
IStore: Towards High Efficiency, Performance, and
Reliability in Distributed Data Storage with

Information Dispersal Algorithms
Corentin Debains1, Pedro Alvarez-Tabio1, Dongfang Zhao1, Kent Burlingame1, Ioan Raicu1,2

1Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

corentin@debains.net, pedro.tabio@navteq.com, dzhao8@hawk.iit.edu, kburling@hawk.iit.edu, iraicu@cs.iit.edu

Abstract—Reliability is one of the major challenges for high
performance computing and cloud computing. Data replication
is a commonly used mechanism to achieve high reliability.
Unfortunately, it has a low storage efficiency among other
shortcomings. As an alternative to data replication, information
dispersal algorithms offer higher storage efficiency, but at the cost
of being too computing-intensive for today’s modern processors.
This paper explores the possibility of utilizing erasure coding (a
form of information dispersal algorithms) for data redundancy
while accelerating its operation with GPUs. We evaluate the
performance improvements of the erasure coding from the CPU
to the GPU, showing a 10X higher throughput for the GPU. With
this promising result, we design and implement a distributed
data store with erasure coding, called IStore, to demonstrate that
erasure coding could serve as a better alternative to traditional
data replication in distributed file systems. A performance
evaluation is performed on a 32-node cluster to evaluate the
scalability and parameter sensitivity of IStore.

I. INTRODUCTION

The reliability of a computer system refers to the property
that a system can run continuously without failure [1]. Here
“without failure” by no means indicates that failures do not
happen. Rather, with data intensive applications deployed on
a cloud which is usually built with commodity hardware,
failures are the norm instead of the exception. The reliability
a computer system could achieve becomes a problem of how
well failures can be handled. Ideally, these failures should be
completely transparent to the users, with a relatively low or
even negligible cost. Keeping high reliability is one of the most
important metrics for high performance computing (HPC) and
cloud computing systems, and is often listed as mean-time-to-
failure (MTTF) in the service-level agreement (SLA).

One of the most commonly used techniques to make data
highly reliable is replication. For example, Google File System
(GFS) [2] makes 3 replicas as the default. The Hadoop
distributed file system [3] also uses replication. This technique
is often sufficient; it is easy to implement and has excellent
performance, at the cost of space efficiency. For example,
with the original data and 3 replicas, the storage utilization
rate is only 1

1+3 = 25%. This simple math indicates that
the cost of storage is quadrupled when building a distributed
system, which might not be economically acceptable in many
application cases. Another drawback of replication is that it
consumes network bandwidth to migrate data across different

nodes to maintain the consistency and reliability of replicas.
Moreover, replicating the intact and non-encrypted data can
potentially expose more security holes.

Other than replication, another important technique in the
data replication family is erasure coding which is well known
for its storage efficacy. Erasure coding partitions a file into
multiple fragments which are encoded and stored on different
nodes. Literatures [4, 5] show that erasure coding deliv-
ers a better space efficiency but, unfortunately, cannot meet
the bandwidth requirement for a large-scale distributed file
system because the encoding/decoding computation hits the
bottleneck of CPU capacity. With the state-of-art GPU many-
core technology, this computing bottleneck could potentially
be alleviated. This paper is an early study to showcase the
potential of a GPU-based erasure coding mechanism, to be
used as a building block for ongoing work to develop a
distributed file system for exascale computing.

The first part of this paper evaluates several information
dispersal algorithms (IDAs) that operate using both CPUs and
GPUs. Experiments show a 10X performance improvement on
the GPU-based libraries compared to the conventional CPU-
based libraries. Based on this promising result, we argue
that GPU-based IDAs would unlikely be the bottleneck of
distributed file systems, and would enable erasure coding to be
a competitive alternative to data replication. To demonstrate
this, the second part of this paper discusses the design and
implementation of a prototype of an IDA-enabled distributed
storage system, called IStore. We perform various micro
benchmarks which show that IStore is scalable with good
performance while offering better storage efficiency.

