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Abstract - Efficiently scheduling large number of jobs 
over large scale distributed systems is very critical in 
order to achieve high system utilization and 
throughput. Today's state-of-the-art job schedulers 
mostly follow a centralized architecture that is 
master/slave architecture. The problem with this 
architecture is that it cannot scale efficiently upto 
even petascales and is always vulnerable to single 
point of failure. This is over come by the distributed 
job management system called MATRIX (MAny-Task 
computing execution fabRIc at eXascale) which 
adopts a work stealing algorithm which aims at load 
balancing throughout the distributed system. The 
MATRIX currently supports Many Task Computing 
(MTC) workloads. This project aims at extending 
MATRIX in order to support the High Performance 
Computing (HPC) workloads. The HPC workloads are 
nothing but long jobs which needs multiple 
nodes/cores to run the tasks. It is a challenge to 
support HPC on the framework which supports MTC 
jobs. The framework is focused at efficiently 
scheduling sub-second jobs on available workers. The 
design of scheduling HPC jobs should be efficient 
enough in order to not hamper the efficient working 
of MTC tasks. 

 

I.  Introduction 

High-Performance Computing (HPC) is a distributed 
paradigm defined to address challenges in running 
large jobs spanning across multiple nodes along with 
the small jobs (MTC) by maintaining load balancing 
as well as efficient scheduling mechanism. Running 
HPC jobs should not be a bottleneck for the 
performance of MTC jobs.  

Efficiently scheduling large number of jobs over large 
scale distributed systems is very critical in order to 
achieve high system utilization and throughput. 
Workflow systems such as Swift, have been shown 
to generate massive amounts of MTC tasks on Grids, 

Supercomputers, and clouds [16, 17]. Today's state-
of-the-art job schedulers mostly follow a centralized 
architecture that is master/slave architecture. The 
problem with this architecture is that it cannot scale 
efficiently up-to even petascales and is always 
vulnerable to single point of failure. Supporting large 
jobs and small jobs together will affect the 
performance with a centralized scheduler.  This is 
over come by the distributed job management.  

MATRIX already implements work stealing algorithm 
in order to maintain load balancing. A new paradigm 
called resource stealing is introduced for the large 
jobs. The work stealing and resource stealing co-
exists and performs better at large scales. The idea 
of resource stealing is to steal compute units (in 
these case, cores) from the neighbors in order to run 
a large job. The neighbors are selected in random in 
the similar way as work stealing. This can be 
improved since it has lot of alternatives to choose 
from. The current initial system implements random 
neighbor selection to steal resources. The report 
presents the architecture of MATRIX supporting HPC, 
resource stealing and the design consideration along 
with the results obtained so far. 

MATRIX being a MTC job execution framework, the 
motive was to make MATRIX support HPC jobs. This 
needs to be done along with the co-existing work 
stealing mechanism. Developing an HPC support 
should not be a bottleneck for the MTC tasks. 
Making work stealing and resource stealing work as 
separate entities poses a lot of challenges like 
deadlocks, improper load balancing and executing 
tasks in a generic way.  

II. Background Information 

Many Task Computing: Many-Task Computing is a 
paradigm which bridges the gap between High 
Performance Computing (HPC) and High Throughput 
Computing (HTC). The MTC workloads are finer 
granularity tasks which takes many computing 



resources in order to complete many task in lesser 
time. The throughput is measured in terms of 
seconds. Tasks can be small or large, uniprocessor or 
multiprocessor, compute intensive or data intensive. 
The set of tasks may be static or dynamic, 
homogeneous or heterogeneous, loosely coupled or 
tightly coupled. The aggregate number of tasks, 
quantity of computing, and volumes of data may be 
extremely large [2][3][4][5]. 

High Performance computing: The HPC jobs are the 
ones which might needs a whole node consisting of 
multiple cores or more than one node to complete 
the tasks[4]. Current MATRIX system does not 
support the HPC jobs and needs to be extended in 
order to support the same. 

