HDMQ: Towards InOrder and ExacthOnce Delivery using
Hierarchical Distributed Message Queues

Dharmit Patel, Faraj Khasib, Shiva Srivastdwaan Sadooghiloan Raicu
dpatel74@hawk.iit.eddkhasib@hawk.iit.edussrival0@hawek.iit.edusadoogh@iit.eduraicu@cs.iit.edu

Departnent of Computer Science, lllinois Institute of Technology, Chicago IL, USA

Abstract | n t o d a ydstibutedo meksdgequeuesis
used in many systems and play different roles such as
content delivery, notification system andmessagedelivery
tools. It is important for the queue services to be able to
deliver messags in larger scales, at the same time it must
be highly scalableand provide parallel access at the same
time. An example of a commercial state of the art
distributed messagequeue is Amazon Simple Queuing
Service §Q9. SQS is a distributed message delivery fabric
that is highly scalable. It can queue unlimited numberof
short messages (maximum size: 256 KB) and deliver them
to multiple users in parallel. In order to be able to provide
such high throughput at large scales, SQS confines some of
the features that are provided by traditional queues. SQS
does not guarantee the order of the messages.
Furthermore, it also does not guarantee the exactly once
delivery as duplicate messages can be delivered. This
paper addresses these limitations through the design and
implementation of HDMQ, a hierarchical distributed
message gaue HDMQ consist of collection of area
message nodes that can be used to store messages up to 512
KB. It utilized round robin local load balancer to save the
message and scale across the area region accordingly.
HDMQ provides 1 replica for high reliability of messages.
HDMQ provides SQSlike APIs in order to provide
compatibility with current systems that currently use SQS.
We performed a detailed performance evaluation and
compared HDMQ to SQS measuring throughput, latency
and price per request. We found HDMQ to outperform
SQS by up t010-20% in throughput, 100% in latency, and
50% lessin costs.

1 INTRODUCTION

Computing capacity of largscale system is increasing at an
exponential rate today and is expected to be in the order of
ExascaleComputing by 208. Million of nodes andillion of
threads of execution will bproducing millions ofmessage

[1]. As the size of these systems grahe number and size of
message will also grow exponentially. There isreed for an
effective messagequeue service to provide athe features
needed by an application at an effective cost.

There are many effective ways available to manage these
message that rely different ways to manage but based on
research they all compromise on certain feature afsaging,
main criteriab6s that we consi
were a. Throughput, b. Latency, c. CostMessageOrder e.
Reliability and f. Scalability and we found one or more of

1

these to be missing from available system out there. The most
popular messageueue system Amazon SQ®es not ensure
messageorder and has a significant cost associated with it
especially as the sizaf the systems grow larger tox&scale
level [2]. We also looked at Hedwig [3] which is a publish
subscribe system desigd to carry large amount of data across
the Internet in a guaranteeelivery fashion from those who
produce it (publishers) to those who are interested in it
(subscribers) [3]. Hedwig offers a lot of features but on system
design analysis we found thall the messagego through a
single hub server (zookeeper) that savessage in a region
where the order is maintained buessage could be stored in
different regions and order is not maintained between regions.
Also the hub nodes could limit the scaldpiof the system.

Based onour study onthe available systemias discussed
above we designedDMQ (HierarchicalDistributedmessage
Queue Serdge). The main goals ¢iDMQ areto provide high
throughput, latencymessageorder, and reliability and be
scalable. Our inspirations were primarily Hedwig and SQS.
We designed this system that stomesssage in storage nodes
tha are structured in an arestyle organization where each
node is a part of a hierarchal region where the queue address
would allow the front end nodes to direct tmeessageto
respective regions in hop where the lowest region level would
maintain messageorder consistency for read and write
operations. Our goal was also to make this system highly
scalable and provide all thehet features which we were able
to do so as discussed in the results section.

