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Abstract— With the exponentially growth of 

distributed computing systems in both flops and 

cores, scientific applications are growing more 

diverse with a variety of workloads. These 

workloads include traditional large-scale High 

Performance Computing MPI jobs, and ensemble 

workloads, such as Many-Task Computing 

workloads comprised of extremely large number of 

tasks of finer granularity, where tasks are defined 

on a per-core or per-node level, and often execute in 

milliseconds to seconds. Delivering high throughput 

and low latency for these heterogeneous workloads 

requires developing distributed job management 

system that is magnitudes more scalable and 

available than today’s centralized batch-scheduled 

job management systems. In this paper, we present a 

distributed job launch prototype SLURM++, which 

extends the SLURM resource manager by 

integrating the ZHT zero-hop distributed key-value 

store for distributed state management. SLURM++ 

is comprised of multiple controllers with each one 

managing several SLURM daemons, while ZHT is 

used to store all the job metadata and the SLURM 

daemons’ state. We compared SLURM with our 

SLURM++ prototype with a variety of micro-

benchmarks of different job sizes (small, medium, 

and large) at modest scales (500-nodes) with 

excellent results (10X higher job throughput). 

Scalability trends shows expected performance to be 

many orders of magnitude higher at tomorrow’s 

extreme scale systems. 

 

Keywords-job management systems; job launch; 

distributed scheduling; key-value stores 

I. INTRODUCTION 

A. Background 

Exascale supercomputers (10^18 ops/sec) will have 

millions of nodes and billions of concurrent threads of 

execution [1]. With this extreme magnitude of 

component count and concurrency, ensemble 

computing is one way to efficiently use the exascale 

machines without requiring full- scale jobs. Given the 

significant decrease of Mean-Time-To-Failure (MTTF) 

[2] at exascale levels, these ensemble workloads should 

be more resilient by definition given that failures will 

affect a smaller part of the machines. Ensemble 

computing would combine the traditional High 

Performance Computing (HPC) workloads that are 

large-scale applications with message-passing interface 

(MPI) [3] as the method for communication, with the 

ensemble workloads that would support the 

investigation of parameter sweeps using many more but 

smaller-scale coordinated jobs [4]. 

One example of ensemble workloads comes from 

the Many-Task Computing (MTC) [5] paradigm, which 

has several orders of magnitude larger number of jobs 

(e.g. billions) of finer granular tasks in both size (e.g. 

per-core, per-node) and duration (from sub-second to 

hours) that do not require strict coordination of 

processes at job launch as the traditional HPC 

workloads do. David Keyes identified reasons why 

today’s computational scientists want performance: 

resolution, fidelity, dimension, artificial boundaries, 

parameter inversion, optimal control, uncertainty 

quantification, and the statistics of ensembles [6]; the 

last four can be addressed by MTC. A decade ago or 

earlier, it was recognized that applications composed of 

large numbers of tasks may be used as an driver for 

numerical experiments that may be combined into an 

aggregate method [7]. In particular, the algorithm 

paradigms well suited for MTC are Optimization, Data 

Analysis, Monte Carlo and Uncertainty Quantification. 

Various applications that demonstrate characteristics of 

MTC cover a wide range of domains, from astronomy, 

physics, astrophysics, pharmaceuticals, bioinformatics, 

biometrics, neuroscience, medical imaging, chemistry, 

climate modeling, and economics [8]. 

The job scheduling/management systems (JMS) for 

exascale ensemble computing will need to be versatile, 

scalable and available enough, in order to deliver 

extremely high throughput for both traditional HPC and 

ensemble workloads. However, today’s batch 

schedulers (e.g. SLURM [9], Condor [10], PBS [11], 



SGE [12]) have centralized master/slaves architecture 

where a server/controller is handling all the activities, 

such as metadata management, resource provisioning, 

and job execution. This centralized architecture is not 

well suited for the demands of exascale computing, due 

to both poor scalability and single-point-of-failure. 

One of the more popular and light-weight JMS, 

SLURM, reported maximum throughput of 500 jobs/sec 

[13]; however, we will need many orders of magnitude 

higher job submission and execution rates (e.g. millions 

jobs/sec) for next-generation JMS, considering the 

significant increase of scheduling size (10X higher node 

counts, 100X higher core counts, and significantly 

higher job counts), along with the much finer 

granularity of job durations (milliseconds/minutes, as 

compared to hours/days). 

B. Motivation 

The given distributed job launch prototype has poor 

performance in allocating resources when there are 

many launching threads that require resource 

concurrently. In this work, we aim to improve the 

distributed job launch prototype that is built on top of 

SLURM and ZHT [14, 28] systems. Resource 

contention will be much more severe if the workloads 

are big HPC jobs (e.g. 100-node job). 

