

OHT: Hierarchical Distributed Hash Tables
 Kun Feng, Tianyang Che,

 Tonglin Li, Ioan Raicu
 Department of Computer Science

Illinois Institute of Technology

{kfeng1,tche,tli13}@hawk.iit.edu,
 iraicu@cs.iit.edu

ABSTRACT

This paper presents OHT, a hierarchical distributed hash
table, which improves the performance of practical
ZHT. When n-to-n connection is needed, every single
node has to keep a large number of socket connections.
This might be quite expensive when n is extremely
large. By performing a hierarchical distributed hash
table, OHT can solve this problem. Theoretically, we
are able to support an OHT system who consists of
millions of nodes. This paper is a final report to give a
problem statement, describe related work, and illustrate
our design idea and implementation details of OHT. We
have evaluated OHT’s performance under a Linux
cluster with 512-cores. We scale OHT up to 32 physical
nodes. The results shows that latency of OHT is around
2.7 ms and throughput can reach 12K ops/s for a 32-
node scale. The experiments also show that OHT can
work correctly even when failures arise. At the cost of
losing some percentage of performance, OHT can be
much more scalable.

KEYWORDS
ZHT, hierarchical architecture, DHT.

1. INTRODUCTION
Exascale systems are designed to provide a large
number of precious opportunities for science which
have never appeared before [1]. By using them, it is
possible to use computing power as a helpful tool in
theory and experiments related to understanding the
basic components of human beings and the whole
nature. In order to make an excellent exascale system,
we must pay our attention to major architecture,
software, algorithm and data challenges. In addition,
adapting to newly emerging programming
environments is another require [2].

Distributed hash table (DHT) systems are an important
class of peer-to-peer routing infrastructures. They can
support both long-distance storage and tracing
information. They can also support the fast development
of a wide range of exascale applications applied in many
aspects, such as naming systems, file systems and
application level multicast [3]. Distributed hash table
systems typically are based on network.

ZHT is an implementation and improvement of
distributed hash table. It is designed and tuned
dedicatedly for high-end computing (HEC) [4, 17].
HEC includes highly reliable hardware, fast and
stable networks, low latencies and patterns for scientific
computing data access. It is a good product and
platform, and has ambition as well as potential to be the
next fundamental component of distributed systems for
the upcoming a couple of decades.

However, it has some problems to be solved. First and
the most important is the scalability issue. ZHT can
support up to 8192 nodes working concurrently. Once
beyond this threshold, ZHT is not able to guarantee it
works nicely or delivers high performance. What’s
more, current ZHT version cannot support fault
tolerance. Our implementation, OHT, is aimed to solve
these two major problems. To give a high-level
description, OHT can satisfy scalability by adding a new
proxy layer. In order to become fault-tolerant, OHT
mainly adopts replication mechanism.

2. BACKGROUND
ZHT is a zero-hop distributed hash table, which has
been tuned for the requirements of high-end computing
systems. ZHT aims to be a building block for future
distributed system, such as parallel and distributed file
systems, distributed job management systems, and
parallel programming systems. The goals of ZHT are
delivering high availability, good fault tolerance, high
throughput, and low latencies at extreme scale, such as
millions of nodes. At this moment ZHT have achieved
most of these goals. But it still has some limitations.
With n-to-n communication, all nodes have to maintain
a large number of socket connections which is quite
expensive when the system scale goes into extreme, like
1 million nodes. In some environment which users don’t
have root permission so are not able to change system
parameters such as limit and maximum number of open
file descriptors, concurrent connection will be limited to
around 1024, and so would scale be limited. A practical
approach to address this issue is hierarchical
architecture, in which a layer of proxy nodes are added.
Each proxy node serves a fixed set of compute nodes,
and forwards the request to its server nodes. In this

manner one-million-node scale can be easily achieved
by using 1000 proxy nodes and each manages
1000server nodes.

3. FUNCTIONIALITY DESIGN

3.1 Overview
The main goal of OHT is to solve existing problems in
ZHT but retains all its benefits at the same time. ZHT
has high availability, good fault tolerance, high
throughput, and low latencies. OHT keeps all these
advantages of ZHT and overcomes its drawbacks at the
same time. The main problem of current ZHT is the
scalability. When the size of nodes reaches 8000, the
system may crash down or not continue to have
relatively good performance. The reason of this
phenomenon is that the possibility that more than 1000
clients concurrently connect to the same server exists.
To solve this problem, we revise the original ZHT in a
hierarchical way, which is OHT.