Centralized Architecture: Most of the state-of-the-
art job management systems today have a 
centralized architecture that is jobs are submitted to 
a single scheduler which has multiple compute 
nodes under it. The scheduler is responsible for 
submitting jobs to the compute nodes and also the 
load balancing. This is an inefficient as it cannot scale 
enough. At the same time this architecture is 
vulnerable for a single point of failure that is if the 
scheduler fails then the entire system falls apart as 
there would be no track of the jobs submitted as 
well as no scheduler to accept new jobs. Some of the 
examples are Condor, Slurm, Falkon [1]. 

Many-Task computing execution fabRIC at 
eXascale: MATRIX is a state-of-the-art distributed 
job management system which eliminates the 
concept of master/slave architecture. This job 
management system has many compute nodes 
connected in the cluster. Each compute node has 
servers running on it. A client generated jobs and 
submits to one of the compute nodes. Each compute 
node would have a scheduler. The idle nodes 
perform a Work Stealing mechanism in order to steal 
jobs from heavily loaded system. The current 
implementation selects the nodes randomly to steal 
the jobs. If the randomly selected node does not 
have any job or is not overloaded, the node which 
made the request waits for sometime before 
performing the work stealing again [1]. 

III. Proposed Work 

This project aims to extend MATRIX with HPC 
support along with the current MTC support. This is 
achieved through the random approach where in the 
requested number of nodes is selected in random. 
The major considerations of the project would also 

be to facilitate inter process communication since a 
single process might be running across multiple 
nodes and the task dependency, resource 
deallocation during system under high utilization. 

The proposed work is to implement a real system 
which supports HPC tasks on the MTC task execution 
framework, MATRIX. The system includes numerous 
compute nodes to execute submitted jobs and client 
to generate the jobs. 

The work proposed is to run HPC jobs on MATRIX. 
The system takes the information as to how many 
cores each job needs to run. Resource stealing is 
implemented in order to obtain the resources to run 
the job. The nodes are selected in random to steal 
resources. The jobs to be executed are the sleep 
jobs. In case of high system utilization, the resources 
need to be released if enough resources cannot be 
obtained. In order to avoid deadlocks and starvation, 
back-off time will be implemented as required.  

a. Architecture 

The MATRIX-HPC has 4 components, a client, 
scheduler, worker and a ZHT server. The client is a 
benchmarking tool used to generate tasks to submit 
to the scheduler. The scheduler places the tasks on 
the wait queue of the worker. The worker takes the 
tasks from the ready queue and executes it. The ZHT 
server is used to maintain the metadata of the tasks 
like Task ID, which is a combination of the client id 
and self index of the worker.  

MATRIX-HPC supports single core jobs, referred to as 
MTC tasks and multiple core jobs, referred to as HPC 
tasks. The HPC task does not support dependency 
between each task, while the dependency is 
maintained within the task. 

The Client initializes the workload of given type and 
submits the workload to one or more compute 
nodes. With the help of ZHT, the task dispatcher 
could submit tasks to one arbitrary node or to all the 
nodes in a balanced distribution [11]. In the 
background, the compute nodes distribute the task 
among themselves with 2 mechanisms, work stealing 
and resource stealing. The ZHT server maintains 
information of the all the tasks distributed across 
compute nodes. The ZHT also keeps information 
about the sub tasks of an HPC tasks as to which node 
the sub tasks has been migrated to. Whenever the 
task needs to be migrated or broken into sub tasks 
and needs to be migrated, the ZHT is updated with 
the task id and description. 



 

 

Figure 1: MATRIX-HPC architecture 

b. Implementation 

Figure 2 shows the step-by-step process of the 
execution of MATRIX-HPC.  