This paper proposes a distributed architecture for 

job management systems, and identifies the challenges 

and solutions towards supporting job management 

system at extreme-scales. We developed a distributed 

job launch prototype (SLURM++) with multiple servers 

(controllers) participating in allocating resources and 

launching jobs – an extension to the open source batch 

scheduler SLURM [9]. In order to hide the 

communication/coordination messages involved in 

maintaining distributed service architectures, such as 

those related to failure/recovery, replication and 

consistency protocols, we utilized distributed key-value 

stores (DKVS) to simplify the design and 

implementation. The general use of DKVS in building 

distributed system services was proposed, and evaluated 

through simulation in our previous work [15]. This 

work validates some of our prior simulation results that 

DKVS are a viable building block towards the 

development of more complex distributed services. We 

replaced the centralized controller (slurmctld) with 

many distributed controllers with each one managing a 

partition of compute resources. ZHT [14, 28] is the 

DKVS used in our prototype to store all the information 

related to the resources and jobs in a scalable, 

distributed, and fault tolerant way. 

The key contributions of this paper are: 

1. Proposed a distributed architecture for job 

management systems, and identified the challenges 

and solutions towards supporting job management 

system at extreme-scales 

2. Designed and developed a distributed resource 

stealing algorithm for efficient HPC job launch 

3. Designed and implemented a distributed job launch 

prototype SLURM++ for extreme scales by 

leveraging SLURM and ZHT 

4. Evaluate the centralized batch scheduler SLURM 

and our distributed SLRUM++ up to 500-nodes 

with various micro-benchmarks of different job 

sizes (small, medium, and large) with excellent 

results up to 10X higher throughput  

5. Analyzed the evaluation results of SLURM++ and 

SLURM to point out what parts could be optimized 

to improve the overall throughput of the system 

The rest of this paper is organized as follows. 

Section II proposes the architecture, the problem set and 

the solutions, along with the design and implementation 

details of our distributed job launch prototype, 

SLURM++. Section III presents SLURM++ evaluation 

as it is compared to SLURM. Section IV analyzes the 

evaluation results of SLURM++ and SLURM. Section 

V presents the related work. We discuss future works 

and draw conclusions in Section VI and Section VII. 

II. PROPOSED SOLUTION 

The overall architecture of SLURM++ is envisioned 

and shown in Figure 1. Instead of using one centralized 

server/controller to manage all the compute daemons 

(cd), there will be multiple distributed controllers with 

each one managing a partition of cd. The controllers are 

fully-connected meaning that each controller is aware 

of all others. In addition, a distributed data storage 

system is demanded to be deployed on the machine to 

manage the entire job and resource metadata, as well as 

the state information in a scalable, reliable and fault 

tolerant way. The data storage system should also be 

fully-connected, and one configuration is to co-locate a 

data server with a controller on the same node forming 

one to one mapping, such as shown in Figure 1. 

 

Figure 1: Architecture for SLURM++; "cd" refers to 

compute daemon 

The partition size (the ratio of the number of 

controllers to the number of compute daemons) is 

configurable, and can vary according to the application 

domain. For example, for a large-scale HPC workload 

where jobs usually require a large number of nodes to 



run, we can have each controller manage thousands of 

cd, so that the jobs are likely to be managed and 

launched locally (within the controller); for MTC 

jobs/tasks where a task usually requires small amount 

of nodes, or even a small number of cores within one 

node, we can push the controller down to the compute 

node to have the one-to-one mapping (millions of 

controllers and compute daemons at exascale). We can 

even have heterogeneous partition sizes for each 

controller to support different ensemble workloads. 

The fully-connected topology is scalable under 

failure/recovery, replication and consistency protocols 

when the numbers of controllers and data servers are 

not many, such as in the HPC environment, both of 

them can be 1K at exascale with each one managing 1K 

cd. Besides, our previous simulation work showed that 

when the client messages that relate to process requests 

dominate all the messages in the system, the fully-

connected topology has great scalability up to exascale 

[15]. When comes to the 1:1 mapping ideal for MTC 

workloads, we expect some distributed monitoring 

service to manage and maintain the fully-connected 

topology. 

The distributed storage system could be a 

distributed file system, or a light-weight distributed 

key-value store (DKVS). For example, if we apply 

DKVS as the storage system, each controller would be 

initialized as a DKVS client, which then uses the simple 

DKVS client API interfaces (e.g. lookup, insert, remove) 

to communicate with the DKVS servers to query and 

modify the job and resource information, and the 

system state information transparently. In this way, the 

controllers don’t need to communicate explicitly with 

each other to query resources and jobs. Another benefit 

of using DKVS is that the DKVS could take over all the 

communications among controllers needed for 

maintaining distributed features, such as 

failure/recovery, replication, and consistency protocols. 

A. Resource Contention vs. Compare and Swap 

Resource contention happens when different 

controllers try to allocate the same resources. By 

querying the data storage system, different controllers 

may have the same view of the specific resources. For 

example, if we use DKVS to store the resource 

information of all the controllers, and controller 1 has 

1000 nodes available currently. If controller 1 and 

controller 2 both need to allocate 100 nodes from 

controller 1, after they query DKVS, they would both 

get 1000 available nodes. Therefore, they will both 

update the number of free nodes of controller 1 to be 

900. However, in reality, controller 1 needs to give out 

200 nodes, which would lead to 800 free nodes. 

