
Accelerating Simulation Codes through the GeMTC Framework
Digvijay Singh Gahlot*, Scott Krieder*, Ioan Raicu*+

*Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA
+Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

dgahlot@hawk.iit.edu, skrieder@iit.edu, iraicu@cs.iit.edu

ABSTRACT
“GPU Computing “utilizes high level language to

run sequential part of the code on the CPU as well as

speeds up parallel part via running it on GPUs but

GPUs are SIMD by default which means they can run

only single instruction on multiple data. The

introduction of GEMTC framework [1] addresses

these limitations by providing an efficient

middleware through which tasks are submitted to a

common task queue to the device and workers (warp

which represent the lowest possible level of control

on device) take out the tasks, execute them and put

them back on the result queue. This work explores

porting and evaluation of real world applications

into GEMTC framework. I choose Imogen [2]

advanced astrophysical simulation tool and

SciColSim [3] which simulates scientific discovery. I

was able to port pure fluid kernels from Imogen and

expensive functions of SciColSim to GEMTC. The

evaluation resulted in performance up to 200 plus

tasks/sec for kernel with moderate size data inputs.

The results were compared with the CPU equivalent

code and GEMTC was able to outperform CPU code

for moderate size data inputs.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]; H.3.4[Systems and

Software]

General Terms
Performance, Experimentation

Keywords
GPGPU, MTC, CUDA, Matlab, Accelerator, Swift.

1. INTRODUCTION

This work involves porting of real work applications

to GEMTC framework. GEMTC provides framework

to use a GPU for MTC applications. The evaluation

of GEMTC earlier was done using sleep jobs. The

work discusses the applications Imogen and

SciColSim which were chosen to be ported on

GEMTC. Imogen originally was written in Matlab

and CUDA. SciColSim is a C++ code using swift for

launching parallel tasks.

Imogen solves fluid dynamics and Ideal Magneto

Hydro Dynamics equations using GPU. This project

discusses the effort involved in porting, including the

analysis, porting challenges encountered. Also

discusses the problems and bugs encountered during

the development cycle. The work also explore design

implementation strategies and methodologies which

came handy and had considerable impact on

performance. It provides tips and guidance for

developing new applications on GEMTC. This will

answer question like what approach will work easily?

What will not work? What are the shortcuts?

Furthermore the work discuses performance

evaluation of the ported kernels in GEMTC. Plots

and analyses of the same has been discussed in detail

giving focus on similarities and dissimilarities found

between different kernels. This work also coded C

equivalent host code for all the ported kernels of

Imogen as original code is all in MATLAB. Also

benchmarking code was developed for performance

evaluation. During the development cycle memory

bugs in the GEMTC framework were also

encountered and a basic code to quickly trigger this

error has been discussed in this paper.

The discussion on porting effort for SciColSim is

discussed and here the focus is on the challenges for

porting. I have provided the reason that why porting

the complete application itself was not feasible. I

have also discussed the various approaches attempted

for migration and what I was able to achieve for

SciColSim. This application involved lot of tool-

chaining effort all of which has been discussed and

also detailed understanding of compiling shared

libraries and combining them together. I have also

discussed why Imogen is different from SciColSim

and why a design of porting used for Imogen doesn’t

work for SciColSim.

Discussion on future work gives insight on what

more can be done. I also identified some applications

which will show very high efficiency in GEMTC.

Reason for why they will show high efficiency on

GEMTC has been provided. I have also discussed the

thought process for choosing an application to be

ported be ported on GEMTC, this can be used as

reference in future porting efforts.

2. BACKGROUND

The GPUs started as specific fixed function

pipelining in their early era. With the bent of

exploiting usage of GPU for scientific applications

mailto:dgahlot@hawk.iit.edu
mailto:skrieder@iit.edu
mailto:iraicu@cs.iit.edu

they went enhancement to include support for

floating point operations and were termed General

Purpose GPUs. The main hurdle in extensive usage

of GPGPUs was their programmability. Hence

programming model to extend C for data-parallel

constructs was adopted and CUDA was born. It is a

parallel computing platform and programming model

enabling increase in computing performance by using

GPUs. NVIDIA claims acceleration of two order in

magnitude for data parallel applications. It provides

and abstraction and hence micro-kernels/application

need not to be re-written with change in GPU

architecture. The transfer rates between GPU and

CPU have been claimed to be 6 GB/sec on PCI 2.0.

