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ABSTRACT 

This paper presents OHT, a hierarchical distributed hash 
table, which improves the performance of practical 
ZHT. When n-to-n connection is needed, every single 
node has to keep a large number of socket connections. 
This might be quite expensive when n is extremely 
large. By performing a hierarchical distributed hash 
table, OHT can solve this problem. Theoretically, we 
are able to support an OHT system who consists of 
millions of nodes. This paper is a final report to give a 
problem statement, describe related work, and illustrate 
our design idea and implementation details of OHT. We 
have evaluated OHT’s performance under a Linux 
cluster with 512-cores. We scale OHT up to 32 physical 
nodes. The results shows that latency of OHT is around 
2.7 ms and throughput can reach 12K ops/s for a 32-
node scale. The experiments also show that OHT can 
work correctly even when failures arise. At the cost of 
losing some percentage of performance, OHT can be 
much more scalable.  
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1. INTRODUCTION 
Exascale systems are designed to provide a large 
number of precious opportunities for science which 
have never appeared before [1]. By using them, it is 
possible to use computing power as a helpful tool in 
theory and experiments related to understanding the 
basic components of human beings and the whole 
nature. In order to make an excellent exascale system, 
we must pay our attention to major architecture, 
software, algorithm and data challenges. In addition, 
adapting to newly emerging programming 
environments is another require [2].  

Distributed hash table (DHT) systems are an important 
class of peer-to-peer routing infrastructures. They can 
support both long-distance storage and tracing 
information. They can also support the fast development 
of a wide range of exascale applications applied in many 
aspects, such as naming systems, file systems and 
application level multicast [3]. Distributed hash table 
systems typically are based on network.  

ZHT is an implementation and improvement of 
distributed hash table. It is designed and tuned 
dedicatedly for high-end computing (HEC) [4, 17]. 
HEC includes highly reliable hardware, fast and 
stable networks, low latencies and patterns for scientific 
computing data access. It is a good product and 
platform, and has ambition as well as potential to be the 
next fundamental component of distributed systems for 
the upcoming a couple of decades.  

However, it has some problems to be solved. First and 
the most important is the scalability issue. ZHT can 
support up to 8192 nodes working concurrently. Once 
beyond this threshold, ZHT is not able to guarantee it 
works nicely or delivers high performance. What’s 
more, current ZHT version cannot support fault 
tolerance. Our implementation, OHT, is aimed to solve 
these two major problems. To give a high-level 
description, OHT can satisfy scalability by adding a new 
proxy layer. In order to become fault-tolerant, OHT 
mainly adopts replication mechanism. 

2. BACKGROUND 
ZHT is a zero-hop distributed hash table, which has 
been tuned for the requirements of high-end computing 
systems. ZHT aims to be a building block for future 
distributed system, such as parallel and distributed file 
systems, distributed job management systems, and 
parallel programming systems. The goals of ZHT are 
delivering high availability, good fault tolerance, high 
throughput, and low latencies at extreme scale, such as 
millions of nodes. At this moment ZHT have achieved 
most of these goals. But it still has some limitations. 
With n-to-n communication, all nodes have to maintain 
a large number of socket connections which is quite 
expensive when the system scale goes into extreme, like 
1 million nodes. In some environment which users don’t 
have root permission so are not able to change system 
parameters such as limit and maximum number of open 
file descriptors, concurrent connection will be limited to 
around 1024, and so would scale be limited. A practical 
approach to address this issue is hierarchical 
architecture, in which a layer of proxy nodes are added. 
Each proxy node serves a fixed set of compute nodes, 
and forwards the request to its server nodes. In this 



 

 

manner one-million-node scale can be easily achieved 
by using 1000 proxy nodes and each manages 
1000server nodes. 