One naive way to solve this resource contention 

problem is to add a global lock for each queried “key” 

in the DKVS. This approach is apparently not scalable 

considering the tremendously large volume of data 

stored. Another scalable approach is to implement some 

atomic operation in the DKVS that can tell the 

controllers whether the resource allocation succeeds or 

not. Learned from the traditional compare and swap 

atomic instruction [16], we come up with a specific 

compare and swap atomic algorithm that could address 

resource contention problem. The compare and swap 

procedure is given in the pseudo-code in ALGORITHM 

1. 

ALGORITHM 1. Compare and Swap 
Input: key (key), value seen before (seen_value), new value 
intended to insert (new_value), and the storage hash map (map).  
Output: A Boolean value indicates success (TRUE) or failure 
(FALSE), and the current actual value (current_value).  
current_value = map.get(key); 
if (!strcmp(current_value, seen_value)) then 
        map.put(key, new_value); 
        return TRUE; 
else  
        return FALSE;  
end  

Specifically, when a controller allocates and releases 

resources, the compare and swap operation will be used. 

Before a controller calls compare and swap, it queries 

the seen_value of the supplied key. Then, the controller 

updates the seen_value to get a new_value, and calls the 

compare and swap. After the DKVS server receives the 

compare and swap request, it executes the compare and 

swap operation, and returns the status to the controller. 

If the status is TRUE, then the request has been served 

successfully; otherwise, the client would use the 

returned the slurmctld first looks up the global resource 

data structure to allocate resources for the job. Once a 

job gets its allocation, it can be launched via a tree-

based network rooted at rank-0 slurmd. When a job is 

finished, the rank-0 slurmd returns the result to 

slurmctld. The input to SLURM is one configuration 

file that is read by slurmctld and all slurmds. The 

configuration file specifies the identities of slurmctld 

and all the slurmds so that they can communicate 

current_value as the next seen_value and retry the 

procedure until getting success. 

We implemented this compare and swap as 

extension to ZHT. The API looks like 

compare_swap(key, seen_val, new_val, current_val). 

For the standard compare and swap, there are only two 

parameters, seen_val and new_val. It is like 

compare_swap(seen_val, new_val), but in order to be 

compliant with ZHT key/value semantics, the key 

parameter in added, and moreover, one more parameter, 

current_val, is added as augment to keep the most 

recent value queried by that key in terms of ZHT server 



clock, even if this compare and swap probably is not 

satisfied. This additional parameter current_val saves 

one lookup network round trip that is required to get the 

most recent value by the later compare and swap. 

B. Remote Polling vs. State Change Callback 

SLURM does tree-based job launch, in a few words, 

the slurmctld talks to the first slurmd(with rank 0) in the 

list of slurmd that are assigned to jobs to be run. When 

job is done, control flows from the first slurmd to 

slurmctld. This design is not good enough for multiple 

controllers that are fully connected, for example, 

controller A steals resource from B, slurmd in B helps 

run jobs for A and return control to only B’s slurmctld, 

in order to avoid coupled communication between 

controllers such as A and B, B has to write when job is 

done to ZHT, and A keeps polling ZHT to know when 

job is done by lookup. This polling contributes 90% of 

total messages involved. 

One operation we implemented in ZHT is the state 

change callback operation that is specific to the job 

returning procedure in SLURM++. Without this new 

operation, the controller would have to poll the ZHT 

server on a regular basis on a regular basis incuring 

intensive network communication overhead between 

the controller and ZHT. This new operation 

implemented a blocking “state change callback” 

operation that keeps polling in the server side (with 

local messages) until the correct state is found, and a 

callback over the network is performed to complete the 

call. In order to make the “state change callback” 

operation more adaptive, we set adjustable timeout to 

the blocking period. After the timeout, if the state hasn’t 

changed, the quering controller will do state change 

callback operation again. By moving the polling 

messages to local messages, this operation helps 

improve performance under intense resource stealing by 

reducing the number of remote message. 

C. Operation Level Thread Safe vs. Socket Level 

Thread Safe 

ZHT server is highly scalable to support concurrent 

incoming requests, so it would be nice to make client 

highly scalable in terms of concurrency in multi-

threaded context. The ZHT server is thread-safe, while 

ZHT client is not. The naive way to do that is to create a 

shared mutex to protect any shared data access by 

operations in client, that’s so called operation level 

thread-safe, but benchmark shows that the single shared 

mutex is performance bottleneck, because all operations, 

e.g. insert, delete, append, lookup and compare_swap 

are scheduled totally sequentially for synchronization. 

As we dig deeper, we found that any network related 

concurrency issues come from shared socket over 

which send/receive overlapped. We propose making 

ZHT client as thread safe not in operation level but in 

socket as well as MPI rank level, when there are many 

ZHT servers, the mutex contention due to concurrency 

caused by SLURM++ controller's multithreaded job 

launch could be distributed to many sockets or MPI 

ranks, which is a promising improvement. 