The client submits the tasks to the scheduler. The 
task ID and description is stored in ZHT and NoVHT. 
The task is then placed in the wait queue. Once the 
task is ready to execute, that is there is no more 
dependency (in case of MTC tasks), it is moved to 
the ready queue.  

The worker picks the task from the ready queue. The 
ZHT server is looked up using the task ID to get the 
description. Once the description is received, the 
information regarding the number of cores required 
for executing and the source index is retrieved. 

If the number of cores required is 1 and the source 
index is -2, the task is an MTC task. The index -2 is 
used to identify that the task is not migrated from 
other node as a HPC subtask. If the number of cores 
required is more than 1, a check is performed if the 
task can be run on a single machine or needs 
resource stealing. If the task can be performed on 
the same node, the task waits until it acquires the 
required number of resources and executes the 
tasks. If the index is -1, then the source is current 
node and the task is placed in the complete queue. If 
the index is 0 or more, then the result is sent back to 
the source with retrieved index. If the number of 

cores is greater than 1and sufficient resources are 
not available on the same node, resource stealing is 
initiated.  

i. Resource Stealing 

Random neighbor Selection: Every worker has a 
membership table is aware of all the other workers. 
The neighbors can be selected in 2 ways for resource 
stealing. One is static that is the neighbor from 
which the resource needs to be stolen has to be pre-
defined. In dynamic selection multiple nodes are 
selected in random from the membership table to 
look up for the resource. Once the neighbors are 
chosen, the resource information is requested from 
the selected neighbors. The number of neighbors to 
be selected can be set. At present the square root of 
the total number of nodes available would be 
selected. For example if there are 1024 nodes, then 
for each resource stealing initiation, 10 nodes will be 
selected to run the tasks [10]. 

Migrating Tasks: After selecting the neighbors in 
random, ZHT server is used to get the resource 
information. There are 2 types of resources, number 
of cores idle with the worker and the worker’s ready 
queue. Each worker replies with the number of cores 
idle with them and the size of their ready queue. 

The information received is stored in a structure 
array which consists of the neighbor’s index and the 
number of idle cores associated with it. Once 
receiving information from all the selected nodes, a 
check is performed to evaluate if enough resources 
are available on all the nodes in order to migrate the 
task. If enough resources are available, then task is 
broken into sub tasks and migrated to the selected 
nodes. For example if task 1 needs 10 cores to 
execute the task on a cluster with 4 nodes and each 
node having 8 cores in total, the random node 
selection algorithm chooses 2 nodes in random with 
index 1 and 2. Node with index 1 replies with the 
number of idle cores available to be 6 and the node 
with index 2 replies with number of idle cores 
available to be 4, the task is broken into 2 parts. One 
with id appended with index 1 and the number of 
cores information in the package updated to 6 and 
the other with id appended with index 2 and the 
number of cores information in the package updated 
to 4. 

After breaking the task, the new task id and the 
description is inserted into ZHT and NoVHT keeping 
the main task id and description intact. The tasks are 
then migrated to the selected nodes and inserted at 



the front of the ready queue such that the tasks will 
the next immediate one to be executed. There are 2 
design considerations in stealing the resources: 

1. When requesting for resource information, 
none of the resources on the other node are 
locked. Instead only the information is collected 
and the task is migrated if enough resources are 
available. The advantage of this approach is it is 
not prone to deadlocks. But the major 
disadvantage of this approach is, 2 nodes might 
select same random nodes for resource stealing. 
Though the information received is accurate, by 
the time the task is placed on the ready queue, 
the resource would be gone. This leads to extra 
waiting time for the task to get hold of the 
resources again and execute.  