3. FUNCTIONIALITY DESIGN 

3.1 Overview 
The main goal of OHT is to solve existing problems in 
ZHT but retains all its benefits at the same time. ZHT 
has high availability, good fault tolerance, high 
throughput, and low latencies. OHT keeps all these 
advantages of ZHT and overcomes its drawbacks at the 
same time.  The main problem of current ZHT is the 
scalability. When the size of nodes reaches 8000, the 
system may crash down or not continue to have 
relatively good performance. The reason of this 
phenomenon is that the possibility that more than 1000 
clients concurrently connect to the same server exists. 
To solve this problem, we revise the original ZHT in a 
hierarchical way, which is OHT.  

OHT has the same application programming interface 
(API) as ZHT, because it is an improved version of ZHT 
instead of adding or removing any function. Essentially, 
OHT is built upon hash table, which means it supports 
all the basic operations of a typical hash table: 1. 
insert(key, value); 2. lookup(key); 3. remove(key); 4. 
append(key, value).  

3.2 System Architecture 

   
Figure 1. System Architecture. 

Figure 1 shows the overall system architecture. Reds 
spot represents proxies and the blue ones stand for 
servers. Proxies have n-to-n inter-connection, which 
means all proxies are connected to each other. In this 
figure, if there is a solid line between two nodes, that 
means they have a connection. Each dash line means 
that two nodes at both its ends don’t need to talk to each 
other, but they are in the server group under the 
management of the same proxy.  
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Figure 2. Three Layer System Architecture. 

Figure 2 illustrates the details of the system. Clients and 
servers are the same as the corresponding ones in ZHT. 
A proxy is a ZHT instance which is responsible for 
bridging client and server. Each ZHT proxy has a server 
group consisting of a fixed number of servers. Usually, 
each proxy can only connect with the servers belonging 
to its server group. At runtime, a proxy gets a request 
from client, and forwards it to a server in its group. The 
way a client chooses a proxy and a proxy chooses a 
server is by using a hash function. This part will be 
introduced in Section 3.4. 

3.3 Workflow 
Inserting a proxy layer can bring in some changes in the 
original work flow. ZHT has two-step sequence: 1. 
client chooses a server using a hash function and then 
sends a request to it; 2. Server responses the request and 
sends the result back to the corresponding client. 

OHT has three-step work sequence:  

3.3.1 Client-end workflow 
Client still chooses a server using a hash function, and 
sends the requests to it. We use sendrecv() method to 
pass the message and wait for the response. Each client 
has two threads: main thread and a dedicated listening 
thread. Main thread is responsible for picking a proxy, 
sending it a request and waiting for an 
acknowledgement. The listening thread waits for the 
results of the requests it sends out. Note that the result 
of each request is generated by a server, thus the 
listening thread only gets connections from servers. 

Since a listening thread can get hundreds of results in 
OHT, each request must has a unique request id. Instead 
of keeping a request counter, we encapsulate a sequence 
number into a message to uniquely identify a request. 
The sequence number is calculated using following 
formula. 

SequNum=hash(key+opcode+clientip+clientport) 

When the listening thread receives a message from a 
server, it matches it with each one in the request queue 
to make sure the client gets the feedback. We also 



 

 

package the client’s IP address and port into the 
message. In this way, the server is able to send the result 
back to the corresponding client. 

3.3.2 Proxy-end workflow 
The primary function of proxy is to connect client and 
server. When a proxy receives a message, it sends an 
acknowledgement to the client.  Then it chooses a server 
in its server group using the hash function, and then 
forwards the message to the chosen server. In order to 
make sure the request has been forwarded to the server 
successfully, the proxy waits for an acknowledgement. 
Since proxies are not designed to handle any requests 
related to hash table, it doesn’t have to store anything 
except its own information, such as the server group. 
Although the workflow of proxy is straightforward, it is 
an essential part of our implementation because the 
proxy’s task is to alleviate server’s burden. 