D. Random Stealing vs. Resource Status Caching 

Instead of doing totally random selection of 

controllers to steal resource from, we propose that a 

better solution would be caching how much resource 

available in certain controller, after it is contacted and 

stolen resource from. Based on this knowledge, when 

resource is needed for next time job scheduling, the 

controller would select the cached controllers with 

maximum free resources as candidates to steal from. In 

order to make this mechanism adaptive to frequent 

resource changes, several parameters are designed to be 

tuned, for example, the interval of cleaning total cache, 

eviction polices, cache pool size, and so on. 

E. Random Stealing vs. Consulting Resource Monitor 

A distributed monitor is designed to memorize 

resource status of controllers. When controller starts, it 

registers itself to distributed monitor. Controller reports 

its resource status to monitor when it changed. So when 

controller needs to steal resources, it consulted monitor 

that has global knowledge of free resource. 

Most state-of-art distributed monitors are a cluster 

of nodes that replicate states reported for durability, and 

process incoming query requests concurrently by 

multiple nodes, but they are not totally distributed so 

horizontal scalability is hard to be achieved. In order to 

make distributed monitor dynamically expands and 

shrinks, we propose to augment ZHT to implement a 

distributed Bi-directional sorted map as a distributed 

monitor. The keys are sorted, and so are values. For 

example, key is controller id, value is number of free 

nodes along with free nodes list, where number of free 

nodes is used as index for sorting. Whenever a query 

request for free nodes is issued by SLURM++ scheduler, 

distributed monitor responds by returning the first N 

lightly loaded controllers with most free nodes, simply 

by lookuping the distributed Bi-directional workload 

sorted map maintained. Since this distributed monitor is 

on top of ZHT, it inherits horizontal scalability due to 

peer-to-peer symmetric feature. 

Another approach is to adopt AMQP protocol based 

system like Apache Qpid. We prefer all to all mapping, 

that is, creating a distributed queue for every 

SLURM++ controller in initialization, all controllers 

register themselves as resource-state-change subscriber 

of all other controllers’ distributed queues. Whenever 

one certain controller’s resource state changed, it 

publishes this event to get all interested subscribers 



notified of. To make this approach ideally scalable 

horizontally and system dynamically expanding and 

shrinking, the brokers that take care these distributed 

queues have to be fully connected and equipped with 

bi-directional routes as double of all. 

F. Implementation Details 

We developed SLURM++ in the C programming 

language. We implemented the controller code, re-

wrote part of the “srun” code of SLURM inside the 

controller, which summed to around 3K lines of code; 

this is in addition to the SLURM codebase of 

approximately 50K-lines of code (which was left 

mostly unmodified) and the ZHT codebase of 8K lines 

of code (of which 2K lines of code were added to 

implement compare and swap, as well as the state 

change callback). We put the controller and ZHT 

directly in the SLURM source file, and name the whole 

prototype SLURM++. SLURM++ has dependencies on 

Google Protocol Buffer [17], ZHT [14], and SLURM. 

III. EVALUATION 

With the solution that we proposed in last section, 

we evaluate the SLURM++ prototype by comparing it 

with the SLURM job launch with three different micro-

benchmarks (small jobs, medium jobs and big jobs) on 

a Linux cluster up to 500 nodes. We configure 

SLURM++ with both HPC and MTC architectures to 

evaluate the general use case of SLURM++. This 

section presents the experiment environment, evaluation 

metrics, as well as architecture configuration and 

evaluation results. 

A. Experiment Environment 

We conduct all the experiments on the Kodiak 

cluster from the Parallel Reconfigurable Observational 

Environment (PROBE) at Los Alamos National 

Laboratory [18]. Kodiak has 1028 nodes, and each node 

has two 64-bit AMD Opteron processors at 2.6GHz and 

8GB memory. The network supports both Ethernet and 

InfiniBand. Among the 1028 nodes, there were 500+ 

nodes available for our experiments (some nodes are 

pre-occupied, and some were down). We conducted 

experiments up to 500 nodes. The version of SLURM 

we use is version 2.5.3, the latest stable version when 

we started this work. 

B. Metrics 

The metrics used to evaluate the performance are 

throughput (jobs/sec), and ZHT message count. 

Throughput is calculated as the number of jobs finished 

dividing by the total launch time. For SLURM, the total 

launch time is the time difference between the earliest 

starting time of launching individual jobs, and the latest 

ending time of launching individual jobs. For 

SLURM++, the throughput of each controller is 

calculated, and then all the throughputs are summed up 

as the final total throughput. The ZHT message count 

metric just applies to our SLURM++. 

C. Partition Size 

The partition size (number of slurmds a controller 

manages) is configurable. In our experiment sets, for 

HPC configuration, we set the partition size to 50; each 

controller is responsible for 50 slurmds, and at the 

largest scale (500 nodes), the number of controllers is 

10. We choose a moderate partition size insure a 

sufficient number of controllers to compare and contrast 

the performance of SLURM job launch with that of our 

distributed job launch; for MTC configuration, the 

partition size is 1 and the controller and slurmds are 

collocated at the same compute nodes, therefore, at the 

largest scale, we will have 500 controllers and 500 

slurmds with one-to-one mapping. 