OHT has the same application programming interface
(API) as ZHT, because it is an improved version of ZHT
instead of adding or removing any function. Essentially,
OHT is built upon hash table, which means it supports
all the basic operations of a typical hash table: 1.
insert(key, value); 2. lookup(key); 3. remove(key); 4.
append(key, value).

3.2 System Architecture

Figure 1. System Architecture.

Figure 1 shows the overall system architecture. Reds
spot represents proxies and the blue ones stand for
servers. Proxies have n-to-n inter-connection, which
means all proxies are connected to each other. In this
figure, if there is a solid line between two nodes, that
means they have a connection. Each dash line means
that two nodes at both its ends don’t need to talk to each
other, but they are in the server group under the
management of the same proxy.

......

......

ZHT
Client

ZHT
Proxy

ZHT
Server

seq

opcode key val seq

opcode key val client_ip client_portseq

status result

...

ack

ack

Figure 2. Three Layer System Architecture.

Figure 2 illustrates the details of the system. Clients and
servers are the same as the corresponding ones in ZHT.
A proxy is a ZHT instance which is responsible for
bridging client and server. Each ZHT proxy has a server
group consisting of a fixed number of servers. Usually,
each proxy can only connect with the servers belonging
to its server group. At runtime, a proxy gets a request
from client, and forwards it to a server in its group. The
way a client chooses a proxy and a proxy chooses a
server is by using a hash function. This part will be
introduced in Section 3.4.

3.3 Workflow
Inserting a proxy layer can bring in some changes in the
original work flow. ZHT has two-step sequence: 1.
client chooses a server using a hash function and then
sends a request to it; 2. Server responses the request and
sends the result back to the corresponding client.

OHT has three-step work sequence:

3.3.1 Client-end workflow
Client still chooses a server using a hash function, and
sends the requests to it. We use sendrecv() method to
pass the message and wait for the response. Each client
has two threads: main thread and a dedicated listening
thread. Main thread is responsible for picking a proxy,
sending it a request and waiting for an
acknowledgement. The listening thread waits for the
results of the requests it sends out. Note that the result
of each request is generated by a server, thus the
listening thread only gets connections from servers.

Since a listening thread can get hundreds of results in
OHT, each request must has a unique request id. Instead
of keeping a request counter, we encapsulate a sequence
number into a message to uniquely identify a request.
The sequence number is calculated using following
formula.

SequNum=hash(key+opcode+clientip+clientport)

When the listening thread receives a message from a
server, it matches it with each one in the request queue
to make sure the client gets the feedback. We also

package the client’s IP address and port into the
message. In this way, the server is able to send the result
back to the corresponding client.

3.3.2 Proxy-end workflow
The primary function of proxy is to connect client and
server. When a proxy receives a message, it sends an
acknowledgement to the client. Then it chooses a server
in its server group using the hash function, and then
forwards the message to the chosen server. In order to
make sure the request has been forwarded to the server
successfully, the proxy waits for an acknowledgement.
Since proxies are not designed to handle any requests
related to hash table, it doesn’t have to store anything
except its own information, such as the server group.
Although the workflow of proxy is straightforward, it is
an essential part of our implementation because the
proxy’s task is to alleviate server’s burden.

3.3.3 Server-end workflow
Servers are the real workhorses. It gets the message
forwarded by its proxy, and does the real operations
related to the hash table, such as insert, remove and
append. As long as the server gets a request, it sends an
acknowledgement to the proxy. Then the server does the
operation, and sends the result to a client – the creator
of the request according to the IP address and port
containing in the message. Servers are required to store
the real hash table, and they are also informed the
information of their proxies.

3.4 Hash Function Design
OHT uses hash functions in two scenarios: client to
proxy and proxy to server. They use similar but different
hash functions.

3.4.1 Client-proxy hash function
The hash function a client uses to choose a proxy is
relatively easy. When each client starts up, it is informed
the total number of proxies. Suppose the number of
proxies is np, the hash function can be as easy as a simple
modulo operation.

proxy_index = key%np

3.4.2 Client-proxy hash function
At first, we proposed to use the same hash function
mentioned in Section 3.4.1, just replaced np with the size
of a proxy’s server group. Unfortunately, this method
has a potential bug, which is hard to be discovered. It is
meaningful to explain it clearly as we hope to help
others avoid making the same mistake.