2 BACKGROUND INFORMATION AND RELATED
WORK

Distributed MessageQueuesnow a days is used in many
systems and play different roles such as content delivery,
notification system anchessagelelivery tools. It is important

for the queue services to be able to delivesssage in larger
scales and provide parallalcess at theame time.

2.1 BACKGROUND INFORMATION

ActiveMQ is a message®riented library, which ensures
reliability betweendistributed processs It is optimized to
avoid overhead with a P2P or Server Client Model for pushing
messagdo the receivef6]. It usesits own communication
protocol to ensure speed and reliabilityThey do
communication betweenservers by simple message
abranueicationw With each cheds laghamde punahesine s y s
server to listerto any incomingmessage and handle them.
Active MQ is highly onfigurable buti t sbow and has issue

mailto:dpatel74@hawk.iit.edu
mailto:fkhasib@hawk.iit.edu
mailto:ssriva10@hawk.iit.edu
mailto:isadoogh@iit.edu
mailto:iraicu@cs.iit.edu

of lost/duplicatemessage There arethree kind of scaling
available inActive MQ like Default Tansport, Horizontal
Scaling and Partitioning. It eventually crashes once per month

[6].

Amazon SQS is distributed messagelelivery service, which

is highly reliable, scalable simple and secur§]. SQS is
distributed over multiple data centers so there is no single
point of failure.SQS delivers and guarantees extremely high
availability. It can deliver unlimited number ahessage at
any time. The size of thmessagecannot be more than 256
KB. And it ensures at least 1 delivery of thessageThis
tells us thatevery operation you do with thmessageis
assumed as idempote®QS retaia messagelp to 14 dayslt

also provides batching ahessage up to 10messageor 256

KB in total whichever is highers applicable[2]. When a
messageés received, it becomes locked while being processed.
This keeps other computer from processing thessage
simultaneously. If thenessagerocessing fails, the lock will
expire and themessagewill be available again. In the case
where the application needs more time for processing the lock
timeout can be changed dynamically via the changssage
visibility operation.But it comes with a price tag of $0.50 for
every IMrequestit s ot hi gh price but
either.l t d dediverméssagerdeing [2].

Hedwigis apublishsubscribesystem designed to carry large
amounts of data across the Internet iguaranteedlelivery
fashion from those who produce fiublisher$ to those who

are interested in its(bscribers[3]. The Hedwig is designed
with the goal to give GuaranteeDelivery, Topic Based
publisher and subscriber, Incremental Scalability and High
availability. In Hedwig, clients publishmessage associated
with a topic, and they subscribe to a topic to receive all
message published with that topic. Clients are associatigd w
(publish to and subscribe from) a Hedwigstance (also
referred to as eegion), which consists of a number of servers
called hubs The hubs partition up topic ownership among
themselves, and all publishes and subsctibestopic must be
done to itsowning hub[9]. When a client doesn't know the
owning hub, it tries a default hub, which may redirect the
client. Running a Hedwig instance requires a Zookeeper server
and at least three Bookkeeper serv@wscause alinessage

on a topic go through a gjle hub per region, allnessage
within a region are orderedProviding global ordering is
prohibitively expensive in the wide arddedwig client such

as PNUTS, lack of Igbal ordering is not a problem, as
PNUTS serializes all updates to table row atsiagle
designated master for that roWhere is noordering between
differenttopics,astopics ardndependentVersion vectors are
associated with each topic and serve as the identifiers for each
message Vectors const of one component per regioA.
component value is the region's local sequence number on the
topic, and is incremented each time a hub persistessage
(published either locally or remotely) BookKeepef9]. They

still need to implement more on how version vectors are to be
used, and omaintaining vectomaxeg9].

CouchRQSQueue system is based on dase system, which
is called Couch DB, which is basically a fast light weigh

2

NOSQL DB[7]. The problem with this Library is that is a
primitive applicati otmompanehtsd o e
ltusesdat abase to store its tonfor
give us better performancke might be faster than any SQL Or
NO-SQL database bu t hat 6s not usef ul
where we dal with distributed environment As their
limitation is that CouctRQS cannot run safely in a
distributedreplicated avironment and cannot scale high,
cannot provide high availability].