3.3.3 Server-end workflow 
Servers are the real workhorses. It gets the message 
forwarded by its proxy, and does the real operations 
related to the hash table, such as insert, remove and 
append. As long as the server gets a request, it sends an 
acknowledgement to the proxy. Then the server does the 
operation, and sends the result to a client – the creator 
of the request according to the IP address and port 
containing in the message. Servers are required to store 
the real hash table, and they are also informed the 
information of their proxies.  

3.4 Hash Function Design 
OHT uses hash functions in two scenarios: client to 
proxy and proxy to server. They use similar but different 
hash functions. 

3.4.1  Client-proxy hash function 
The hash function a client uses to choose a proxy is 
relatively easy. When each client starts up, it is informed 
the total number of proxies. Suppose the number of 
proxies is np, the hash function can be as easy as a simple 
modulo operation. 

proxy_index = key%np 

3.4.2 Client-proxy hash function 
At first, we proposed to use the same hash function 
mentioned in Section 3.4.1, just replaced np with the size 
of a proxy’s server group. Unfortunately, this method 
has a potential bug, which is hard to be discovered. It is 
meaningful to explain it clearly as we hope to help 
others avoid making the same mistake. 

Error! Reference source not found. shows a scenario 
where the failure occurs. Suppose 2 proxies exists in 
OHT proxy layer and each group has 2 OHT servers. 
When the client sends a request with a key equals to 0, 
it will send the message to proxy 0 by using the equation 
in Section 3.4.1. Then the proxy uses the same equation 

to choose server 0. As a result, as long as proxy 0 is 
chosen, server 1 in its group will never be chosen, which 
means half of the servers will be idle for a long time. 
This is a huge waste of computing sources. 

 
Figure 3. Hash Function Bug Example. 

In order to fix this problem, we propose a new hash 
function to locate the destination server in proxy. 
Suppose the total number of proxies is np, the size of 
server group is nq, total number of server is m. We 
replace the hash function with the following one. 

server_index = key%m %nq 

4. FAULT TOLERANCE DESIGN 
Fault tolerance is another aspect that needs much 
consideration while designing a distributed system. A 
distributed system can involve in up to millions of 
physical nodes. The more computers take part in, the 
more ones may arise failure. ZHT is able to handle 
failures nicely when it detects some nodes do not 
respond to requests and then tags them as failed. ZHT 
adopts replication to ensure data is able to exist when it 
occurs failure.  

Similar to the original version of ZHT, we build OHT 
on top of replication. But more kinds of failures can 
arise in our system due to the import of proxy layer. 
Failures in clients are not in the range of our 
consideration since clients are a loose coupling part in 
OHT. By changing another port in the same physical 
node or sending requests from a new computer can 
easily handle this failure. Thus, all the failures can be 
divided into two large categories, proxy failure and 
server failure. 

4.1 Replication Level 
Replication level is a new terminology added by us. The 
replication level in each layer in OHT is the number of 
ZHT instances belonging to a single role in this layer. 
For example, if the replication level in proxy layer is 3, 
then besides the real proxy instance running on a 
physical node, there are two proxy instances on two 
different computers. Since proxy and server have 
different importance, making them own the same 
replication level is unreasonable. Thus, each layer has 
its independent replication level, which is configured by 
the user either in the command line or default 



 

 

configuration file. The first OHT instance in these 
replicas is called primary copy.  

4.2 Mapping 
We design to let all replicas running on different 
physical nodes. It is meaningful when the primary copy 
crashes down since a replica will take the charge of 
providing the same service, such as forwarding the 
message to a server or responding the request. In 
practice, thousands of proxies and servers are involved 
in the system, each proxy and server has different 
numbers of replicas running on its own and other 
physical nodes. Although our implementation can 
efficiently handle failures, we cannot avoid complicated 
mathematic relation between logical instance layout and 
physical instance layout. We give an example to show 
the mapping mechanism.  

 
Figure 4. Instance layout example. 

Figure 4 is an example showing the mapping 
mechanism between logical instance layout and 
physical instance layout. Suppose all these OHT 
instances are proxy instances, and proxy’s replication 
level is 3. The indexes are from 0 to 8. Three physical 
nodes participates in the system.  