In summary, this paper has the following contributions:
1) Extensive performance evaluation of various IDA li-

braries between CPU and GPU implementations
2) Show evidence that information dispersal algorithms can

be performance-competitive with replication
3) Design and implement an IDA-enabled prototype of a

distributed storage system
The remainder of this paper is structured as follows:

Section II introduces the background of erasure coding and
GPU computing, as well as some related work in GPU-
accelerated applications and recent findings in data redun-
dancy. We present the design and implementation of IStore



in Section III. Section IV discusses the experimental results.
Section V concludes this paper, and introduces how IStore
will accommodate new computing devices as well as how we
plan to incorporate it into the next generation of distributed
file systems for exascale computing.

II. BACKGROUND AND RELATED WORK

This section gives a brief background of erasure coding
and GPU computing, which are two enabling technologies for
IStore.

A. Erasure Coding

Erasure coding, together with data replication, are the two
major mechanisms to achieve data redundancy. Erasure coding
has been studied by the computer communication community
since the 1990’s [6, 7], as well as in storage and file sys-
tems [8–10]. The idea is simple: a file is split into k chunks
and encoded into n > k chunks, where any k chunks out of
these n chunks can reconstruct the original file. We denote
m = n − k as the number of redundant or parity chunks.
We assume each chunk is stored on a distinct storage disk.
That assumption is supported by Weatherspoon et al. in [11],
where they showed that for N, the total number of machines,
and M, the number of unavailable machines, the availability
of a chunk (or replica) A can be calculated as

A =

n−k∑
i=0

(
M
i

)(
N−M
n−i

)(
N
n

) .

Fig. 1. Encoding k chunks into n = k + m chunks so that the system is
resilient to m failures.

Figure 1 describes what the encoding process looks like.
At first glance, the scheme looks similar to data replication;
allocate some extra disks as backups and the more redundant
disks available, the more reliable the system is. However, the
underlying rationale of erasure coding is quite different from
the idea of simple replication, which relies on complex math-
ematical properties. For example, Reed-Solomon coding [12]
uses a generator matrix built from a Vandermonde matrix to
multiply the k data to get the encoded k +m codewords, as
shown in figure 2.

Compared to data replication, erasure coding has 3 impor-
tant features. First, it offers a higher storage efficiency, denoted
as Estorage, which is defined as k

n . Andrew et al [1] showed
that erasure coding outperforms data replication by 40% -

Fig. 2. Encoding 4 data into 6 codewords with Reed-Solomon coding.

200% in terms of storage efficiency. The second advantage of
erasure coding is an immediate consequence of the first one.
Because erasure coding offers a higher efficiency of storage,
fewer copies of data exist in the system, which in turn saves
network bandwidth for data migration. This feature is critical
to the success of applications in a context of limited network
resources, e.g. geographically dispersed Internet-connected
cloud computing systems built with commodity hardware,
such as in TAHOE-LAFS [13]. The last and often underrated
advantage is security. Rather than copying the intact and non-
encrypted data from one node to another, erasure coding
chops the data and encodes the chunks to disperse them to
multiple nodes. This process is hard to reverse by wisely
choosing the encoding matrix. Erasure coding based data
redundancy can guarantee the security of data with up to
k − 1 nodes compromised because the minimal number of
chunks to restore the original file is k, as explained. Note
that a simple replication cannot tolerate any compromised
nodes; if one node (with the replica) is compromised, the
entire file is immediately compromised. Therefore, for those
applications with sensitive data, erasure coding is the preferred
mechanism over replication. In recent research, for example,
AONT-RS [14] is a system that blends an All-or-Nothing
Transform to achieve high security.

The drawback of erasure coding comes from its compute
intensive nature. It places an extensive burden on the CPU,
which makes it impractical in today’s production distributed
file systems that require high performance. This is one of the
reasons why prevailing distributed file systems [2, 3] prefer
data replication to erasure codings.