Apache Kafka is publish subscribmessaging rethougtds
distributedcommit log. It is very fast as a single Kafka broker
can handle hundreds of megabytes of reads and writes per
second from thousands of cliefif§. It is also highly scalable

as it is designedbdtallow single cluster to senas the central
backbone for large organization. Ittakes messagefrom
producers and feeds them to consumers. Each Kafka fiber
maintains a partitioned lodgafka cluster retains alinessage
whether they &ve been published or not.rklies heavily on

the file system for storing cacleessage It is build on top of
JVM [5]. Kafka nods perform load balancing. luses
asynchronousnessage sendig. It uses traditional pushpull
model for messaging where data is pushed to the broker from
ithe prodeicert aad pulley from sthe dtokeyf theecasumer.
Kafka replicatesits log information for each topic across a
configurable number of servets recover from failures. It
performs cleaner log aggregation as it abstracts away the
details of files andjivesa cleaner abstraction of log or event
asstream ofmessage It is platform independent as it runs on
JVM. The bottleneck of this system is not CPU or disk but
network bandwidthparticularly in the case of data pipeline
that needs to send over data centers thalisisibuted over
wide area networKt supportsbatchcompression ofmessage

[5].

Rabbit MQ is arobust messaging system for applications, it is
open platform, which runs on all operating sysieand
supportsa large number olient developer platform [4]. It
allows application to connect and scale usasynchronous
messaging. Itallows options to do tradeoff between
performance, reliability, including persistence, delivery
acknowledgements, publisher confirraed high availability.

It offers Flexible Routinguser can setup simple routing or use
bind exchanges or even use custom exchange type for routing
[4].tof f er s & Mi rqueosexanrbg rhirrovedh acnoss
several machines ensuring that in the event of hardware
failure, message are afe. Itoffers management Ul to monitor
and control every aspect nfessagdoroker. Itoffers client in

a variety of languages (C#, Java, clojure, erland, Pgthon,
ruby, PHP). Itcan report memory usage information for
connections,queues plugins and other processén memory

[4]. It can detect memory usage and can raise the memory
alarm and block all connections until the memory alarm is
cleared, and nornhaervices are resumed.ships in the ready

to use state, and can be customizednwironmentvariables,
configuration file,runtime parameters and policigg.

2.2 Related Work

There have been manydistributed queue service
implementations proposed over the years. We discuss Amazon

SQS in this section due to its wide use in commercial
application. AmazonSQS is adistributed messageservice
from Amazon. It is highly scalablendfast. Client is allowed

to sendmessagaip to size 256 KH2]. It ensures at least 1
delivery of message Some of the other distributed queue
servicesare RabbitMQ, Apache Kafka, Hedwig, CotRIQS
and Active MQ[3][4][5][6] [7]. Most of these services are
built and inspired from Amazon SQS.

Active MQ is amessag®roker written in JAVA together with

a full support JMS clien{6]. It was designed to pport
multiple languages using multiple protocols like AMQP,
Stomp and OpenWire. This protosoltogether support
multiple languages. Active MQ is highly configurable but 6 s
slow and has issue of lost/duplicatessage You have three
kind of scalingavailable in Active MQ like Default Transport,
Horizontal Scaling and Partitionin®]. It eventually crashes
once per month.

CouchRQ@S solves all the limitations Amazon SQS provides
but at the expense of requiring that you maintain Couch
instarce and tht it only supports airsgle accesoint (single
master CouchDB instance), which limits the potential
availability [7].