D. Small-Job Workload (job size is 1 node) 

In our evaluation, we use micro-benchmark 

workloads. Since our goal is to study the ability of 

SLURM and SLURM++ to handle job launch 

efficiently, we designed the simplest possible workload 

– many independent NOOP HPC jobs (e.g. sleep 0) that 

require different number of compute nodes per job. 

The first workload we used just includes one-node 

small jobs (essentially MTC jobs), and does not require 

any resource stealing because all the jobs could be 

satisfied locally. Specifically, each controller launches 

50 jobs, with each job requiring just 1 node. The format 

of the jobs is “srun –N1 /bin/sleep 0”. Therefore, when 

the number of controller is n (number of compute nodes 

is 50*n), the total number of jobs is 50*n. The same 

workload is applied to SLURM job launch – 50*n 

nodes will have 50*n “srun –N1 /bin/sleep 0” jobs. This 

workload is used to test the pure job launching speed in 

the best case scenario from a performance perspective. 

The throughput comparison results are shown in Figure 

2, and Figure 3 shows the ZHT message count (both 

summation and average) of SLURM++. 

 

Figure 2: Small-Job; throughput comparison between 
SLURM and SLURM++ 



From Figure 2, we see that for SLURM job launch, 

the throughput first increases to a saturation point, and 

then has a decreasing trend as the number of nodes 

scales up (51.6 jobs / sec at 250 nodes, down to 39 jobs 

/ sec at 500 nodes). This is because the processing 

capacity of the centralized “slurmctld” is limited. Even 

though all jobs can be satisfied in terms of job size, it 

takes longer and longer time for the slurmctld to launch 

jobs as the job count and system scale increase. For our 

SLURM++, the throughput increases almost linearly 

with respect to the scale, and this linear speedup trend is 

likely to continue at larger scales. At scale of 500 nodes, 

SLURM++ can launch jobs at 2.34X faster rates than 

SLURM job launch (91.5 jobs/sec vs. 39 jobs/sec). In 

addition, given the fact that the throughput of 

SLURM++ is increasing linearly while SLURM has a 

decreasing trend, we believe that the gap between 

SLURM++ and SLURM will only grow as the scale is 

increased. 

Figure 3 shows the individual and overall message 

counts going to the ZHT servers from all the controllers. 

The overall message count experience perfectly linear 

increase with respect to the scale, while the average 

message count remains almost constant. These trends 

show great scalability of our SLURM++ for this small-

job workload. In prior work on evaluating ZHT [14], 

micro-benchmarks showed ZHT achieving more than 

1M ops/sec at 1024K node scales. We see that at the 

largest scale, the number of all messages is about 6K 

for 500 jobs (or about 12 messages / job). Even with 

our NOOP workloads achieving 91.5 jobs per second at 

500 node scales, it generates 1098 messages / second. 

ZHT was far from being a bottleneck for the workload 

and scale tested. 

 

Figure 3: Small-Job; ZHT message count of SLURM++ 

We also tuned the configuration to best support 

MTC workloads (e.g. one-to-one mapping of 

controllers to slurmd, both running on the same 

compute node). Each controller launches just one job 

requiring just one node. We ran experiment up to 200 

nodes; there would be 200 controllers and 200 slurmds 

with one-to-one mapping. The throughput and all ZHT 

message count results are shown in Figure 4. 

 

Figure 4: Small-Job; throughput and message count of MTC 

configuration 

Both the throughput and all ZHT message count 

increase linearly with respect to the scale perfectly. In 

the 1:1 MTC configuration, based on these trends, 

ideally, we can achieve 20K jobs / sec at 1K-node scale, 

which will need to process 650K ZHT messages; ZHT 

can support more than 1M ops/sec at 1K-nodes, which 

is about twice as high as the expected number of 

messages generated by the 20K jobs/sec expected from 

SLURM++. Besides, SLURM++ could be configured 

less aggressively for larger partition sizes, which 

effectively would reduce the traffic load to ZHT due to 

smaller number of controllers. 

E. Medium-Job Workload (job size is 1-50 nodes) 

The second experiment tests how SLURM and 

SLURM++ behave under moderate job sizes that will 

result in moderate resource stealing. The workload is 

that each controller launches 50 jobs, with each job 

requiring a random number of nodes ranging from 1 to 

50. So, at the largest scale, the total number of jobs is 

500, and each job requires 1-50 nodes. The throughput 

and the ZHT message count results are shown in Figure 

5 and Figure 6, respectively. 

 

Figure 5: Medium-Job; throughput comparison between 

SLURM and SLURM++ 



Figure 5 shows that for SLURM, as the number of 

nodes scales up, the throughput increases a little bit 

(from 2.1 jobs / sec at 50 nodes to 7 jobs/sec at 250 

nodes), and then keeps almost constant or with a slow 

decrease. For SLURM++, the throughput increases 

approximately linearly with respect to the scale (from 

6.2 jobs / sec at 50 nodes to 68 jobs / sec at 500 nodes). 

