework this
number levels out at 7,000 tasks per second.

Similarly, with the entire GPU working to execute sleep
tasks, the framework can achieve high efficiency for tasks of
>5000µsec (See figure 10). This result is justified by the need
for enough tasks to keep all warps busy (i.e. Task Duration
>Number of warps*Overhead per task).

Figure 11 - Efficiency of sleep task workloads with 1 warp executing all tasks.

Figure 12 - Efficiency of sleep task workloads with many warps executing.

VI. FUTURE WORK

A. Alternative Accelerator Support
While NVIDIA GPUs make up a large presence of

accelerators in HPC resources, there are many different types
of accelerators. Other accelerators include AMD based GPUs
and the Intel Xeon Phi coprocessor. Intel recently launched the
Xeon Phi hardware as a response to the recent drive towards
GPGPU computing in HPC. The Xeon Phi is a PCIe
coprocessor accelerator, which physically appears similar to a
GPU but is quite unique due to the programming model.
Ongoing work is currently evaluating how MTC workloads are
handled on the Xeon Phi through both the offloading libraries
and the native programmability.

B. Real Application Support
This paper demonstrated the potential of the GEMTC

framework through the use of micro-kernels. However, the
importance of supporting real applications is a strong
motivator. Ongoing work is currently evaluating the following
two real science applications.

A chemistry glass material modeling application: Glen
Hocky of the Reichman group at Columbia is currently
evaluating a glass material modeling application.[16] This
application has already been programmed to run in Swift. The
computationally intensive portions have been identified and
ongoing work is integrating GEMTC calls for improved
performance.

The Open Protein Simulator (OOPS) builds on the Protein
Library (PL). Currently, the OOPS application makes use of an
array of python scripts running in parallel. Ongoing work is
developing a swift version of the application and identifying
computationally intensive portions of the code that could be
integrated with GEMTC.

C. Evaluating MTC on Simulators
Evaluating MTC workloads on real systems is critical, but it

is also important to evaluate simulation as another means of
further understanding MTC workloads.[17, 18] Analyzing
MTC workloads through GEMTC on GPU simulators such as
GPGPU-SIM[19] allows the ability to test the framework under
varying system configurations.

D. Many Node/GPU Evaluation
Through a collaboration with the University of Chicago I

have gained access to a 20 node cluster "Breadboard" and a 28
node Cray Supercomputer "Raven." Ongoing work is
evaluating the GEMTC framework on both of these resources.
I am also evaluating the Amazon compute cloud with GPU
nodes as a means of providing a readily accessible test bed of
up to 100 nodes.

I currently lack a test bed larger than 100 nodes, to further
evaluate our GEMTC framework. There is an ongoing project
evaluating MTC and Swift/T on Blue Waters[20] a Cray based
high performance resource with over 25k compute nodes.

VII. CONCLUSIONS
In conclusion I have presented GEMTC, a framework for

enabling MTC workloads to run efficiently on NVIDIA GPUs.
The GEMTC framework encompasses the entire GPU running
as a single GPU application similar to a daemon. The GEMTC
framework is responsible for receiving work from a host
though the use of the C API, scheduling and running that work
on many independent GPU workers. Finally, results are
returned back through the C API to the host and the workflow
system. The GEMTC API enables the framework to integrate
closely with workflow systems such as Swift/T.

The GEMTC framework has simplified the programming
model of the GPU by allowing GPUs to be treated as a
collection of independent SIMD workers, enabling a MIMD
view of the device.

The novel sub-allocator implemented within GEMTC
allows for an efficient dynamic allocation of memory once an
application is running. In addition GEMTC provides an
alternative to cudaMalloc() that runs 8 times faster.

Finally, I have shown that GEMTC has a throughput of
roughly 7k tasks per second. Integration with Swift/T improves
programmability of accelerators, while demonstrating the
ability to increase scalability to many nodes with many cores in
clusters, clouds, grids, and HPC resources. I will continue to
push the envelope in enabling applications from many different
domains to run on such resources.

REFERENCES

[1] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman,
K. Iskra, et al., "Toward loosely coupled
programming on petascale systems," presented at the
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, Austin, Texas, 2008.