B. GPU Computing

The graphics processing unit (GPU) was originally designed
to rapidly process images for the display. The nature of image
manipulations on displays is quite different than the regular
tasks performed by the CPU. Most image operations are done
with single instruction and multiple data (SIMD), where a
general-purpose application on a CPU takes multiple instruc-
tions and multiple data (MIMD). To meet the requirement



TABLE I
COMPARISONS OF TWO MAINSTREAM GPU AND CPU

Device Number of Cores Frequency (GHz) Power Consumption per Core (W)
Nvidia GTX460 (GPU) 336 1.56 160 / 336 = 0.48

AMD Phenom X6 1100T (CPU) 6 3.3 125 / 6 = 20.83

Fig. 3. An architectural overview of IStore deployed on an n-node HPC system. End users run the application on the ith node where files are encoded
and/or decoded by IDA. All nodes are installed with two daemon services for metadata management and data transfer, respectively.

of computer graphics, the GPU is designed to have many
more cores on a single chip, all of which carry out the same
instructions at the same time.

The attempt to leverage the GPU’s massive number of
computing units can be tracked back to as early as the
1970’s in [15]. However, the GPU did not get popular for
processing general applications because it lacked support in
terms of programmability until GPU-specific programming
languages and frameworks were introduced, e.g. OpenCL [16]
and CUDA [17]. These tools greatly eased the development
of general applications running on GPUs, and thus made a
lot of opportunities to improve the performance by utilizing
GPUs, which are usually called general-purpose computing on
graphics processing units (GPGPU).

Leveraging GPGPU gains tremendous research interest in
the HPC community because of the huge potential to improve
the system performance by exploiting the parallelism of GPU’s
many-core architecture as well as GPU’s relatively low power
consumption, as shown in [18, 19]. Table I shows a comparison
between two mainstream GPU and CPU devices, which will
also serve as the two test beds in the evaluation section later.
We note that, even though the frequency of GPUs are only
about 50% of CPUs, the amount of cores outnumbers those in
CPUs by 336

6 = 66X, which far overcomes the shortcoming
of its low frequency. The largest GPUs come with 3072-
cores while the largest CPUs come with 16-cores, making
the gap even larger (192X). One of the major challenges
of extreme-scale computing is power consumption. Current
CPU-based architectures would not be viable to exascale
computing because the power cost would be unacceptable.
Table I suggests that GPUs consume 2 orders of magnitude
less energy, which seems to be significantly more appropriate
as we scale up supercomputers towards exascale. At the time

of this writing, the fastest supercomputer in the world is
equipped with Nvidia GPUs [20].

C. Related Work

Recent research shows quite a lot of interest in improving
applications by GPU acceleration. A GPU accelerated storage
prototype was proposed in [21]. Ravi et al [22] shows how
to improve the throughput of job scheduling on a cluster of
CPU-GPU nodes. A GPU-based pattern classification method
was presented in [23]. Rocki and Suda [24] leverage GPU to
accelerate the Traveling Salesman Problem (TSP). Paralleliz-
ing cryo-EM 3D reconstruction on a CPU-GPU heterogeneous
system was introduced in [25].

Data redundancy is one of the key research areas in
HPC and Cloud Computing. A dynamic replication was pro-
posed for service-oriented systems in [26]. iFlow [27] is a
replication-based system that can achieve both fast and reliable
processing of high volume data streams on the Internet scale.
Power-aware replica strategies in tree networks were presented
in [28]. Ramabhadran and Pasquale [29] investigated the roles
of replication vs. repair to achieve durability in large-scale
distributed storage systems. DARE [30] is an adaptive data
replication algorithm to improve data locality. CRDM [31] is
a model to capture the relationship between availability and
replica number.

III. DESIGN AND IMPLEMENTATION

We have designed and implemented a prototype of a dis-
tributed storage system incorporating GPU-based erasure cod-
ing for data redundancy called IStore. IStore is implemented
in C/C++ for both performance and for portability across a
large number of the largest supercomputers.