Error! Reference source not found. shows a scenario
where the failure occurs. Suppose 2 proxies exists in
OHT proxy layer and each group has 2 OHT servers.
When the client sends a request with a key equals to 0,
it will send the message to proxy 0 by using the equation
in Section 3.4.1. Then the proxy uses the same equation

to choose server 0. As a result, as long as proxy 0 is
chosen, server 1 in its group will never be chosen, which
means half of the servers will be idle for a long time.
This is a huge waste of computing sources.

Figure 3. Hash Function Bug Example.

In order to fix this problem, we propose a new hash
function to locate the destination server in proxy.
Suppose the total number of proxies is np, the size of
server group is nq, total number of server is m. We
replace the hash function with the following one.

server_index = key%m %nq

4. FAULT TOLERANCE DESIGN
Fault tolerance is another aspect that needs much
consideration while designing a distributed system. A
distributed system can involve in up to millions of
physical nodes. The more computers take part in, the
more ones may arise failure. ZHT is able to handle
failures nicely when it detects some nodes do not
respond to requests and then tags them as failed. ZHT
adopts replication to ensure data is able to exist when it
occurs failure.

Similar to the original version of ZHT, we build OHT
on top of replication. But more kinds of failures can
arise in our system due to the import of proxy layer.
Failures in clients are not in the range of our
consideration since clients are a loose coupling part in
OHT. By changing another port in the same physical
node or sending requests from a new computer can
easily handle this failure. Thus, all the failures can be
divided into two large categories, proxy failure and
server failure.

4.1 Replication Level
Replication level is a new terminology added by us. The
replication level in each layer in OHT is the number of
ZHT instances belonging to a single role in this layer.
For example, if the replication level in proxy layer is 3,
then besides the real proxy instance running on a
physical node, there are two proxy instances on two
different computers. Since proxy and server have
different importance, making them own the same
replication level is unreasonable. Thus, each layer has
its independent replication level, which is configured by
the user either in the command line or default

configuration file. The first OHT instance in these
replicas is called primary copy.

4.2 Mapping
We design to let all replicas running on different
physical nodes. It is meaningful when the primary copy
crashes down since a replica will take the charge of
providing the same service, such as forwarding the
message to a server or responding the request. In
practice, thousands of proxies and servers are involved
in the system, each proxy and server has different
numbers of replicas running on its own and other
physical nodes. Although our implementation can
efficiently handle failures, we cannot avoid complicated
mathematic relation between logical instance layout and
physical instance layout. We give an example to show
the mapping mechanism.

Figure 4. Instance layout example.

Figure 4 is an example showing the mapping
mechanism between logical instance layout and
physical instance layout. Suppose all these OHT
instances are proxy instances, and proxy’s replication
level is 3. The indexes are from 0 to 8. Three physical
nodes participates in the system.

Left table in this figure is the logical topology of these
three proxies. Each row represents a proxy, naming
proxy 1, proxy 2 and proxy 3 respectively. Right table
shows the physical topology of OHT instances running
on physical machines. Each row stands for a real
computer, naming node 1, node 2 and node 3
respectively. To make all these instances are distributed
equally and correctly, a mathematical relation is
required. In the left table, instances in one ellipse are
running on the same physical node. We put proxy 1’s 1st
replica, proxy 2’s 2nd replica and proxy 3’s 3rd replica on
node 1. Deploy proxy 2’s 1st replica, proxy 3’s 2nd
replica and proxy 1’s 3rd replica on node 2. Arrange
proxy 3’s 1st replica, proxy 1’s 2nd replica and proxy 2’s
1rd replica on node 3. By utilizing this mapping,
whenever a proxy’s primary copy crashes down, we can
choose an identical instance on another physical
machine.

To make the mathematical relation more general, we
will give a formula to compute which instances will be
running on a given physical node.

Suppose we have n proxies, indexing from 1 – n. The
number of physical nodes will be also n, since each
primary copy occupies one computer. Similarly, they
have indexes ranging from 1 to n. The replication level
is r. We use i to stand for proxy’s index, and j for
physical node index. OHT instances running on node j
can be calculated with following formula.

By using this equation, we can compute all the OHT
instances one physical node needs to run before it starts
up. Through a number of experiments and serious
verifications, we prove that this method works correctly
to meet our requirements related to fault tolerance issue.