[2] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D.
S. Katz, and I. Foster, "Swift: A language for
distributed parallel scripting," Parallel Comput., vol.
37, pp. 633-652, 2011.

[3] (2012, October 3). Parallel Programming and
Computing Platform | CUDA | NVIDIA. Available:
http://www.nvidia.com/object/cuda_home_new.html

[4] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and
M. Ripeanu, "A GPU accelerated storage system,"
presented at the Proceedings of the 19th ACM

International Symposium on High Performance
Distributed Computing, Chicago, Illinois, 2010.

[5] J. Meng, V. A. Morozov, K. Kumaran, V.
Vishwanath, and T. D. Uram, "GROPHECY: GPU
performance projection from CPU code skeletons,"
presented at the Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, Seattle,
Washington, 2011.

[6] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P.
Ranganathan, "Pegasus: coordinated scheduling for
virtualized accelerator-based systems," presented at
the Proceedings of the 2011 USENIX conference on
USENIX annual technical conference, Portland, OR,
2011.

[7] V. T. Ravi, M. Becchi, G. Agrawal, and S.
Chakradhar, "Supporting GPU sharing in cloud
environments with a transparent runtime consolidation
framework," presented at the Proceedings of the 20th
international symposium on High performance
distributed computing, San Jose, California, USA,
2011.

[8] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M.
Wilde, "Falkon: a Fast and Light-weight tasK
executiON framework," presented at the Proceedings
of the 2007 ACM/IEEE conference on
Supercomputing, Reno, Nevada, 2007.

[9] Z. Yong, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, V. Nefedova, et al., "Swift: Fast, Reliable,
Loosely Coupled Parallel Computation," in Services,
2007 IEEE Congress on, 2007, pp. 199-206.

[10] J. M. Wozniak and M. Wilde, "JETS: Language and
System Support for Many-Parallel-Task Computing,"
in Parallel Processing Workshops (ICPPW), 2011
40th International Conference on, 2011, pp. 249-258.

[11] M. Hategan, J. Wozniak, and K. Maheshwari,
"Coasters: Uniform Resource Provisioning and
Access for Clouds and Grids," in Utility and Cloud

Computing (UCC), 2011 Fourth IEEE International
Conference on, 2011, pp. 114-121.

[12] I. Raicu, I. T. Foster, and Z. Yong, "Many-task
computing for grids and supercomputers," in Many-
Task Computing on Grids and Supercomputers, 2008.
MTAGS 2008. Workshop on, 2008, pp. 1-11.

[13] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhao, A.
Espinosa, et al., "Parallel Scripting for Applications at
the Petascale and Beyond," Computer, vol. 42, pp. 50-
60, 2009.

[14] Z. Yong, I. Raicu, and I. Foster, "Scientific Workflow
Systems for 21st Century, New Bottle or New
Wine?," in Services - Part I, 2008. IEEE Congress on,
2008, pp. 467-471.

[15] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Kr�ger, A. E. Lefohn, et al., "A Survey of
General�Purpose Computation on Graphics
Hardware," Computer Graphics Forum, vol. 26, pp.
80-113, 2007.

[16] J. DeBartolo, G. Hocky, M. Wilde, J. Xu, K. F. Freed,
and T. R. Sosnick, "Protein structure prediction
enhanced with evolutionary diversity: SPEED,"
Protein Science, vol. 19, pp. 520-534, 2010.

[17] K. Wang and I. Raicu, "SimMatrix: SIMulator for
MAny-Task computing execution fabRIc at
eXascales," 2012.

[18] K. Wang, J. C. H. Munuera, I. Raicu, and H. Jin,
"Centralized and Distributed Job Scheduling System
Simulation at Exascale," 2011.

[19] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong,
and T. M. Aamodt, "Analyzing CUDA workloads
using a detailed GPU simulator," in Performance
Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on, 2009, pp.
163-174.

[20] D. S. Katz, T. G. Armstrong, Z. Zhang, M. Wilde, and
J. M. Wozniak, "Many-Task Computing and Blue
Waters," Arxiv preprint arXiv:1202.3943, 2012.