A. Overview

A high-level architecture of IStore is shown in figure 3.
We assume the HPC system has n nodes. IStore installs two
services on each node: 1) a distributed metadata management
(the orange box) and, 2) a high-efficiency and reliable data
transfer protocol (the green box). Each instance of these two
services on a particular node would communicate to other
peers over the network if necessary (i.e. if the needed metadata
and/or data cannot be found locally). Assuming the end user
logs in on node #i, then an extra IDA layer is needed to
encode and/or decode those files involved in the applications.

Fig. 4. An example of file writing in IStore.

Figure 4 illustrates the scenario when writing a file with
IStore. Firstly, the file is chopped into k = 4 chunks and
encoded into n = k+m = 6 chunks. These 6 chunks are then
dispersed into 6 different nodes after which their metadata
are sent to the metadata hash tables that are also distributed
across these 6 nodes. A file read request is essentially the
reversed procedure of a file write: retrieving the metadata,
transferring the data, and decoding the chunks. We will explain
more implementation details and discuss our design decisions
in the following subsections.

B. Daemon Services

A daemon service is a background process that is managed
by the operating system or another application rather than
under the direct control of the end users. For example, the
daemon service of File Transfer Protocol (FTP) protocol is
called ftpd in UNIX-like machines. The daemon service needs
to be started before any client could make the request. To
make the service efficient and responsive to concurrent users
in a timely fashion, a new thread (or a cached one from
before) is dedicated to accomplish the work submitted by the
end user. IStore introduces two daemon services that are used
for distributed metadata management and light-weighted data
transfer, respectively.

1) Distributed Metadata Management: The traditional way
of handling metadata for distributed file systems is to allo-
cate the metadata information into one or a few nodes with
the assumption that metadata only contains very high level
information, so that a central repository would suffice. The
majority of production distributed and parallel file systems
all employ centralized metadata management. For example,

the Google File System keeps all the metadata information in
the “GFS master”. This architecture is easy to implement and
maintain, but exposes a performance bottleneck and even a
point of failure if the metadata itself gets too large or receives
too many concurrent requests. Other file systems also have a
similar architecture with centralized metadata, e.g. HDFS [3].
As a more concrete example, we have run a micro benchmark
on GPFS [32] which has a centralized metadata management
scheme. To test the performance of metadata we create a large
number of empty files on a variable number of nodes. Figure 5
shows that creating files in multiple directories cannot scale
well after 16 nodes, and it is even worse for the case of
a single directory; GPFS does not scale at all in terms of
metadata performance. This fact suggests that the centralized
metadata management would hinder the overall performance
of distributed file systems. Therefore, just like what has been
done for data, metadata needs to be distributed to multiple
nodes as well.

Fig. 5. Metadata performance of GPFS on a variable number of processors
on IBM Bluegene/P. On many directories, i.e. each node only creates files on
its own exclusive directory, metadata can only scale to 16 nodes. On a single
directory, metadata performance does not scale at all.

The authors of this paper have been working on another
project called Zero-Hop Distributed Hash Table (ZHT) that
can serve as a distributed metadata management system. An
early version of ZHT was published in [33]. There are
multiple choices of distributed hash table (DHT) available.
For example, Memcached [34] and Dynamo [35] . We chose
to incorporate ZHT into IStore because ZHT has some features
that are critical to the success of serving as a metadata
manager. As summarized in Table II, ZHT has many ad-
vantages, such as being implemented in C/C++, having the
lowest routing time, and supporting both persistent hashing
and dynamic membership. ZHT is installed as a daemon
service on each node of IStore. A more detailed description
of ZHT is currently under review at another venue.

We give a very high level overview of ZHT. As shown in
Figure 6, ZHT has a similar ring-shaped look as the traditional
DHT [36]. The node IDs in ZHT can be randomly distributed
across the network. The correlation between different nodes
is computed with some logistic information like IP address,
for example. The hash function maps a string to an ID that
can be retrieved by a lookup(k) operation at a later point.