Left table in this figure is the logical topology of these 
three proxies. Each row represents a proxy, naming 
proxy 1, proxy 2 and proxy 3 respectively. Right table 
shows the physical topology of OHT instances running 
on physical machines. Each row stands for a real 
computer, naming node 1, node 2 and node 3 
respectively. To make all these instances are distributed 
equally and correctly, a mathematical relation is 
required. In the left table, instances in one ellipse are 
running on the same physical node. We put proxy 1’s 1st 
replica, proxy 2’s 2nd replica and proxy 3’s 3rd replica on 
node 1. Deploy proxy 2’s 1st replica, proxy 3’s 2nd 
replica and proxy 1’s 3rd replica on node 2. Arrange 
proxy 3’s 1st replica, proxy 1’s 2nd replica and proxy 2’s 
1rd replica on node 3. By utilizing this mapping, 
whenever a proxy’s primary copy crashes down, we can 
choose an identical instance on another physical 
machine.  

To make the mathematical relation more general, we 
will give a formula to compute which instances will be 
running on a given physical node. 

Suppose we have n proxies, indexing from 1 – n. The 
number of physical nodes will be also n, since each 
primary copy occupies one computer. Similarly, they 
have indexes ranging from 1 to n. The replication level 
is r. We use i to stand for proxy’s index, and j for 
physical node index. OHT instances running on node j 
can be calculated with following formula. 

 

 
By using this equation, we can compute all the OHT 
instances one physical node needs to run before it starts 
up. Through a number of experiments and serious 
verifications, we prove that this method works correctly 
to meet our requirements related to fault tolerance issue. 

4.3 Strong consistence in proxies 
OHT proxy and server has different importance. Proxy 
is much more important than server. If a server crashes 
down, it will not affect other servers in the same server 
group or the remote ones. Proxy is on the opposite side. 
If a proxy crashes down, the request cannot be 
forwarded to all the servers it manages, which means 
when the scale of OHT is large, thousands of nodes will 
not be reachable. If proxy and server both have weak 
consistence, OHT may be less reliable and has low 
availability. If they own strong consistence, more 
overhead will be imported due to too many and frequent 
connections among servers. As a result, we decide to 
implement strong consistence in proxy layer and 
relatively weaker one in server layer. 

In OHT, a proxy’s failure is detected by a client since 
all requests are generated and sent from clients. When 
one request times out, which means the message’s 
receiver does not work, the client marks down the 
primary copy of the proxy, and chooses a copy 
randomly. Since the copy is running on the other 
physical node, the system can work properly with little 
sacrifice on performance resulting from choosing a copy 
randomly.  

Each proxy stores information related to all the other 
proxies and their copies. These information includes 
each OHT instance’s IP address, port and their statuses. 
One proxy also stores all the servers’ information in its 
server group.  

Information in proxies are frequently exchanged in 
proxy layer. The server failure is detected by a proxy 
due to server only waits for message forwarded from its 
proxy. Whenever a proxy finds out a server failure, it 
marks the server’s primary down, and then sends 



 

 

broadcasts this failure information to all the other 
proxies immediately. This is an n-to-n connection, 
which means every proxy has the possibility to 
communicate with all the other ones. At first glance, this 
design may cause much overhead, but in fact it will not. 
The message needed to be broadcasted often has several 
KB size, and the total number of proxies is typically 
small compared to that of servers. Thus this method can 
store extremely important information in a number of 
proxies at the cost of little overhead.  

5. EVALUATION 

5.1 Setup 
The experiments were conducted on a 65-node SUN 
Fire Linux cluster called HEC in SCS lab. Each 
computing node has two AMD Opteron(tm) processors, 
8GB memory and a 250GB HDD. The operating system 
is Ubuntu 9.04 with Linux kernel version 2.6.28.10. All 
nodes are connected to a 1 Gbps Ethernet. 

