
 1

HDMQ: Towards In-Order and Exactly-Once Delivery using

Hierarchical Distributed Message Queues

Dharmit Patel, Faraj Khasib, Shiva Srivastava, Iman Sadooghi, Ioan Raicu

dpatel74@hawk.iit.edu, fkhasib@hawk.iit.edu, ssriva10@hawk.iit.edu, isadoogh@iit.edu, iraicu@cs.iit.edu

Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

Abstract: In todayôs world distributed message queues is

used in many systems and play different roles such as

content delivery, notification system and message delivery

tools. It is important for the queue services to be able to

deliver messages in larger scales, at the same time it must

be highly scalable and provide parallel access at the same

time. An example of a commercial state of the art

distributed message queue is Amazon Simple Queuing

Service (SQS). SQS is a distributed message delivery fabric

that is highly scalable. It can queue unlimited number of

short messages (maximum size: 256 KB) and deliver them

to multiple users in parallel. In order to be able to provide

such high throughput at large scales, SQS confines some of

the features that are provided by traditional queues. SQS

does not guarantee the order of the messages.

Furthermore, it also does not guarantee the exactly once

delivery as duplicate messages can be delivered. This

paper addresses these limitations through the design and

implementation of HDMQ, a hierarchical distributed

message queue. HDMQ consist of collection of area

message nodes that can be used to store messages up to 512

KB. It utilized round robin local load balancer to save the

message and scale across the area region accordingly.

HDMQ provides 1 replica for high reliability of messages.

HDMQ provides SQS-like APIs in order to provide

compatibility with current systems that currently use SQS.

We performed a detailed performance evaluation and

compared HDMQ to SQS measuring throughput, latency

and price per request. We found HDMQ to outperform

SQS by up to 10-20% in throughput, 100% in latency, and

50% less in costs.

1 INTRODUCTION

Computing capacity of large-scale system is increasing at an

exponential rate today and is expected to be in the order of

Exascale Computing by 2018. Million of nodes and billion of

threads of execution will be producing millions of messages

[1]. As the size of these systems grow, the number and size of

messages will also grow exponentially. There is a need for an

effective message queue service to provide all the features

needed by an application at an effective cost.

There are many effective ways available to manage these

messages that rely different ways to manage but based on

research they all compromise on certain feature of messaging,

main criteriaôs that we considered while designing our system

were a. Throughput, b. Latency, c. Cost, d. Message Order e.

Reliability and f. Scalability and we found one or more of

these to be missing from available system out there. The most

popular message queue system Amazon SQS does not ensure

message order and has a significant cost associated with it

especially as the size of the systems grow larger to Exascale

level [2]. We also looked at Hedwig [3] which is a publish-

subscribe system designed to carry large amount of data across

the Internet in a guaranteed-delivery fashion from those who

produce it (publishers) to those who are interested in it

(subscribers) [3]. Hedwig offers a lot of features but on system

design analysis we found that all the message go through a

single hub server (zookeeper) that save messages in a region

where the order is maintained but messages could be stored in

different regions and order is not maintained between regions.

Also the hub nodes could limit the scalability of the system.

Based on our study on the available systems as discussed

above we designed HDMQ (Hierarchical Distributed message

Queue Service). The main goals of HDMQ are to provide high

throughput, latency, message order, and reliability and be

scalable. Our inspirations were primarily Hedwig and SQS.

We designed this system that stores messages in storage nodes

that are structured in an area style organization where each

node is a part of a hierarchal region where the queue address

would allow the front end nodes to direct the message to

respective regions in hop where the lowest region level would

maintain message order consistency for read and write

operations. Our goal was also to make this system highly

scalable and provide all the other features which we were able

to do so as discussed in the results section.

2 BACKGROUND INFORMATION AND RELATED

WORK

Distributed Message Queues now a days is used in many

systems and play different roles such as content delivery,

notification system and message delivery tools. It is important

for the queue services to be able to deliver messages in larger

scales and provide parallel access at the same time.

2.1 BACKGROUND INFORMATION

ActiveMQ is a message-oriented library, which ensures

reliability between distributed processes. It is optimized to

avoid overhead with a P2P or Server Client Model for pushing

message to the receiver [6]. It uses its own communication

protocol to ensure speed and reliability. They do

communication between servers by simple message

communication. With each node launch, node launches the

server to listen to any incoming messages and handle them.