TABLE II
COMPARISONS BETWEEN DIFFERENT DHT IMPLEMENTATIONS

ZHT Memcached Dynamo
Impl. Language C/C++ C Java
Routing Time 0 - 2 2 0 - logN

Persistence Yes No Yes
Dynamic Member Yes No Yes

Besides common key-value store operations like insert(k, v),
lookup(k) and remove(k), ZHT also supports a unique op-
eration, append(k, v), which we have found quite useful in
implementing lock-free concurrent write operations.

Fig. 6. ZHT architecture: namespace, hash function and replications

2) Data Transfer Protocol: As a distributed system, IStore
needs some data transfer mechanism to migrate data back and
forth across the network. Ideally, this mechanism should be
efficient, reliable and light-weight, because otherwise IStore
would introduce too much overhead on data transfer. User
Datagram Protocol (UDP) is efficient in transferring data,
but is an unreliable protocol. Transmission Control Protocol
(TCP), on the other hand, is reliable but has a relatively lower
efficiency. Ideally, a hybrid UDP/TCP protocol might be best;
essentially a protocol that is both reliable and efficient.

We have developed our own data transfer service called
fUDT with APIs provided by UDP-based Data Transfer
(UDT) [37], which is a reliable UDP-based application level
data transport protocol for distributed data-intensive applica-
tions. UDT adds its own reliability and congestion control on
top of UDP which thus offers a higher speed than TCP. UDT
provides an abundant set of APIs to develop other application-
level tools for fast and reliable data transport. Similarly to
ZHT, fUDT is installed as a daemon service on each node
of IStore.

C. Erasure Coding Libraries

Besides the daemon services running at the back end, some
encoding/decoding mechanisms are needed on the fly. In our
case, performance is the top priority when choosing from

available libraries, since that is our motivation for why we
want to leverage GPUs for data redundancy. Plank et al [9]
presents a good review of these libraries. In this initial release
of IStore, we support two built-in libraries Jerasure [38]
and Gibraltar [39] as the default CPU and GPU libraries,
respectively. IStore is flexible enough to allow other libraries
to be installed.

1) Jerasure: Jerasure is a C/C++ library that supports a
wide range of erasure codes: RS coding, Minimal Density
RAID-6 coding, CRS coding and most generator matrix cod-
ing. One of the most popular codes is the Reed-Solomon
encoding method, which has been used for the RAID-6 disk
array model. This coding can either use Vandermonde or
Cauchy matrices to create generator matrices.

2) Gibraltar: Gibraltar is a Reed-Solomon coding library
for storage applications. It has been demonstrated to be highly
efficient when tested in a prototype RAID system. This library
is known to be more flexible than other RAID standards; it
is scalable with parity’s size of an array. Gibraltar has been
created in C using Nvidia’s CUDA framework.

D. Client APIs

IStore provides a completely customizable set of parame-
ters for the applications to tune how IStore will behave. In
particular, users can specify which coding library to use, the
number of chunks to split the file into (i.e. k), the number of
parity chunks (i.e. m = n− k) and the buffer size (default is
1MB).

When an application writes a file, IStore splits the file into k
chunks. Depending on which coding library the user chooses
to use, these k chunks are encoded into n = k +m chunks.
Meanwhile, because the encoded data is buffered, fUDT can
disperse these n encoded chunks onto n different nodes. This
pipeline with the two levels encoding and sending allows
for combining the two costs instead of summing them, as
described in Figure 7. At this point the data migration is com-
plete, and we will need to update the metadata information. To
do so, ZHT on these n nodes is pinged to update the entries of
these n data chunks. This procedure of metadata update can be
completed with low overhead, as its backed by an in-memory
hash-map, which is asynchronously persisted to disk.

Fig. 7. Pipelining of Encoding and Transferring for a write operation in
IStore

Reading a file is just the reversed procedure of writing.
IStore retrieves the metadata from ZHT and uses fUDT to
transfer the k chunks of data to the node where the user logs in
from. These k chunks are then decoded by the user-specified
library and transformed into the original file.