2. When requesting for resource information, 
variable idle core information is locked along 
with the ready queue. This is to ensure that the 
information received will remain the same even 
after migrating the task. This is the best 
approach. But the drawback of this design is 
deadlock. Multiple parameters need to be taken 
into consideration while developing this 
method. Work stealing and resource stealing 
should be deadlock free when they work 
together. At the same time in resource stealing 
the chances of a circular deadlock are high. For 
example, 2 nodes select same random nodes 
with index 0 and 3, the node 1 tries to steal 
resource from index 0 and hence locks the 
resources on 0. Node 2 tries to steal resources 
from 3 and locks resources on 3. Now node 1 
has 0, but blocks on 3 while node 2 has 3 and 
blocks on 0. This leads to a circular deadlock. 

ALGORITHM 1. Dynamic Multi-Random Neighbor Selection 
(DYN-MUL-SEL) 

Input: Node id (node_id), number of neighbors (num_neigh), and 
number of nodes (num_node), and the node array (nodes).  
Output: A collection of neighbors (neigh).  
bool selected[num_node]; 
for each i in 0 to num_node do 
        selected[i] = FALSE;   
end 
selected[node_id] = TRUE;  
Node neigh[num_neigh]; 
index = −1;  
for each i in 0 to num_neigh−1 do 
        repeat 
                index = Random( ) % num_node; 
        until !selected[index]; 
        selected[index] = TRUE; 
        neigh[i] = nodes[index]; 
end 
return neigh;  

 

Figure 2 - HPC execution sequence 

 



3. ALGORITHM 2. RESOURCE STEALING ALGORITHM 

4. Input: Structure array with nodes selected in random, 
package of the task to be broken into subtasks.  

5. Output: NULL 
6. get_idle_core_information(idle_core_info 
7. Success=check_for_sufficient_cores(idle_core_info,nu

m_of_cores,selected_neigh) 
8. If(!success) 
9. release_resources(idle_core_info) 
10. else 
11.  for(i=0;i<selected_neigh_count) 
12.  

 package=build_package_with_self_index()  
13. Update_ZHT_and_NoVHT(package) 
14.  

 Migrate_Tasks(selected_neigh[i].index 
15.  

 

ii. ZHT and NoVoHT Updates 

The ZHT and NoVHT are the integral part of MATRIX 
[9]. The task metadata and description is stored in 
the ZHT. Each worker has a ZHT server and a global 
NoVHT store.  

 

Figure 3 - ZHT and NoVHT: The relation between the 
worker, ZHT server and NoVHT store. 

The ZHT and NoVHT is updated during the following 
scenarios 

The client requests the task launcher to generate 
tasks. Once the tasks are generated, the client 
submits it to the schedulers or a single scheduler. 
The new task id and description is stored in ZHT and 
NoVHT, which is then used by the worker to look up 
the description to run the tasks. In the second 
scenario, when and idle node performs work 
stealing, the heavily loaded node while migrating 
tasks updates the ZHT server. The third scenario is 
during resource stealing. The task is looked up in the 
ZHT server and after stealing resources, the task is 
broken into subtasks with unique id’s consisting of 
the index number of the target nodes in the task id. 
The package information is also updated with the 
number of resources each sub task needs. This 

information is again updated on to ZHT server before 
migration. Now it works in the same way on the 
other node which looks up for id and executes the 
task. 

Using ZHT and NoVHT might be a bottleneck with 
the network performance as the package needs to 
be built very often and updates to the ZHT and 
NoVHT is made very frequently with the HPC tasks.  

iii. Execution Unit 

As figure 4 describes, MATRIX uses 3 queues, Wait 
Queue, Ready Queue and the Complete Queue. In 
HPC implementation, Wait Queue is not taken into 
consideration as the only transaction will be with the 
Ready Queue and the Complete Queue. The tasks 
are inserted at the front of the Ready Queue during 
resource stealing and the completed tasks are 
inserted back to the complete queue similar to MTC 
task operation. The complete queue will always have 
the source task id and not the sub task ids. 