Our SLURM++ prototype can launch jobs faster than 

SLURM at any scale we evaluated, and the gap is 

getting larger as the scale increases. At the largest scale, 

SLURM++ can launch jobs 11X (68 / 6.2) faster than 

SLURM; and the trends show that this speedup would 

continue at larger scales. 

 

Figure 6: Medium-Job; ZHT message count of SLURM++ 

From Figure 6, we see that the overall ZHT message 

count increases somehow linearly with respect to the 

scale; the average per-job ZHT message count first 

increases slightly (from 13 messages / job at 50 nodes 

to 19 messages / job at 200 nodes), and then experience 

perturbations after that. The average per-job ZHT 

message count will likely keep within a range (17-20), 

and might be increasing slightly at large scales. This 

extra number of messages comes from the involved 

resource stealing operations. 

F. Big-Job Workload (job size is 25 – 75 nodes) 

The third experiment sets test the ability of both 

SLURM and SLURM++ to launch jobs under a serious 

resource stealing case. In this case, each controller 

launches 20 jobs, where each job requires a random 

number of nodes ranging from 25 to 75. At the largest 

scale, the total number of jobs is 20 * 10 = 200, and 

each job requires 25-75 nodes. The throughput and the 

ZHT message count results are shown in Figure 7 and 

Figure 8. 

In Figure 7, SLURM shows a throughput increasing 

trend up to 500 nodes (from 1.2 jobs / sec at 100 nodes 

to 4.3 jobs / sec at 500 nodes), and the throughput is 

about to saturate after 400 nodes (from 3.8 jobs / sec at 

400 nodes to 4.3 jobs / sec at 500 nodes). On the other 

hand, the throughput of SLURM++ keeps increasing 

almost linearly up to 500 nodes, and will likely keep the 

trend at larger scales. Like the mid-job case, SLURM++ 

can launch jobs faster than SLURM at any scale we 

evaluated, and the gap is getting larger as the scale 

increases. At the largest scale, SLURM++ can launch 

jobs about 4.5X (19.3 / 4.3) times faster than SLURM; 

and again, the trends show that this speedup would 

continue at larger scales. 

 

Figure 7: Large-Job; throughput comparison between 

SLURM and SLURM++ 

Figure 8 shows that the overall ZHT message count 

is increasing sub-linearly and the average per-job ZHT 

message count shows decreasing trend (from 30.1 

messages / job at 50 nodes to 24.7 messages at 500 

nodes) with respect to the scale. This is likely because 

when adding more partitions, each job that needs to 

steal resource would have higher chance to get resource 

as there are more options. This gives us intuition about 

how promising the resource stealing and compare and 

swap algorithms would solve the resource allocation 

and contention problems of distributed job management 

system towards exascale ensemble computing. 

 

Figure 8: Large-Job; ZHT message count of SLURM++ 

G. Discussion 

The conclusions we can draw up to here are that 

SLURM++ with multiple distributed controllers and 

ZHT servers have great scalability, and is likely to 

deliver orders of magnitude higher throughput than 

SLURM at extreme scales for traditional HPC 

workloads, as well as ensemble workloads. In order to 



understand the impact of workload on the performance 

of job launch, we show the result of comparing the 

throughputs of the three workloads with different 

resource stealing intensities (small-job/medium- 

job/big-job) in Figure 9. 

 

Figure 9: Throughput comparison with different workloads 

For SLURM (the solid lines), we see that from 

small-job to large-job, the throughput decreases from 39 

jobs/sec to 4.3 jobs / sec at 500 node scales (a 

slowdown of 9X). For our distributed job launch (the 

dotted lines), we observe that from small-job to large-

job, the throughput decreases from 91.5 jobs / sec to 

19.3 jobs / sec at the largest scale (a slowdown of 4.7X). 

We point out that not only does SLURM++ outperform 

SLURM in nearly all cases (except the small scale), but 

the performance slowdown due to increasingly larger 

jobs at large scale is better for SLURM++ by 2X, 

highlighting the better scalability of SLURM++. 

As the result shown above, it is safe to draw the 

conclusion that SLURM++ surpasses SLURM in 

efficiently handling job launch at three different kinds 

of workloads. For the small one, SLURM++ exceeds 

SLURM at a certain scale (250 nodes) and still 

increasing, but SLURM has a decreasing trend after that 

point. It is due to the single centralized server/controller 

(slurmctld) issue in SLURM; the job launching time 

becomes longer when to system scale goes up. In 

contrast, SLURM++ uses multiple distributed 

controllers with each one control a partition of 

computer daemons. For the medium one, SLURM++ 

launches jobs faster than SLURM at any scale, and the 

gap between them is becoming larger as the scale 

increases since the throughput of SLURM keeps almost 

constant even with a certain level of decreasing while it 

increases linearly on the side of SLURM++. For the 

big-job case, SLURM++ also launches jobs faster than 

SLURM at any scale that we evaluated with the gap 

becomes large and large. 