5.2 Methodology 
In the experiment in [4], the ratio between the number 
of clients and that of servers is kept to be 1, which means 
the number of ZHT clients increases as the scale of ZHT 
doubles. So the scalability of ZHT can be evaluated 
simply by increasing the number of ZHT servers. 
However, compared to the original ZHT, we add a new 
layer in the system so that the number of proxies is 
another variable we can change during the test. In order 
to make the comparison between ZHT and OHT fairer, 
we keep the ratio between the number of clients and that 
of serves to be 1 as well firstly. And then we add the 
number of proxies to be the third variable which makes 
our test more comprehensive and reasonable. 

In our experiments, all proxies and servers are running 
on different nodes to avoid potential local network 
communication. Such a configuration will make the 
result more stable since every connection between 
proxy and server will have almost the same latency. 
OHT clients, however, run on the same node as servers. 
That is exactly how the ZHT experiment was done then. 
In this setting, the inequality of local and remote 
connection is not a big concern because the requests 
issued from one client will be sent to all proxies and then 
forwarded to all servers.  

In every run of our experiment, each client will issue 
10000 requests to the proxies. Since each proxy 
manages a group of servers which store a partition of the 
whole key space, each proxy will handle a group of 
partitions in the key space and these partitions of all 
proxies are contiguous and have no intersection with 
each other. All 10000 requests will be approximately 
evenly sent to all proxies due to the randomly generated 
key in client. It can make the workload evenly 
distributed to make the system more stable. 

For the implementation, we use the default ZHT 
parameters. TCP protocol is used and TCP connection 
cache is enabled to reduce the cost in creating and 
destroying sockets between clients and proxies. And we 
mimic the implementation in ZHT to enable TCP 
connection cache between proxies and servers as well. 

We time the running time of the zht_ben benchmark 
using our own method instead of the original one since 
receiving an acknowledgement from proxy does not 
mean the request is finished. A request is not processed 
until the result is returned from server to client. In our 
timing method, the start time of one benchmark instance 
is recorded before the first request is issued and the end 
time is measured in the dedicated listen thread in client 
when the last request comes back without any error from 
the server. The average time of all benchmark instances 
is calculated to get a more accurate overall time for 
evaluation. The average processing time of one request 
is calculated by dividing the average overall time by the 
number of requests in one client, which is 10000 for our 
case. 

5.3 Performance Evaluation 

5.3.1 Effect of the number of proxies 
As mentioned above, the number of proxies is another 
important parameter in OHT. The more proxies, the 
requests can be forwarded to servers faster and the 
clients can get response from the servers in a shorter 
time. However, more proxies need more node resources 
and more sockets. To test the effect of the number of 
proxies, we firstly vary the number of proxies from 1 to 
up to 32 keeping the ratio between the scale of server 
and client. The results is shown as Figure 5. 

 
Figure 5. Latency of OHT under different number 

of proxies and the numbers of clients and servers 

keep same. 

The trend is obvious that with the fixed number of 
servers, more proxies can bring shorter latency. Take 
the experiment of largest scale for instance, the shortest 
latency is obtained when the number of proxies is 32. 
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Removing half of the proxies almost double the latency. 
That is because the workload is distributed by less 
proxies, the queue length in the epoll loop in proxies and 
servers is almost doubled. But the latency is not reduced 
anymore when the number of proxies increase from 16 
to 32. That indicates that 16 proxies can handle 32 
clients very well. Introducing more proxies cannot bring 
any performance improvement and but only add more 
resource consumption. Similar trends can be seen for 
results of other scales.  

It can also be observed from the figure that, for a fixed 
number of proxies, more clients will lead to larger 
latency. If there is only one proxy, the latency 
approximately follows an exponential curve when the 
number of servers increase from 4 to 32. The latency 
does not increase very fast when the number of servers 
is relatively small. It can be explained as the conclusion 
before. A smaller number of clients can be handled by 
one proxy very well. Thus for economical reason, 
keeping the ratio between the number of clients and 
proxies to be four is the most cost-effective setting for 
OHT. 