 

Figure 4 - Different queues used in MATRIX framework 

iv. Back-off Implementation 

In order to avoid deadlocks, there should be a back-
off mechanism implemented to release resources 
when none of them can acquire it. There are 3 types 
of back-off implementations, 

1. When the task can run on a single system 
that is if the number of cores needed are 
available on the same node, the task waits 
until the resources are relieved by other 
worker threads. This can be either done by 
continuous polling or make the thread sleep 
for sometime before it checks the resource 
status again. 

2. When the resource stealing is initiated, the 
resource information is received from all 
the nodes. The source node then performs 
an evaluation if the required number of 
resources is available. If available, tasks are 



migrated. If not, then the resources locked 
on all resources are relieved and the thread 
sleeps for a back-off time which is usually 
(index*1000) ms before trying again. 

3. During resources stealing, the circular 
deadlock explained needs to be handled. 
This would be the challenging of all. This 
can be done in 2 ways. A separate thread is 
created to get resource information. If the 
result is not received for a specified amount 
of time, the thread would be destroyed and 
back-off is implemented before trying 
again. In the second method, while locking 
the resources on the other nodes, a timed 
lock can be implemented. In the concept of 
timed lock, if the lock is not obtained for 
the specified amount of time, the thread 
gives up on the mutex and returns with a 
non-zero number. After getting this status 
information, a back-off is implemented 
before trying again. 
 

v. HPC Task Execution 

The HPC tasks are long tasks which needs multiple 
nodes to run. Hence there should be a mechanism to 
make it start at the same time and end at the same 
time. Due to network latency, starting at the same 
time might not be possible. Hence MATRIX-HPC 
ensures that the tasks start at the same time on the 
respective nodes with barrier implementation.  

In order for the tasks to end at the same time, each 
sub task migrated to other nodes for execution 
contains the source index to which the result needs 
to be sent in the task description. In the meantime 
the source node maintains a map which has the task 
id as the key and the amount of task executed as the 
value. Each node after execution of the task, updates 
the map on the source node with the amount of task 
it ran. The source node keeps polling the map and 
once the map is completely updated by all the 
nodes, the task will be placed in the complete 
queue.  

This implementation ensures the HPC tasks start at 
the same time and end at the same time across all 
the nodes.  

IV. Evaluation 

In this section, the result of MATRIX run on 6 nodes 
is presented. The jobs are sleep 0. A single client 
submits 1000 task, with each task needing 10 cores 

to run. This ensures the tasks spans atleast across 2 
nodes. All the tests are run on Jarvis cluster. Each 
node in Jarvis consists of 8 cores. Jarvis has 10 nodes 
in the cluster. The tests were carried out till 6 nodes. 
That is 1, 4 and 6 nodes. The metric measured is 
throughput.  

Throughput measures how fast the system can 
execute tasks. It is calculated as the total tasks 
executed divided by the time taken to execute all 
tasks. In the current HPC implementation, the 
execution time is measured at each server. The start 
time is noted at the client and the end time at the 
worker executing tasks.  

 

While testing on a single node, the number of cores 
each task needs is 4. As we observe, the throughput 
for 1000 tasks is around 19~20 tasks per second. For 
4 nodes and 6 nodes the number of tasks executed is 
1000 with each task needing 10 cores. With 4 nodes, 
around 33~34 tasks can be executed per second 
while at 6 nodes around 47~48 tasks can be 
executed per second.  

MATRIX-HPC was run on Amazon AWS up-to 16 
nodes and a throughput of around 66~67 tasks per 
second were observed. The number of tasks 
submitted was 1000. Since the instance type used 
was m1.medium, each node has 1 core. Hence each 
task requests for 4 cores which is equivalent to 4 
workers. Since the results are not concrete and 
cannot be made fair comparison with the Jarvis 
environment, it is not included in the graph above.  

The trend shows that MATRIX-HPC is performing 
better in comparison with SLURM. But this needs to 
be tested at higher scales to make a fair comparison. 
The future works of MATRIX-HPC includes scaling the 



framework up-to 64 nodes and compare it with 
SLURM and CloudKon-HPC. 