Active MQ is highly configurable but itôs slow and has issue

mailto:dpatel74@hawk.iit.edu
mailto:fkhasib@hawk.iit.edu
mailto:ssriva10@hawk.iit.edu
mailto:isadoogh@iit.edu
mailto:iraicu@cs.iit.edu

 2

of lost/duplicate message. There are three kind of scaling

available in Active MQ like Default Transport, Horizontal

Scaling and Partitioning. It eventually crashes once per month

[6].

Amazon SQS is a distributed, message delivery service, which

is highly reliable, scalable, simple and secure [2]. SQS is

distributed over multiple data centers so there is no single

point of failure. SQS delivers and guarantees extremely high

availability. It can deliver unlimited number of messages at

any time. The size of the message cannot be more than 256

KB. And it ensures at least 1 delivery of the message. This

tells us that every operation you do with the message is

assumed as idempotent. SQS retains message up to 14 days. It

also provides batching of messages up to 10 messages or 256

KB in total whichever is higher is applicable [2]. When a

message is received, it becomes locked while being processed.

This keeps other computer from processing the message

simultaneously. If the message processing fails, the lock will

expire and the message will be available again. In the case

where the application needs more time for processing the lock

timeout can be changed dynamically via the change message

visibility operation. But it comes with a price tag of $0.50 for

every 1M requests. Itôs not high price but it certainly isnôt free

either. It doesnôt deliver message ordering [2].

Hedwig is a publish-subscribe system designed to carry large

amounts of data across the Internet in a guaranteed-delivery

fashion from those who produce it (publishers) to those who

are interested in it (subscribers) [3]. The Hedwig is designed

with the goal to give Guaranteed Delivery, Topic Based

publisher and subscriber, Incremental Scalability and High

availability. In Hedwig, clients publish messages associated

with a topic, and they subscribe to a topic to receive all

messages published with that topic. Clients are associated with

(publish to and subscribe from) a Hedwig instance (also

referred to as a region), which consists of a number of servers

called hubs. The hubs partition up topic ownership among

themselves, and all publishes and subscribes to a topic must be

done to its owning hub [9]. When a client doesn't know the

owning hub, it tries a default hub, which may redirect the

client. Running a Hedwig instance requires a Zookeeper server

and at least three Bookkeeper servers. Because all messages

on a topic go through a single hub per region, all messages

within a region are ordered. Providing global ordering is

prohibitively expensive in the wide area. Hedwig client such

as PNUTS, lack of global ordering is not a problem, as

PNUTS serializes all updates to table row at a single

designated master for that row. There is no ordering between

different topics, as topics are independent. Version vectors are

associated with each topic and serve as the identifiers for each

message. Vectors consist of one component per region. A

component value is the region's local sequence number on the

topic, and is incremented each time a hub persists a message

(published either locally or remotely) to BookKeeper[9]. They

still need to implement more on how version vectors are to be

used, and on maintaining vector-maxes [9].

Couch-RQS Queue system is based on database system, which

is called Couch DB, which is basically a fast light weigh

NOSQL DB [7]. The problem with this Library is that it is a

primitive application and doesnôt have significant components.

It uses database to store its information and thatôs not going to

give us better performance. It might be faster than any SQL Or

NO-SQL database but thatôs not useful in commercial area

where we deal with distributed environment. As their

limitation is that Couch-RQS cannot run safely in a

distributed/replicated environment and cannot scale high,

cannot provide high availability [7].

Apache Kafka is publish subscribe messaging rethought as

distributed commit log. It is very fast as a single Kafka broker

can handle hundreds of megabytes of reads and writes per

second from thousands of clients [5]. It is also highly scalable

as it is designed to allow single cluster to serve as the central

backbone for large organization. It takes message from

producers and feeds them to consumers. Each Kafka fiber

maintains a partitioned log, Kafka cluster retains all messages

whether they have been published or not. It relies heavily on

the file system for storing cache messages. It is build on top of

JVM [5]. Kafka nodes perform load balancing. It uses

asynchronous messages sending. It uses traditional push pull

model for messaging where data is pushed to the broker from

the producer and pulled from the broker by the consumer.

Kafka replicates its log information for each topic across a

configurable number of servers to recover from failures. It

performs cleaner log aggregation as it abstracts away the

details of files and gives a cleaner abstraction of log or event

as stream of messages. It is platform independent as it runs on

JVM. The bottleneck of this system is not CPU or disk but

network bandwidth particularly in the case of data pipeline

that needs to send over data centers that is distributed over

wide area network. It supports batch compression of messages

[5].

Rabbit MQ is a robust messaging system for applications, it is

open platform, which runs on all operating systems and

supports a large number of client developer platforms [4]. It

allows application to connect and scale using asynchronous

messaging. It allows options to do tradeoff between

performance, reliability, including persistence, delivery

acknowledgements, publisher confirms and high availability.