Apache Kafka is alistributed partitioned, replicated commit
log service. It provides the functionality of a messaging
system, butwith a unique design5]. At a high level,
producers sendmessage over the network to the Kafka
cluster, which in turn serves them up to consurfigrs

Hedwig on other side is a publislubscribe system designed
to carry large amounts of data across the Internet in a
guaranteedlelivery fashion from those who produce it
(publishers) to those who are interested in it (subscribers). It
has incremental scaldility, high availability of messags,
guaranteed elivery of message and pblishers and
subscribers are topic basfg].

RahitMQ is not a highly scalableugue. It also delivers
messagen unordered format and not FIH@]. Messagecan

be delivered twice to subscribers. All the instances have same
amount of overhead due tueueson every node in a cluster.
From our point of view none of them provides a complete
solution. All of them have some trade offs and are developed
based onfte requirement of the clieft].

3 DESIGNSAND IMPLEMENTATION OF HDMQ

We believe that by creating relationship between storage
nodes andmessagequeue we can provide features suah
messagerder while still maintaining throughput and latency.
In our design we have organizedetlstorage nodes in an
AfArcteastyl e hierarchy, where
region. The main value of our design lies in the fact that we
are able to achievenessagdocalization of messagestorage

for a queue withn a sub
which allows us to maintainmessageorder and high
throughput.

3.1 Architecture Overview

Figure 1. Hierarchical Style Messagegqueue system:

Front End Nodes:

EEEE

x

"

o
EEEE

x

B

)
EEEEE
nEEE
EEEE

:
(D

EEE EE
mEE
B~
I
o
EEEEE

i

1

mEEEE
x
"
o
EEE
x
B
(=]
peEEEE
EEEE
x
a
o
EEEE
x
a
Q
EEEE
x
a
o

EmEmEE
EEEE B
"I T
“TITELL]

[

[
[
[
]

We organized our system in three components:

A. Storage Nodes:All the storage in two hierarchical
regions, where a sub region consists of ~10 nodes
and a router node, the main region consists of
multiple sub regions. All the main regions together
make up thetsrage node system.

B. Front End Nodes: These are the nodes that clients
interact with and make request to. Each fremnd
node maintains a local hasdble for that contains
updatesfor A Aroe af or e ac hrregtly weu e
are using 10:1 ratifor number of storage nodes vs.
front-end nodes.

C. Queue ID Manager Node:We use ongjueue ID

node in the system that determines the storage region

for newqueuesand generate ardgueue ID) for the
new nodes

Area: It defines the address for a set of netleat are part of a
sub region.

For example assume we have 10,0000 total storage nodes and

x number of frontend nodes. This system will break down the

nodes in regions and sub regions down to where each of

lowest hierarchy region contain ~ 10 nodesthis case we

can divide 10,000 nodes in 10 regions of 1000 nodes (1 to 10),
then each 1000 node in region of 100 nodes and this 100 node

regions in set of 10 nodeSo for examfe node 2287 will
have areé 2, 2, 8

3.2 Operation Overview
Write Operation: For insert operation the fromind node will

route themessage to the given area where the router for the
region will determine which node will be next for insert. This

e gouth wilh lidve roumd rebinAndert tstratedy unhiliale thealo ¢ h

nodes in the regiomre full in which case incoming insert
messagavill be routed to nexavailableregions (to region 9 in

re@i e yh e rag pabodeadxdmple). Fromnd nodes will also maintain a hash

table and when the write operation overflows to next regions
they will be updated (In above @xple to 2,2,8:9, but the
gueue ID will remairthe same and will act as the key in the
front end node)

Read Operation For read operation, froregnd node use the updatel. Comparéd to Amazon SQS our system offers
areato determine the region wheraessage are stored for ordering ofmessagevhile delivering [2].

that queue, then they initiate read request to the router for that

region to readnessage Themessage are read again by the

router using a round robin strategy hence maintaining the Large MessageSize

messageorder among different storage ngdeach stage Our System support a largeressageize of 512 KB, as our
node also follows round robin strategy to reaelssage hence design all depends upon the type of the nodes you select and
maintaining overallmessageorder. If there is overflow of the number of nodes you keep in one sectioi. doesr

message to another region, then using updated queue id, depend upon the numberfobnt-endnodes, or the number of
front-end nodes are able to forward the read request to the section.Compare to Amazon SQS, our system offers double
overflow region. messagsize[2].