4.3 Strong consistence in proxies
OHT proxy and server has different importance. Proxy
is much more important than server. If a server crashes
down, it will not affect other servers in the same server
group or the remote ones. Proxy is on the opposite side.
If a proxy crashes down, the request cannot be
forwarded to all the servers it manages, which means
when the scale of OHT is large, thousands of nodes will
not be reachable. If proxy and server both have weak
consistence, OHT may be less reliable and has low
availability. If they own strong consistence, more
overhead will be imported due to too many and frequent
connections among servers. As a result, we decide to
implement strong consistence in proxy layer and
relatively weaker one in server layer.

In OHT, a proxy’s failure is detected by a client since
all requests are generated and sent from clients. When
one request times out, which means the message’s
receiver does not work, the client marks down the
primary copy of the proxy, and chooses a copy
randomly. Since the copy is running on the other
physical node, the system can work properly with little
sacrifice on performance resulting from choosing a copy
randomly.

Each proxy stores information related to all the other
proxies and their copies. These information includes
each OHT instance’s IP address, port and their statuses.
One proxy also stores all the servers’ information in its
server group.

Information in proxies are frequently exchanged in
proxy layer. The server failure is detected by a proxy
due to server only waits for message forwarded from its
proxy. Whenever a proxy finds out a server failure, it
marks the server’s primary down, and then sends

broadcasts this failure information to all the other
proxies immediately. This is an n-to-n connection,
which means every proxy has the possibility to
communicate with all the other ones. At first glance, this
design may cause much overhead, but in fact it will not.
The message needed to be broadcasted often has several
KB size, and the total number of proxies is typically
small compared to that of servers. Thus this method can
store extremely important information in a number of
proxies at the cost of little overhead.

5. EVALUATION

5.1 Setup
The experiments were conducted on a 65-node SUN
Fire Linux cluster called HEC in SCS lab. Each
computing node has two AMD Opteron(tm) processors,
8GB memory and a 250GB HDD. The operating system
is Ubuntu 9.04 with Linux kernel version 2.6.28.10. All
nodes are connected to a 1 Gbps Ethernet.

5.2 Methodology
In the experiment in [4], the ratio between the number
of clients and that of servers is kept to be 1, which means
the number of ZHT clients increases as the scale of ZHT
doubles. So the scalability of ZHT can be evaluated
simply by increasing the number of ZHT servers.
However, compared to the original ZHT, we add a new
layer in the system so that the number of proxies is
another variable we can change during the test. In order
to make the comparison between ZHT and OHT fairer,
we keep the ratio between the number of clients and that
of serves to be 1 as well firstly. And then we add the
number of proxies to be the third variable which makes
our test more comprehensive and reasonable.

In our experiments, all proxies and servers are running
on different nodes to avoid potential local network
communication. Such a configuration will make the
result more stable since every connection between
proxy and server will have almost the same latency.
OHT clients, however, run on the same node as servers.
That is exactly how the ZHT experiment was done then.
In this setting, the inequality of local and remote
connection is not a big concern because the requests
issued from one client will be sent to all proxies and then
forwarded to all servers.

In every run of our experiment, each client will issue
10000 requests to the proxies. Since each proxy
manages a group of servers which store a partition of the
whole key space, each proxy will handle a group of
partitions in the key space and these partitions of all
proxies are contiguous and have no intersection with
each other. All 10000 requests will be approximately
evenly sent to all proxies due to the randomly generated
key in client. It can make the workload evenly
distributed to make the system more stable.

For the implementation, we use the default ZHT
parameters. TCP protocol is used and TCP connection
cache is enabled to reduce the cost in creating and
destroying sockets between clients and proxies. And we
mimic the implementation in ZHT to enable TCP
connection cache between proxies and servers as well.

We time the running time of the zht_ben benchmark
using our own method instead of the original one since
receiving an acknowledgement from proxy does not
mean the request is finished. A request is not processed
until the result is returned from server to client. In our
timing method, the start time of one benchmark instance
is recorded before the first request is issued and the end
time is measured in the dedicated listen thread in client
when the last request comes back without any error from
the server. The average time of all benchmark instances
is calculated to get a more accurate overall time for
evaluation. The average processing time of one request
is calculated by dividing the average overall time by the
number of requests in one client, which is 10000 for our
case.