IV. EVALUATION

We evaluate IStore with both GPU and CPU libraries to
show the potential of GPU-acceleration. The results give us
hope that GPU-based erasure coding would likely be feasible
to accelerate distributed file systems. To demonstrate its scal-
ability, IStore is deployed on a Linux cluster. We also analyze
the parameters’ sensitivity to IStore’s throughput.

A. Experiment Setup

The CPU and GPU used in our experiment are AMD Phe-
nom X6 1100T (6-cores at 3.1GHz) and Nvidia GTX460 (336-
cores at 1.56GHz). The operating system is Ubuntu 10.04 with
Linux kernel version 2.6.32 and CUDA version 4.1. IStore
is deployed on a 32-node Linux cluster each of which has
8GB memory and dual AMD Opteron quad-core processors
(8-cores at 2GHz). The features of different algorithms to be
evaluated are summarized in Table III.

TABLE III
COMPARISON ON REPLICATION NUMBER, STORAGE EFFICIENCY AND

(k : m) RATIOS

Algorithm # Replications Estorage (k : m)

REP-3 3 33.33% 1:2
IDA-3:5 6 37.5% 3:5
IDA-5:3 4 62.5% 5:3
IDA-5:11 12 31.25% 5:11
IDA-11:5 6 68.75% 11:5
IDA-13:3 4 81.25% 13:3
IDA-26:6 7 81.25% 26:6
IDA-29:3 4 90.63% 29:3

B. GPU vs. CPU on a single node

The encode and decode throughput of Jerasure and Gibraltar
are plotted in figure 8(a) with m increasing from 2 to 128
while keeping Estorage = 33%. The buffer size is set to
1MB. In all cases, with larger m values, the throughput
decreases exponentially. This is because when the number of
parity chunks increases, encoding and decoding take more time
which reduces the throughput. A more interesting observation
is the gap between Gibraltar and Jerasure for both encode
and decode. There is more than 10X speedup with Gibraltar
which suggests that GPU-based erasure coding would likely
break through the CPU bottleneck in distributed file systems.

We then change the storage efficiency Estorage = 75% and
measure the throughput with different m values in figure 8(b).
Similar observations and trends are found just like the case
for Estorage = 33%. Therefore IStore achieves a stable
throughput and does not seem to be sensitive to Estorage.

C. Throughput on a 32-node cluster

We compare the read and write bandwidth of 10 different
algorithms for four different file sizes: 1GB, 100MB, 10MB
and 1MB, in Figure 9. The buffer size is set to 1MB. We
observe that, besides the number of nodes, k : m ratio

(a) Estorage = 33%

(b) Estorage = 75%

Fig. 8. Encoding and decoding throughput with 1MB buffer size.

also plays a critical role for tuning the performance. Solely
increasing the number of nodes does not necessarily imply a
higher throughput. The reason is that it might “over” split the
data into a more than enough number of chunks. In other
words, the cost of splitting and encoding/decoding offsets
the benefit from the concurrency. Of course, this is partially
because we allocate one chunk on one node for a given job.
Once this is not a restriction, a larger number of nodes would
imply a non-lower aggregate throughput, in general.

We anticipated that traditional replication would outper-
form any IDA approach, due to the simplicity of replication.
However, we found that replication with 3 replicas performed
comparably to the information dispersal algorithm for many
configurations. We believe that part of the explanation lies in
the fact that replication uses more network bandwidth (e.g.
often 3 replicas involves more than double the amount of
data to be transferred than an approach based on information
dispersal algorithms) but keeping processing simpler and more
scalable. Based on the findings of this paper, we expect that
clusters with GPUs will outperform traditional replication