 

V. Related Work 

The job schedulers could be centralized, where a 
single dispatcher manages the job submission, and 
job execution state updates; or hierarchical, where 
several dispatchers are organized in a tree-based 
topology; or distributed, where each computing 
node maintains its own job execution framework [1]. 

The University of Wisconsin developed one of the 
earliest job schedulers, Condor [6], to harness the 
unused CPU cycles on workstations for long-running 
batch jobs. Slurm [7][8] is a resource manager 
designed for Linux clusters of all sizes. It allocates 
exclusive and/or non-exclusive access to resources 
to users for some duration of time so they can 
perform work, and provides a framework for 
starting, executing, and monitoring work on a set of 
allocated nodes. 

In 2007, a light-weight task execution framework, 
called Falkon [6] was developed. Falkon also has a 
centralized architecture, and although it scaled and 
performed magnitude orders better than the state 
of the art, its centralized architecture will not even 
scale to petascale systems. A hierarchical 
implementation of Falkon was shown to scale to a 
petascale system in, the approach taken by Falkon 
suffered from poor load balancing under failures or 
unpredictable task execution times. 

A decentralized job scheduling system called 
Sparrow: Scalable Scheduling for Sub-Second Parallel 
Jobs [10] was developed by University of California, 
Berkeley. This job management system has many 
schedulers and workers. The schedulers incorporate 
power of 2 approaches, where in the scheduler 
selects 2 workers randomly to run the task. The 
selected workers reply with the size of the job 
queue. Then the scheduler places the job on the 
worker with lesser queue length. The drawback of 
this system is if 2 nodes are selected, one with 2 jobs 
which needs approximately 50ms each to execute 
and another node has only one job which needs 
approximately 300ms to execute, since the queue 
length is only one in the latter node, the scheduler 
places the job on it. Hence the wait time is 200ms 
more compared to the first one. 

CloudKon now supports HPC jobs. In this version of 
CloudKon, the HPC jobs are placed on the SQS 

queue. Each worker takes a task from the HPC queue 
and runs the task [15]. CloudKon-HPC cannot run on 
any other cluster apart from Amazon AWS 
infrastructure since it uses Amazon web services. A 
fully functioning MATRIX-HPC will not have any 
dependency on the executing platform.  

VI. Conclusion 

Running MTC and HPC jobs on distributed platform 
poses significant challenge. The purpose of executing 
tasks across the nodes is to obtain a better 
throughput and efficiency. To achieve this, we need 
to design an efficient scheduler that not only works 
well with sub-second tasks but also with long tasks 
that needs to run on multiple nodes.  

This project helped in understanding different state-
of-the-art distributed job scheduling frameworks and 
also implementing one. Working alone on a real 
system implementation helped in pushing the limits 
and getting a working system in place. The project 
also gave an opportunity to think of different 
solutions that can be implemented and choose the 
right one.  

Considering the bottlenecks in the base MATRIX 
system, the goal was to implement resource stealing 
and launching tasks on the other nodes for the 
current term. But the MATRIX-HPC is now a fully 
working system which can run HPC tasks on multiple 
nodes without any bottleneck. This is evaluated 
through running the system up-to 6 nodes. The 
project stayed on schedule and HPC is now 
implemented. A few code changes needs to be made 
to make it clean and work as expected. 

Our future work includes: 

1. The short term goal is to get the system 
running up-to 64 nodes scales on Amazon-
AWS platform and compare it with SLURM 
and CloudKon-HPC.  

2. The system needs to run on all platforms 
like Kodiak and Bluegene/P clusters with 
the same efficiency and performance. 

3. Random node selection needs to be 
changed and an efficient mechanism needs 
to be in place to make better selection of 
nodes to migrate tasks. For example ZHT 
can be used to differentiate free workers 
and busy workers. 

4. Integrate HPC with new MATRIX that will be 
built independent of ZHT.  
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