5.3 Performance Evaluation

5.3.1 Effect of the number of proxies
As mentioned above, the number of proxies is another
important parameter in OHT. The more proxies, the
requests can be forwarded to servers faster and the
clients can get response from the servers in a shorter
time. However, more proxies need more node resources
and more sockets. To test the effect of the number of
proxies, we firstly vary the number of proxies from 1 to
up to 32 keeping the ratio between the scale of server
and client. The results is shown as Figure 5.

Figure 5. Latency of OHT under different number

of proxies and the numbers of clients and servers

keep same.

The trend is obvious that with the fixed number of
servers, more proxies can bring shorter latency. Take
the experiment of largest scale for instance, the shortest
latency is obtained when the number of proxies is 32.

0

5

10

15

20

25

30

1 2 4 8 16 32

La
te

n
cy

 (
m

s)

Number of Servers

1 proxy 2 proxies 4 proxies

8 proxies 16 proxies 32 proxies

Removing half of the proxies almost double the latency.
That is because the workload is distributed by less
proxies, the queue length in the epoll loop in proxies and
servers is almost doubled. But the latency is not reduced
anymore when the number of proxies increase from 16
to 32. That indicates that 16 proxies can handle 32
clients very well. Introducing more proxies cannot bring
any performance improvement and but only add more
resource consumption. Similar trends can be seen for
results of other scales.

It can also be observed from the figure that, for a fixed
number of proxies, more clients will lead to larger
latency. If there is only one proxy, the latency
approximately follows an exponential curve when the
number of servers increase from 4 to 32. The latency
does not increase very fast when the number of servers
is relatively small. It can be explained as the conclusion
before. A smaller number of clients can be handled by
one proxy very well. Thus for economical reason,
keeping the ratio between the number of clients and
proxies to be four is the most cost-effective setting for
OHT.

Then we fix the size of clients to be 32 and vary the
combination of the number of proxies and servers to test
the capability of proxy to handle multiple servers.
Theoretically, the more server one proxy manages, the
higher the latency we get. That is because the proxy may
have to send to and receive from multiple servers in the
same time. However, as shown by the results in Figure
6, the number of servers under one proxy does not make
too much difference. For the fixed number of proxies,
the latency is almost identical for various scales of
clients. We believe the result is reasonable since the
number of requests arrive at one proxy at the same time
is the most vital factor to affect latency. Communicating
with multiple servers is not the bottleneck, especially
when we use socket cache between this two layers.

Figure 6. Latency of OHT under different number

of proxies and servers with fixed 32 clients.

At last, we fix the size of servers and vary the number
of proxies and clients. This is to evaluate how proxy can
handle multiple clients in a system in a more detailed
way. Such a configuration will be more like the scenario
in real usage in which the number of clients is larger
than the number of proxies. To eliminate the effect of
the number of servers, we set the number of servers to
be 32 to maximize the performance in server side. The
results can be seen as the Figure 7.

Figure 7. Latency of OHT under different number

of proxies and clients with fixed 32 servers.

As we expected, with a fixed number of proxies, more
clients will introduce higher latency. More clients result
in longer events queue in the epoll loop in proxy so that
requests will wait longer time to be processed. In
addition, it should also be mentioned that one proxy can
about 4 clients very well simultaneously. It means epoll
can handle four concurrent events without losing too
much performance. When the ratio between the number
of clients and proxies go higher than four, the latency
will increase proportional to the number of clients. In
order to keep the latency under an acceptable threshold,
the number of proxies need to be increased as the scale
of clients in the real usage.

Above all, it always holds true that the largest number
of proxies can always bring best performance. For the
remaining part of this report, the result is obtained with
the most proxies.

5.3.2 Latency
We evaluated the latency of OHT on HEC using the
setting mentioned above. We use up to 32 servers and
32 clients and the number of proxies vary from one to
the number of servers/clients.

For the setting of the number of proxies, we choose the
best setting from the experiment above in which clients,
proxies and servers have the same scale. The result is
shown in Figure 8.

We can see from the figure that the latency of OHT is
about three times larger than that of the original ZHT.

0

5

10

15

20

25

30

1 2 4 8 16 32

La
te

n
cy

 (
m

s)

Number of Servers

1 proxy 2 proxies 4 proxies

8 proxies 16 proxies 32 proxies

0

5

10

15

20

25

30

1 2 4 8 16 32

La
te

n
cy

 (
m

s)

Number of Clients

1 proxy 2 proxies 4 proxies

8 proxies 16 proxies 32 proxies

That is due to the hierarchical architecture we use in
OHT. In the original ZHT, only two messages only
needs to be transmitted: sending from request to server
and receiving result from server. But in OHT, due to the
introduction of the proxy layer, six messages needs to
be transferred as discussed in section 2. Three times
more network messages and forwarding cost in proxies
generates a reasonable 3.38 larger latency on average.
The latency curve of ZHT under different scales is very
stable while OHT shows more turbulence because more
connections and routes are involved in the process of
one request. But OHT still shows acceptable stability
compared with other more complex systems.