(a) File size = 1GB (b) File size = 100MB

(c) File size = 10MB (d) File size = 1MB

Fig. 9. Aggregate throughput of replication and information dispersal algorithms from 8-nodes to 32-nodes, with a variety of file sizes (1MB - 1GB)

approaches.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented IStore, a distributed data store
based on GPU-accelerated IDAs to achieve a more secure,
faster and more cost-effective data redundancy. We started
by implementing both GPU- and CPU-based erasure cod-
ing algorithms and conducting a comprehensive performance
comparison. With the promising GPU results, we proposed to
leverage GPU to improve the data redundancy of distributed
file systems. We designed and implemented an IDA-enabled
prototype of a distributed data store. Experiments show that
IStore scales well and is feasible to be incorporated into a
higher level distributed file system for better data redundancy
and efficiency, while still maintaining high-performance. We
plan to integrate IStore into FusionFS [40], a new distributed
file system aimed at extreme scales.

IStore is agnostic about the underlying computing hard-
ware, either CPU or GPU, as long as the interfaces are
implemented. That said, there is nothing architecturally pre-
venting us from leveraging new computing devices to further
accelerate the encoding/decoding process. Among others, In-
tel Many Integrated Core (MIC) multiprocessors will be an
interesting test bed. We plan to study how the MIC can help
improve IStore once it is released later this year. We also plan

on exploring larger scale experiments on GPU-based systems,
such as the 3K-GPU Blue Waters supercomputer at UIUC.

IStore is a building block for the FusionFS distributed file
system, whose preliminary results will be presented in [40].
The goal of FusionFS is to develop both theoretical and
practical aspects of building the next generation of distributed
files systems scalable to exascale by allocating local persistent
storage to compute nodes. By integrating IStore and FusionFS,
FusionFS will support both the traditional replication strategies
and information dispersal algorithms for data reliability with
high performance and high efficiency.

REFERENCES

[1] Andrew S. Tanenbaum and Maarten Van Steen. Dis-
tributed Systems: Principles and Paradigms, pages 531–
532. Prentice Hall; 2nd edition, 2006.

[2] Sanjay Ghemawat et al. The Google file system. SOSP,
pages 29–43, 2003.

[3] Konstantin Shvachko et al. The Hadoop Distributed File
System. MSST, pages 1–10, 2010.

[4] Rodrigo Rodrigues and Barbara Liskov. High Availabil-
ity in DHTs: Erasure Coding vs. Replication. IPTPS,
pages 226–239, 2005.

[5] Huaxia Xia and Andrew A. Chien. RobuSTore: a
distributed storage architecture with robust and high



performance. Supercomputing (SC ’07), pages 44:1–
44:11, 2007.

[6] A. J. McAuley. Reliable broadband communication using
a burst erasure correcting code. SIGCOMM, pages 297–
306, 1990.

[7] Luigi Rizzo. Effective erasure codes for reliable com-
puter communication protocols. SIGCOMM Comput.
Commun. Rev., 27(2):24–36, April 1997.

[8] Osama Khan et al. Rethinking erasure codes for cloud
file systems: Minimizing I/O for recovery and degraded
reads. FAST, 2012.

[9] James S. Plank et al. A performance evaluation and
examination of open-source erasure coding libraries for
storage. FAST, pages 253–265, 2009.

[10] James Lee Hafner et al. Matrix methods for lost data
reconstruction in erasure codes. FAST, pages 183–196,
2005.

[11] H. Weatherspoon and J.D. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. Peer-to-Peer
Systems, 2002.

[12] Irving Reed and Golomb Solomon. Polynomial codes
over certain finite fields. Journal of the Society of Indus-
trial and Applied Mathematics, 8(2):300–304, 06/1960
1960.

[13] Z. Wilcox-O’Hearn and B. Warner. Tahoe-The Least-
Authority FileSystem. Allmydata Inc.

[14] Jason K. Resch and James S. Plank. AONT-RS: blending
security and performance in dispersed storage systems.
FAST, pages 191–202, 2011.

[15] J. N. England. A system for interactive modeling of
physical curved surface objects. SIGGRAPH, pages 336–
340, 1978.