IV. PERFORMANCE ANALYSIS 

The current resource stealing approach works as 

following, when a controller allocates nodes for the job, 

it first checks the local free nodes by querying the data 

storage system. If there are enough available nodes, 

then the controller directly allocates the nodes; 

otherwise, it will query for other partitions to steal 

resources from them. The resource stealing procedure is 

given in the pseudo-code in ALGORITHM 2. 

As long as there are not enough nodes to satisfy the 

allocation, the resource stealing algorithm will 

randomly selects a controller and tries to steal nodes 

from it. Every time when the selected controller has no 

available nodes, the launching controller sleeps some 

time (sleep_length) and retries. If the launching 

controller experiences several failures (num_retry) in a 

row because the selected controller has no free nodes, it 

will release the resources it has already stolen, and then 

tries the resource stealing algorithm again. The number 

of retries and the sleep length after stealing failure are 

critical to the performance of the algorithm, especially 

for many big jobs, where all the launching controllers 

try to allocate nodes and steal resources from each other. 

ALGORITHM 2. Resource Stealing 

Input: number of nodes required (num_node_req), number of 
controllers (num_ctl), controller membership list (ctl_id[num_ctl]), 
sleep length (sleep_length), number of reties (num_retry).  
Output: list of involved controller ids (ctl_id_inv), participated nodes 
(par_node[]).   
num_node_allocated = 0; num_try = 0; num_ctl_inv = 0; 
while num_node_allocated < num_node_req do 

    remote_ctl_idx = Random(num_ctl); 
    remote_ctl_id = ctl_id[remote_ctl_idx]; 
    again:  
    remote_free_resource = lookup(remote_ctl_id); 
    if (remote_free_reource == NULL) then 
            continue; 
    else  
            remote_num_free_node = strtok(remote_free_source); 
            if (remote_num_free_node > 0) then 
                    num_try = 0; 
                    remote_num_node_allocated =    
                            remote_num_free_node > (num_node_req –   
                            num_node_allocated) ? (num_node_req –    
                            num_node_allocated) : remote_num_free_node; 
                    if (allocate nodes succeeds)  then  
                            num_node_allocated +=  
                                    remote_num_node_allocated; 
                            par_node[num_ctl_inv++] = allocated node list        
                            strcat(ctl_id_inv, remote_ctl_id);  
           else  

               goto again; 
        end 

            else    
                    sleep(sleep_length); 
                    num_try++; 
                    if (num_try > num_retry) do 
                            release all the allocated nodes; 
                            Resource Stealing again;  
                    end 
            end    
    end 

end    
return ctl_id_inv, par_node; 

A. Per-Job Sampling vs. Batch Sampling 



The resource stealing cited above is pretty naive. 

Simple random selection is not good because multiple 

random selections of controllers shared nothing 

between. The current approach is not batch sampling 

but nothing more than per-job sampling. We can view 

one random selection as one probe. In per-job sampling, 

number of free nodes on controller is the only basis for 

consideration, for example, chances are that controller 

with few free nodes will release nodes more quickly 

than that with more free nodes but release nodes slower. 

In this case, the former is a choice in priority rather than 

the latter to steal resource from because these will result 

in higher throughput as overall. Batch sampling adopts 

the power of two techniques, that is, it suggests that, 

each time, the SLURM++ controller is to randomly 

probe N*2 or N*2*2 controllers for N jobs to be 

scheduled, this will overcome per-job’s shortcomings 

due to shared information between probes. 

B. Eagerly Resource Stealing vs. Late Binding 

In current approach, if there are free nodes in 

controllers probed, scheduler eagerly steals the 

resources, but this doesn’t necessarily guarantee higher 

throughput as overall. A better solution would be late 

binding, for example, the scheduler send resource 

reservation to the controllers probed if they have free 

nodes. If the controllers promised the reservation, and 

the initial scheduler will wait for notification when the 

reservation is really satisfied, and then schedule running 

the job. Even if the reservation is partially satisfied at 

some point by a certain controller, the initial scheduler 

is left freedom and enough information to decide where 

to steal resource from since it is informed of many 

potential candidates with free nodes that promised 

reservation. This will surprisingly improve overall 

throughput. 

C. Sleep-and-wait vs. Nonsleep-and-notify 

In current approach, scheduler randomly selects a 

controller and tries to steal nodes from it. Every time 

when the selected controller has no available nodes, the 

launching controller sleeps some time (sleep_length) 

and retries. If the launching controller experiences 

several failures (num_retry) in a row because the 

selected controller has no free nodes, it will release the 

resources it has already stolen, and then tries the 

resource stealing algorithm again.  During the sleeping 

time, controller occupies nodes stolen but does nothing; 

this could lead to accumulatively and causally related 

lower utilization. Scheduling proficiency heavily relies 

on parameters tuning. We prefer nonsleep-and-notify 

method as described in B. 