Figure 8. Latency comparison between OHT and

ZHT.

5.3.3 Throughput
Throughput indicates how many requests the system can
handle in a period of time. The comparison of
throughput between ZHT and OHT can be seen from
Figure 9.

Figure 9. Throughput comparison between OHT

and ZHT.

As can be observed in the figure, OHT can reach 12K
ops/second on 32 nodes scale. But compared with ZHT,
OHT shows a much lower throughput. On average,
OHT has 29.5% of the throughput of the original ZHT.
We attribute the performance loss to the additional four

network message transmissions in OHT. Compared
with Cassandra in [4], the performance is about the
same.

5.4 Fault Tolerance Evaluation
As mentioned before, OHT supports tolerance of two
kinds of failures, server failure and proxy failure. In
order to verify the fault tolerance of OHT, we test two
failures separately. In each test, other parts of the system
remains fault-free.

5.4.1 Server Failure Handling

(a)

(b)

Figure 10. Server failing handling process. (a)

Initiator proxy; (b) Receiving proxy.

We manually kill a server during the benchmark to test
the fault tolerance of OHT. In OHT, the server failure is
detected by the proxy when it tries to connect with the
server. As shown in Figure 10(a), a connection error is
recognized as the failure of the server. To simplify the
code, we did not check whether the error is caused by

0.751 0.713 0.704 0.704 0.715 0.719

2.662
2.428

2.185
2.5

2.351
2.55

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

La
te

n
cy

 (
m

s)

Number of nodes

ZHT OHT

1

10

100

1000

10000

100000

1 2 4 8 16 32

Th
ro

u
gh

p
u

t
(o

p
s/

s)

Number of nodes

ZHT OHT

the failure or other reasons like network congestion. The
proxy firstly marks the server to be down in local server
list and then sends the update event to other proxies to
maintain strong consistency in server list information.
The broadcast among proxies is done by one-by-one
communication as shown in the figure. When a new
request comes, the failed server will not be selected as
destination. One of the replicas will take the place of the
original copy.

As a replica or proxy managing other servers, it just
works as normal. When a request comes with the
aforementioned operation code indicating a failure
event, the proxy will update its local server list to mark
the corresponding to be down as shown in Figure 10(b).
Then when some proxy fails, this information can be
used to recover the latest server list under the
management of that failed proxy.

5.4.2 Proxy Failure Handling

Proxy failure is detected by the client. The handling is
much easier than server failure.

Figure 11. Proxy failure handling process.

As shown in Figure 11, the client just marks the proxy
to be down when the similar situation happens in the
client as the error in proxy for server failure. And it finds
randomly one of the replicas to send out the request. In
this test, (hec-22, 60001) is down and the replica (hec-
22, 60002) will be selected instead.

6. RELATED WORKS
There have been a lot of existing distributed hash table
(DHT) algorithms and implementations. Some of the
existing DHT are Kademlia [5], CAN [6], Chord [7],
Memcached [8], Dynamo [9], Cassandra [10] and C-
MPI [11]. DHT plays an important role in building
support for scalable metadata service across extreme
scale system. For example, FusionFS [11] uses ZHT as
the metadata storage to build a distributed file system
for extreme large scale system. As result in [4], ZHT
outperforms Cassandra and has almost the same
performance as Memcached which is an in-memory
implementation.

For DHT with a hierarchical design, several works have
been proposed. Canon [12] is a paradigm for designing
hierarchically structured DHTs. Chord, CAN and
Kademlia all can be transformed into a hierarchical
architecture following Canon. Cyclone [13] is another
similar which follows a uniform leaf-based approach
that considerably reduces the overall number of links
per node. HyCube [14] is a DHT based on a hierarchical

hypercube geometry. It adopts the Steinhaus transform
for variable metric. A multi-level distributed hash table
is proposed in [15] in name resolution service (NRS) for
information-centric networking (ICN) system to
minimize inter-domain traffic and to reduce latency.