[16] J. E. Stone et al. OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems. Computing
in Science Engineering, 12(3):66 –73, may-june 2010.

[17] John Nickolls et al. Scalable Parallel Programming with
CUDA. Queue, 6(2):40–53, March 2008.

[18] Weiguo Liu et al. Bio-sequence database scanning on a
GPU. IPDPS, pages 8–17, 2006.

[19] Shuai Che et al. A performance study of general-purpose
applications on graphics processors using CUDA. J.
Parallel Distrib. Comput., 68(10):1370–1380, October
2008.

[20] TOP 500 Supercomputers. [Online] Available:
http://www.top500.org/.

[21] Abdullah Gharaibeh et al. A GPU accelerated storage
system. HPDC, pages 167–178, 2010.

[22] Vignesh T. Ravi et al. Scheduling Concurrent Applica-
tions on a Cluster of CPU-GPU Nodes. CCGRID, pages
140–147, 2012.

[23] Mahdi Nabiyouni and Delasa Aghamirzaie. A Highly
Parallel Multi-class Pattern Classification on GPU. CC-

GRID, pages 148–155, 2012.
[24] Kamil Rocki and Reiji Suda. Accelerating 2-opt and 3-

opt Local Search Using GPU in the Travelling Salesman
Problem. CCGRID, pages 705–706, 2012.

[25] Linchuan Li et al. Experience of parallelizing cryo-EM
3D reconstruction on a CPU-GPU heterogeneous system.
HPDC, pages 195–204, 2011.

[26] Mathias Björkqvist et al. Dynamic Replication in
Service-Oriented Systems. CCGRID, pages 531–538,
2012.

[27] Christopher McConnell et al. Detouring and replication
for fast and reliable internet-scale stream processing.
HPDC, pages 737–745, 2010.

[28] Anne Benoit et al. Power-Aware Replica Placement and
Update Strategies in Tree Networks. IPDPS, pages 2–13,
2011.

[29] Sriram Ramabhadran and Joseph Pasquale. Analysis
of durability in replicated distributed storage systems.
IPDPS, pages 1–12, 2010.

[30] Cristina L. Abad et al. DARE: Adaptive Data Replication
for Efficient Cluster Scheduling. CLUSTER, pages 159–
168, 2011.

[31] Qingsong Wei et al. CDRM: A Cost-Effective Dynamic
Replication Management Scheme for Cloud Storage
Cluster. CLUSTER, pages 188–196, 2010.

[32] Frank B. Schmuck and Roger L. Haskin. GPFS: A
Shared-Disk File System for Large Computing Clusters.
FAST, pages 231–244, 2002.

[33] Tonglin Li et al. Exploring distributed hash tables in
HighEnd computing. SIGMETRICS Perform. Eval. Rev.,
39(3):128–130, December 2011.

[34] Brad Fitzpatrick. Distributed caching with memcached.
Linux J., 2004(124):5–, August 2004.

[35] Giuseppe DeCandia et al. Dynamo: amazon’s highly
available key-value store. SOSP, pages 205–220, 2007.

[36] Ion Stoica et al. Chord: a scalable peer-to-peer lookup
protocol for internet applications. IEEE/ACM Trans.
Netw., 11(1):17–32, February 2003.

[37] Yunhong Gu and Robert L. Grossman. Supporting Con-
figurable Congestion Control in Data Transport Services.
Supercomputing (SC ’05), pages 31–41, 2005.

[38] James S. Plank et al. Jerasure: A library in C/C++ facil-
itating erasure coding for storage applications. Technical
report, University of Tennessee, 2007.

[39] Matthew L. Curry et al. Gibraltar: A Reed-Solomon
coding library for storage applications on programmable
graphics processors. Concurr. Comput. : Pract. Exper.,
23(18):2477–2495, December 2011.

[40] Dongfang Zhao and Ioan Raicu. Distributed File System
for Exascale Computing. Doctoral Research, Supercom-
puting (SC ’12), 2012.