D. Distributed Job Submission 

So far, all job submissions take place on a single 

node for both SLURM baseline and SLURM++ 

benchmark. If the submissions are distributed many 

nodes, the throughput will be higher. 

V. RELATED WORK 

SLURM [9] is one of the most popular traditional 

batch schedulers, which uses a centralized controller 

(slurmctld) to manage compute nodes that run daemons 

(slurmd). SLURM does have scalable job launch via a 

tree based overlay network rooted at rank-0, but as we 

will show in our evaluation, the performance of 

SLURM remains relatively constant as more nodes are 

added. This implies that as scales grow, the scheduling 

cost per node increases, requiring coarser granular 

workloads to maintain efficiency. SLURM also has the 

ability to configure a “fail-over” server for resilience, 

but this doesn’t participate unless the main server fails. 

There are other JMSs that have been deployed on 

clusters and supercomputers as resource managers for 

years, such as Condor [10], PBS [11], and SGE [12]. 

All of them have a similar centralized architecture as 

SLURM. We choose SLURM as the basis of our work 

instead of others, because SLURM is open source and 

well supported. 

There have also been several other projects that 

have addressed efficient job launch mechanisms. In 

STORM [20], the researchers leveraged the hardware 

collective available in the hardware of the Quadrics 

QSNET interconnect. They then used the hardware 

broadcast to send out the binaries to the compute nodes. 

Though this work is as scalable as the interconnect, the 

server itself is still a single point of failure. BPROC [21] 

was a single system image and single process space 

clustering environment where all process id were 

managed and spawned from the head node, and then 

distributed to the compute nodes. BPROC transparently 

moved virtual process spaces from the head node to the 

compute nodes via a tree spawn mechanism. However, 

BPROC was a centralized server with no failover 

mechanism. LIBI/LaunchMON [22] is a scalable 

lightweight bootstrapping service specifically to 

disseminate configuration information, ports, addresses, 

etc. for a service. A tree is used to establish a single 

process on each compute node, this process then 

launches any subsequent processes on the node. The 

tree is configurable to various topologies. This is a 

centralized service with no failover or no persistent 

daemons or state, therefore if a failure occurs they can 

just re-launch. PMI [23] is the process management 

layer in MPICH2. It is close to our work in that it uses a 

KVS to store job and system information. But the KVS 

is a single server design rather than distributed and 

therefore has scalability as well as resilience concerns. 

ALPS [24] is Cray’s resource manager that constructs a 

management tree for job launch, and controls separate 

daemon with each one having a specific purpose. It is 



multiple single-server architecture, with many single-

point-of failures. 

There are also light-weight task execution 

frameworks that are developed specifically for 

ensemble workloads. In the MTC domains, Falkon [25] 

is a centralized task execution fabric with the support of 

hierarchical scheduling, while MATRIX [26] is the 

distributed task execution framework that uses work 

stealing [19] to achieve distributed load balancing. 

Though Falkon can deliver tasks at thousands of 

tasks/sec for MTC workloads, it is not sufficient for 

exascale systems and it lacks support for HPC 

workloads. Another fine granular framework that 

schedules sub-second tasks for data centers is Sparrow 

[27]. Though MATRIX and Sparrow have shown great 

scalability for MTC workloads, neither of them 

currently supports HPC workloads. The next-generation 

JMS should be able to schedule HPC and MTC, as well 

as ensemble workloads in an efficient, scalable and 

fault tolerant way. 

VI. FUTURE WORK 

We are still working on Resource Caching and 

Distributed Monitoring. Resource caching 

implementation is based on our CS525 (Advanced 

Database Organization) buffer manager prototype, 

which realizes customization of cache eviction policies 

(e.g. LRU, FIFO, CLOCK), pool size, frame and entity 

mapping, dirty marking, pin and unpin, and so on.  

We implemented the distributed monitor proposed 

as part of our CS550 final project (Diskon: Distributed 

tasK executiON framework). It is based on AMQP 

based Apche Qpid distributed message queue system. 

So far, it’s running as only one instance and showing 

throughput flattening or degrading when it scales up to 

hundreds of nodes. We will try that the brokers that take 

care these distributed queues have to be fully connected 

and equipped with bi-directional routes as double of all, 

as mentioned in section II. 

Distributed Bi-directional sorted map based on ZHT 

is what we are also working on. We will compare it to 

AMQP based distributed monitor from scalability and 

throughput perspective. 

VII. CONCLUSION 

Extreme-scale supercomputers require next-

generation job management systems to be more scalable, 

available while delivering jobs with much higher 

throughput. We have shown that DKVS is a valuable 

building block to allow scalable job launch and control. 

The performance is more preferable than the production 

job launch software – SLURM, and is better for both 

traditional HPC workloads and ensemble MTC 

workloads at modest scales of 500 nodes. Furthermore, 

the distributed job launch prototype proved to have 

better scalability trends, and showed its potential to 

scaling to extreme scales towards supporting both MTC 

and HPC workloads. 
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