7. FUTURE WORK
The most significant contribution of OHT is the
scalability. A real test on a real large scale system is the
best way to verify the potential. In the future, we plan to
do such experiments to confirm the design and
implementation of OHT. In this report, we have an
assumption that the underlying servers have replicas
which support eventual consistency. Merging code with
another group working on eventual consistency is a
must to build a complete and practical system.

8. CONCLUSIONS
In this report, we designed and implemented a
hierarchical ZHT named OHT. By adding a proxy layer
into ZHT, OHT can support one million nodes via
deploying 1000 proxies with 1000 servers under one
proxy. The problem in ZHT is solved by isolating
enormous amount of servers from clients and using
proxies to forward requests. Experimental results show
that OHT performs about 3.38 times slower than ZHT
due to the newly introduced layer and, consequently,
network communications. Considering OHT can
support much larger scale, the latency increase is
acceptable.

9. ACKNOWLEDGMENTS
Our great thanks to Tonglin Li for his enormous help to
the design and implementation of our ideas. And we also
want to thank Dr. Raicu for giving us an excellent
course and in-depth knowledge about data-intensive
computing.

10. REFERENCES
[1] A. Geist and R. Lucas, “Major Computer Science

Challenges At Exascale,” Int. J. High Perform.

Comput. Appl., vol. 23, no. 4, pp. 427–436, Sep.
2009.

[2] S. Borkar, “The Exascale challenge,” in
Proceedings of 2010 International Symposium on

VLSI Design, Automation and Test, 2010, pp. 2–3.

[3] H. Zhang, A. Goel, and R. Govindan,
“Incrementally improving lookup latency in
distributed hash table systems,” ACM

SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1,
p. 114, Jun. 2003.

[4] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu, “ZHT: A
Light-Weight Reliable Persistent Dynamic Scalable
Zero-Hop Distributed Hash Table,” in 2013 IEEE

27th International Symposium on Parallel and

Distributed Processing, 2013, pp. 775–787.

[5] D. M. P. Maymounkov, “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric,” in
Proc. IPTPS, 2002.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Schenker, “A scalable content-addressable
network,” ACM SIGCOMM Comput. Commun.

Rev., vol. 31, no. 4, pp. 161–172, Oct. 2001.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan, “Chord,” in Proceedings of

the 2001 conference on Applications, technologies,

architectures, and protocols for computer

communications - SIGCOMM ’01, 2001, vol. 31,
no. 4, pp. 149–160.

[8] B. Fitzpatrick, “Distributed caching with
memcached,” Linux J., vol. 2004, no. 124, p. 5,
Aug. 2004.

[9] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo,” ACM SIGOPS Oper. Syst. Rev., vol.
41, no. 6, p. 205, Oct. 2007.

[10] “Cassandra,” 2012. [Online]. Available:
http://cassandra.apache.org/.

[11] Ioan Raicu, Dongfang Zhao, Chen Shou, Zhao
Zhang, Iman Sadooghi, Xiaobing Zhou, Tonglin

Li, “FusionFS: a distributed file system for large
scale data-intensive computing,” in 2nd Greater

Chicago Area System Research Workshop

(GCASR), 2013.

[12] R. Wyrzykowski, J. Dongarra, K.
Karczewski, and J. Wasniewski, Eds., “HyCube: A
DHT Routing System Based on a Hierarchical
Hypercube Geometry,” in in Parallel Processing

and Applied Mathematics Lecture Notes in

Computer Science, vol. 6068, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010.

[13] M. D’Ambrosio, C. Dannewitz, H. Karl, and
V. Vercellone, “MDHT,” in Proceedings of the

ACM SIGCOMM workshop on Information-centric

networking - ICN ’11, 2011, p. 7.

[14] H. Garcia-Molina, “Canon in G major:
designing DHTs with hierarchical structure,” in
24th International Conference on Distributed

Computing Systems, 2004. Proceedings., 2004, pp.
263–272.

[15] M. S. Artigas, P. Garcia Lopez, J. P. Ahullo,
and A. F. Gomez Skarmeta, “Cyclone: A Novel
Design Schema for Hierarchical DHTs,” in Fifth

IEEE International Conference on Peer-to-Peer

Computing (P2P’05), 2005, pp. 49–56

[16] T. Li, R. Verma, X. Duan, H. Jin, I. Raicu. "Exploring

 Distributed Hash Tables in High-End Computing",

 ACM Performance Evaluation Review (PER), 2011.