Then we fix the size of clients to be 32 and vary the 
combination of the number of proxies and servers to test 
the capability of proxy to handle multiple servers. 
Theoretically, the more server one proxy manages, the 
higher the latency we get. That is because the proxy may 
have to send to and receive from multiple servers in the 
same time. However, as shown by the results in Figure 
6, the number of servers under one proxy does not make 
too much difference. For the fixed number of proxies, 
the latency is almost identical for various scales of 
clients. We believe the result is reasonable since the 
number of requests arrive at one proxy at the same time 
is the most vital factor to affect latency. Communicating 
with multiple servers is not the bottleneck, especially 
when we use socket cache between this two layers. 

 
Figure 6. Latency of OHT under different number 

of proxies and servers with fixed 32 clients. 

At last, we fix the size of servers and vary the number 
of proxies and clients. This is to evaluate how proxy can 
handle multiple clients in a system in a more detailed 
way. Such a configuration will be more like the scenario 
in real usage in which the number of clients is larger 
than the number of proxies. To eliminate the effect of 
the number of servers, we set the number of servers to 
be 32 to maximize the performance in server side. The 
results can be seen as the Figure 7. 

 
Figure 7. Latency of OHT under different number 

of proxies and clients with fixed 32 servers. 

As we expected, with a fixed number of proxies, more 
clients will introduce higher latency. More clients result 
in longer events queue in the epoll loop in proxy so that 
requests will wait longer time to be processed. In 
addition, it should also be mentioned that one proxy can 
about 4 clients very well simultaneously. It means epoll 
can handle four concurrent events without losing too 
much performance. When the ratio between the number 
of clients and proxies go higher than four, the latency 
will increase proportional to the number of clients. In 
order to keep the latency under an acceptable threshold, 
the number of proxies need to be increased as the scale 
of clients in the real usage. 

Above all, it always holds true that the largest number 
of proxies can always bring best performance. For the 
remaining part of this report, the result is obtained with 
the most proxies. 

5.3.2 Latency 
We evaluated the latency of OHT on HEC using the 
setting mentioned above. We use up to 32 servers and 
32 clients and the number of proxies vary from one to 
the number of servers/clients. 

For the setting of the number of proxies, we choose the 
best setting from the experiment above in which clients, 
proxies and servers have the same scale. The result is 
shown in Figure 8.  

We can see from the figure that the latency of OHT is 
about three times larger than that of the original ZHT. 
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That is due to the hierarchical architecture we use in 
OHT. In the original ZHT, only two messages only 
needs to be transmitted: sending from request to server 
and receiving result from server. But in OHT, due to the 
introduction of the proxy layer, six messages needs to 
be transferred as discussed in section 2. Three times 
more network messages and forwarding cost in proxies 
generates a reasonable 3.38 larger latency on average. 
The latency curve of ZHT under different scales is very 
stable while OHT shows more turbulence because more 
connections and routes are involved in the process of 
one request. But OHT still shows acceptable stability 
compared with other more complex systems. 

 
Figure 8. Latency comparison between OHT and 

ZHT. 

5.3.3 Throughput 
Throughput indicates how many requests the system can 
handle in a period of time. The comparison of 
throughput between ZHT and OHT can be seen from 
Figure 9. 

 
Figure 9. Throughput comparison between OHT 

and ZHT. 

As can be observed in the figure, OHT can reach 12K 
ops/second on 32 nodes scale. But compared with ZHT, 
OHT shows a much lower throughput. On average, 
OHT has 29.5% of the throughput of the original ZHT. 
We attribute the performance loss to the additional four 

network message transmissions in OHT. Compared 
with Cassandra in [4], the performance is about the 
same. 