It offers Flexible Routing, user can setup simple routing or use

bind exchanges or even use custom exchange type for routing

[4]. It offers óMirroringô where queues can be mirrored across

several machines ensuring that in the event of hardware

failure, messages are safe. It offers management UI to monitor

and control every aspect of message broker. It offers client in

a variety of languages (C#, Java, clojure, erlang, Perl, python,

ruby, PHP). It can report memory usage information for

connections, queues, plugins and other processes in memory

[4]. It can detect memory usage and can raise the memory

alarm and block all connections until the memory alarm is

cleared, and normal services are resumed. It ships in the ready

to use state, and can be customized in environment variables,

configuration file, runtime parameters and policies [4].

2.2 Related Work

There have been many distributed queue service

implementations proposed over the years. We discuss Amazon

 3

SQS in this section due to its wide use in commercial

application. Amazon SQS is a distributed message service

from Amazon. It is highly scalable and fast. Client is allowed

to send message up to size 256 KB [2]. It ensures at least 1

delivery of message. Some of the other distributed queue

services are RabbitMQ, Apache Kafka, Hedwig, Couch-RQS

and Active MQ [3][4][5][6] [7]. Most of these services are

built and inspired from Amazon SQS.

Active MQ is a message broker written in JAVA together with

a full support JMS client [6]. It was designed to support

multiple languages using multiple protocols like AMQP,

Stomp and OpenWire. This protocols together support

multiple languages. Active MQ is highly configurable but itôs

slow and has issue of lost/duplicate messages. You have three

kind of scaling available in Active MQ like Default Transport,

Horizontal Scaling and Partitioning [6]. It eventually crashes

once per month.

Couch-RQS solves all the limitations Amazon SQS provides

but at the expense of requiring that you maintain Couch

instance and that it only supports a single access-point (single

master Couch DB instance), which limits the potential

availability [7].

Apache Kafka is a distributed, partitioned, replicated commit

log service. It provides the functionality of a messaging

system, but with a unique design [5]. At a high level,

producers send messages over the network to the Kafka

cluster, which in turn serves them up to consumers [5].

Hedwig on other side is a publish-subscribe system designed

to carry large amounts of data across the Internet in a

guaranteed-delivery fashion from those who produce it

(publishers) to those who are interested in it (subscribers). It

has incremental scalability, high availability of messages,

guaranteed delivery of messages and publishers and

subscribers are topic based [3].

RabbitMQ is not a highly scalable queue. It also delivers

message in unordered format and not FIFO [4]. Message can

be delivered twice to subscribers. All the instances have same

amount of overhead due to queues on every node in a cluster.

From our point of view none of them provides a complete

solution. All of them have some trade offs and are developed

based on the requirement of the client [4].

3 DESIGNS AND IMPLEMENTATION OF HDMQ

We believe that by creating relationship between storage

nodes and message queue we can provide features such as

message order while still maintaining throughput and latency.

In our design we have organized the storage nodes in an

ñAreaò style hierarchy, where each node are part of hierarchal

region. The main value of our design lies in the fact that we

are able to achieve message localization of message storage

for a queue within a sub region using ñAreaò style approach,

which allows us to maintain message order and high

throughput.

3.1 Architecture Overview

Figure 1: Hierarchical Style Message queue system:

We organized our system in three components:

A. Storage Nodes: All the storage in two hierarchical

regions, where a sub region consists of ~10 nodes

and a router node, the main region consists of

multiple sub regions. All the main regions together

make up the storage node system.

B. Front End Nodes: These are the nodes that clients

interact with and make request to. Each front-end

node maintains a local hash-table for that contains

updates for ñAreaò for each queue ID. Currently we

are using 10:1 ratio for number of storage nodes vs.

front-end nodes.

C. Queue ID Manager Node: We use one queue ID

node in the system that determines the storage region

for new queues and generate area (queue ID) for the

new nodes

Area: It defines the address for a set of nodes that are part of a

sub region.

For example assume we have 10,0000 total storage nodes and

x number of front-end nodes. This system will break down the

nodes in regions and sub regions down to where each of

lowest hierarchy region contain ~ 10 nodes. In this case we

can divide 10,000 nodes in 10 regions of 1000 nodes (1 to 10),

then each 1000 node in region of 100 nodes and this 100 node

regions in set of 10 nodes. So for example node 2287 will

have area ï 2, 2, 8

3.2 Operation Overview

Write Operation : For insert operation the front-end node will

route the messages to the given area where the router for the

region will determine which node will be next for insert. This

router will follow round robin insert strategy until all the 10

nodes in the region are full in which case incoming insert

message will be routed to next available regions (to region 9 in

above example). Front-end nodes will also maintain a hash

table and when the write operation overflows to next regions

they will be updated (In above example to 2,2,8:9, but the

queue ID will remain the same and will act as the key in the

front end node).