Queue ID Manager Node:We will also have a wupue ID _ _ _
manager node that will maintain the list of queue ID and Mirrored Section Behavior

generatenew ID based on systemdd and assign initial area Each section is mirrored for the High Reliability of the
We believe that thisade will be low stress node and we only messageSo if any node fail or any section fail, we still have
need 1 ~ 3 nodes to manage the system. themessagsafe on another section or node.

Replication: Synchronous Replication is providéar higher
reliability. It can be configurable by the user whether one 5 PERFORMANCE EVALUATION

wants replication or not for the reliability of thmessae. We evaluted Amazon SQS Systemu§ing At running

Every messagstore on the original node is also copied in the ~ On Ml.xlargeand granularity from 1R i 256 KB message
replication node. As of right now thereasly one replica of size, submitted 1 #lion messagg and after submitting all
the message the 1 nillion messagg the 20 Client starreceiving the

messagdrom the very next time The figure shows us the
comparison between the SQS repeateessage and the
overhead for thexecution of themessagein second.

4 REFINEMENTS
Figure 2: SQS DuplicateMessagevs. Cost for Execution

Exactly one Delivery. .
Only sngle copy of messagés saved. There is no chance of SQS Duplicate Message vs COST FOR
getting two get requests for the samessage Once the EXECUTION(SECOND) —
messages delivered, thanessages locked inside the node 400000 8000 g
until it is delivered to the clienfThi s doesnot me o S
donot st or e nmmeksageyWée sore mualtiple e s & 300000 - 6000 v,
copies ofmessagdor high reliability, but retrieve the other 3 S
messagewhen there is failre of a node. This is how the = 200000 - r 4000 %
reliability is maintained in the syster@ompar& to Amazon % 100000 - - 2000 &
SQS, our system offers Exactly one Delivery [2we have L o
Exactly one delivery functionality in Amazon SQS using s 0 - -0 ©
DynamoDB as used in CloudKon, the performance of the a ‘g
Amazon SQSJlecreases by 30% [8]. O
Message Size
Ordering of Message
When themessagecomes in, the Router put theessage According to the figure we observed thia¢ overhead shown
inside the nodes that are in the section in renafdn fashion. here in the graph is only the overhead of the 96i8.a real
So when there is a get request, the Router starts the delivery System’ if 1messageakes on an average 5 sec to execute,
ofmessagé r om the first node. | f thdhenis many sumbeNofedstge ® * SO Hdrhedd Fov €
the messagethen it will say empty queue. Wen themessage processing thamessaganill give you the exact overhead of
is fetch from the queue, the information about where to get the whole System ut|||z|ng the fﬂg If we take the average of
the nextmessagﬁlﬁ storal in the router. By default when the all the repeated’nessag@ for all the granu|arity’ we found
first messages fetched, thenessagés always fetched from that on an average 23.73 % of totaéssags are found in
the first node in the sectioBo if the incoming ofmessagés SQS as repeatethessags, which is a big overhead to the
so much or the section has high load and if the section nodes system.This is just for the % million message After the
are full of message, then the next incomingessagevill be delivery of repeatednessagewe still will be having the
saved in another section of the Area. Tisisdone in two repeatedmessagg_ So if we want to Stop these repeated
Steps, (l)When the section is full (Thessage, the section is messagefrom SQS, we can use B&*‘noDB for hand]ing the
changedto the next available sectiofii) An Atomic single delivery ofmessagéut it will probably decrease the
operation is performed where all the front end nodes are performance of the whole system by 30 % as showthe
updatedand pausedfor a small amount of timeto get CloudKor{8].

4