5.4 Fault Tolerance Evaluation 
As mentioned before, OHT supports tolerance of two 
kinds of failures, server failure and proxy failure. In 
order to verify the fault tolerance of OHT, we test two 
failures separately. In each test, other parts of the system 
remains fault-free. 

5.4.1 Server Failure Handling 

 
(a) 

 
(b) 

Figure 10. Server failing handling process. (a) 

Initiator proxy; (b) Receiving proxy. 

We manually kill a server during the benchmark to test 
the fault tolerance of OHT. In OHT, the server failure is 
detected by the proxy when it tries to connect with the 
server. As shown in Figure 10(a), a connection error is 
recognized as the failure of the server. To simplify the 
code, we did not check whether the error is caused by 
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the failure or other reasons like network congestion. The 
proxy firstly marks the server to be down in local server 
list and then sends the update event to other proxies to 
maintain strong consistency in server list information. 
The broadcast among proxies is done by one-by-one 
communication as shown in the figure. When a new 
request comes, the failed server will not be selected as 
destination. One of the replicas will take the place of the 
original copy. 

As a replica or proxy managing other servers, it just 
works as normal. When a request comes with the 
aforementioned operation code indicating a failure 
event, the proxy will update its local server list to mark 
the corresponding to be down as shown in Figure 10(b). 
Then when some proxy fails, this information can be 
used to recover the latest server list under the 
management of that failed proxy. 

5.4.2 Proxy Failure Handling 

Proxy failure is detected by the client. The handling is 
much easier than server failure. 

 
Figure 11. Proxy failure handling process. 

As shown in Figure 11, the client just marks the proxy 
to be down when the similar situation happens in the 
client as the error in proxy for server failure. And it finds 
randomly one of the replicas to send out the request. In 
this test, (hec-22, 60001) is down and the replica (hec-
22, 60002) will be selected instead. 

6. RELATED WORKS 
There have been a lot of existing distributed hash table 
(DHT) algorithms and implementations. Some of the 
existing DHT are Kademlia [5], CAN [6], Chord [7], 
Memcached [8], Dynamo [9], Cassandra [10] and C-
MPI [11]. DHT plays an important role in building 
support for scalable metadata service across extreme 
scale system. For example, FusionFS [11] uses ZHT as 
the metadata storage to build a distributed file system 
for extreme large scale system. As result in [4], ZHT 
outperforms Cassandra and has almost the same 
performance as Memcached which is an in-memory 
implementation. 

For DHT with a hierarchical design, several works have 
been proposed. Canon [12] is a paradigm for designing 
hierarchically structured DHTs. Chord, CAN and 
Kademlia all can be transformed into a hierarchical 
architecture following Canon. Cyclone [13] is another 
similar which follows a uniform leaf-based approach 
that considerably reduces the overall number of links 
per node. HyCube [14] is a DHT based on a hierarchical 

hypercube geometry. It adopts the Steinhaus transform 
for variable metric. A multi-level distributed hash table 
is proposed in [15] in name resolution service (NRS) for 
information-centric networking (ICN) system to 
minimize inter-domain traffic and to reduce latency. 

7. FUTURE WORK 
The most significant contribution of OHT is the 
scalability. A real test on a real large scale system is the 
best way to verify the potential. In the future, we plan to 
do such experiments to confirm the design and 
implementation of OHT. In this report, we have an 
assumption that the underlying servers have replicas 
which support eventual consistency. Merging code with 
another group working on eventual consistency is a 
must to build a complete and practical system.  

8. CONCLUSIONS 
In this report, we designed and implemented a 
hierarchical ZHT named OHT. By adding a proxy layer 
into ZHT, OHT can support one million nodes via 
deploying 1000 proxies with 1000 servers under one 
proxy. The problem in ZHT is solved by isolating 
enormous amount of servers from clients and using 
proxies to forward requests. Experimental results show 
that OHT performs about 3.38 times slower than ZHT 
due to the newly introduced layer and, consequently, 
network communications. Considering OHT can 
support much larger scale, the latency increase is 
acceptable. 
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