 4

Read Operation: For read operation, front-end nodes use the

area to determine the region where messages are stored for

that queue, then they initiate read request to the router for that

region to read messages. The messages are read again by the

router using a round robin strategy hence maintaining the

message order among different storage nodes, each storage

node also follows round robin strategy to read messages hence

maintaining overall message order. If there is overflow of

messages to another region, then using updated queue id,

front-end nodes are able to forward the read request to the

overflow region.

Queue ID Manager Node: We will also have a queue ID

manager node that will maintain the list of queue ID and

generates new ID based on system load and assign initial area.

We believe that this node will be low stress node and we only

need 1 ~ 3 nodes to manage the system.

Replication: Synchronous Replication is provided for higher

reliability. It can be configurable by the user whether one

wants replication or not for the reliability of the message.

Every message store on the original node is also copied in the

replication node. As of right now there is only one replica of

the message.

4 REFINEMENTS

Exactly one Delivery:

Only single copy of message is saved. There is no chance of

getting two get requests for the same message. Once the

message is delivered, the message is locked inside the node

until it is delivered to the client. This doesnôt mean that we

donôt store multiple copies of message. We store multiple

copies of message for high reliability, but retrieve the other

message when there is failure of a node. This is how the

reliability is maintained in the system. Compared to Amazon

SQS, our system offers Exactly one Delivery [2]. If we have

Exactly one delivery functionality in Amazon SQS using

DynamoDB as used in CloudKon, the performance of the

Amazon SQS decreases by 30% [8].

Ordering of Message:

When the message comes in, the Router put the message

inside the nodes that are in the section in round-robin fashion.

So when there is a get request, the Router starts the delivery

of message from the first node. If the first node doesnôt have

the message, then it will say empty queue. When the message

is fetch from the queue, the information about where to get

the next message is stored in the router. By default when the

first message is fetched, the message is always fetched from

the first node in the section. So if the incoming of message is

so much or the section has high load and if the section nodes

are full of messages, then the next incoming message will be

saved in another section of the Area. This is done in two

steps, (i) When the section is full of messages, the section is

changed to the next available section (ii) An Atomic

operation is performed where all the front end nodes are

updated and paused for a small amount of time to get

updated. Compared to Amazon SQS our system offers

ordering of message while delivering [2].

Large Message Size

Our System support a larger message size of 512 KB, as our

design all depends upon the type of the nodes you select and

the number of nodes you keep in one section. It doesnôt

depend upon the number of front-end nodes, or the number of

section. Compared to Amazon SQS, our system offers double

message size [2].

Mirrored Section Behavior

Each section is mirrored for the High Reliability of the

message. So if any node fail or any section fail, we still have

the message safe on another section or node.

5 PERFORMANCE EVALUATION

We evaluated Amazon SQS system using 20 client running

on M1.xlarge and granularity from 1KB ï 256 KB message

size, submitted 1 million messages, and after submitting all

the 1 million messages, the 20 Client start receiving the

message from the very next time. The figure shows us the

comparison between the SQS repeated messages and the

overhead for the execution of the messages in seconds.

Figure 2: SQS Duplicate Message vs. Cost for Execution

According to the figure we observed that the overhead shown

here in the graph is only the overhead of the SQS. If in a real

system, if 1 message takes on an average 5 sec to execute,

then this many number of message * 5 + SQS overhead for

processing that message will give you the exact overhead of

the whole system utilizing the SQS. If we take the average of

all the repeated messages for all the granularity, we found

that on an average 23.73 % of total messages are found in

SQS as repeated messages, which is a big overhead to the

system. This is just for the 1
st
 million messages. After the

delivery of repeated message we still will be having the

repeated messages. So if we want to stop these repeated

messages from SQS, we can use DynamoDB for handling the

single delivery of message but it will probably decrease the

performance of the whole system by 30 % as shown in the

CloudKon[8].

0

2000

4000

6000

8000

0

100000

200000

300000

400000
1

K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

C
o

st
 o

f
E

x
e

cu
tio

n
(S

e
co

n
d

)

D
u

p
lic

a
te

 M
e
ss

a
g

e

Message Size

SQS Duplicate Message vs COST FOR
EXECUTION(SECOND)