All NVIDIA GPUs support 32 bit integer and single

precision floating point arithmetic. NVIDIA GeForce

6 series support MIMD branching in vertex

processors. GEMTC framework has been designed to

utilize GPU as a MIMD resource by enabling

different warps to run different micro-kernels. It

accomplishes this by running a superkernel on the

device. This kernel and CPU component

communicate via shared memory on GPU. Device

maintains two types of queues in it, one is the task

queue on which the host submits task to device and

the other is the result queue on which the results are

placed by warps (workers) once the task computation

is complete. Each task has a task description with the

help of which the information about which kernel to

be executed is communicated to the warp. Hence

forming a MIMD architecture.

The major components included in GEMTC are task

descriptions which is responsible for encoding key

information for MTC workloads on host and device.

TaskID in task descriptor differentiates one task from

another. Tasktype refers to pre-complied micro-

kernel. The author has mentioned a big list of

microkernel GEMTC supports and numThreads

indicates the number of threads of worker which will

be requires to accomplish the task. GEMTC allows

working at wrap level which is the lowest possible

level of control on the device. It is these separate

wraps which gives the MIMD behavior to the device.

To improve malloc’s and reduce the cost of

allocating device memory GEMTC framework also

includes a sub-allocator [10] which uses the existing

CUDA malloc to allocate large contiguous pieces of

memory, allocating more as needed. The pointers of

these free chunks and their sizes are stored in a

circular linked list on the CPU. This list is ordered by

increasing device address to allow easy memory

coalescing. The performance of the sub-allocator has

been compared to CUDA and the sub-allocator shows

efficient behavior with execution time on same order

of magnitude as memory transfer to/from device.

Comparison has been made of sleep task with

varying time and it was notices that GEMTC

achieves very high efficiency with tasks of size >

5000 micro seconds.

3. MOTIVATION

GEMTC framework [1] evaluated all its performance

and efficiency using sleep tasks but to the is strong

reason to test and benchmark results for real work

applications. This is because sleep job don’t perform

any computation, it too simple in the sense that it can

neither evaluate impact of heavy computation tasks

on GEMTC nor evaluate impact of data intensive

tasks on GEMTC. Heavy computation job involves

evaluating result of a complex mathematical function,

predicting probabilities etc. whereas data intensive

task will involve too many read/writes for example

weather forecasting using data for sensors. The real

work applications will range from being totally

compute intensive to totally data intensive. Also for

making any framework suitable for wide acceptance

firstly the framework must have solid results on real

world applications and must be able to address large

variety of problems falling under its category. This

motivated migration of real world applications like

Imogen which solves Fluid dynamics equations.

Similarly SciColSim was chosen for porting because

this application attempts to understand the process of

discovery by modeling knowledge as graph of

concepts and then tries to simulate different graph

exploration strategies.

4. PROPOSED SOLUTION

The work as such consisted of migrating real world

applications to GEMTC framework. Nature of project

is implementation of real system. The first goal

consisted of identifying a real world application for

the project. Imogen was the first candidate chosen for

porting. This application is an advanced astrophysical

simulation tool which uses MPI-parallel code to solve

FD and MHD equations using GPUs. It uses Matlab

to control management functionalities and the heavy

duty processing is kept at GPU level. The core

functions are compiled Mex files. The second

application was SciColSim (Simulating Scientific

Discovery). This is ongoing research at University of

Chicago. Objective is to understand process of

scientific discovery. Like “How do scientists select

hypotheses to work upon”, what are the most

effective strategies”. This can be explored with

simulation by “modeling knowledge as graph of

concepts. Then simulate different graph exploration

strategies. There are computational characteristics

associated with this application. Each simulation

implemented with sequential C++ code. The

application is floating point intensive, many

probability calculations are involved in it. The second

goal consists of writing micro-kernels for some

applications from first goal. I was able to successfully

write GEMTC kernels corresponding to CUDA

kernels of Imogen. The first kernel ArrayAtomic

solves setting array elements having value less than a

certain threshold to that specific threshold, setting

array elements having a value greater than certain

threshold to that specific threshold, or setting array

elements with values Not a Number to zero or some

specified value. The second kernel ArrayRotate

solves the problems of martrix transpose and also is

capable of performing array exchange in Y and Z

dimension for 3-D data. The third kernel FluidW

calculates a first order accurate half-step of the

conserved transport part of fluid equations CFD

which is used as predictor input to the matching TVD

function. Only pure hydro kernel was ported

implying the magnetic variables are all zero. The

fourth kernel freezeAndPtot is used to derive pressure

and freeze parameters to enforce minimum pressure.

The fifth kernel FluidTVD takes a single forward-

time step, CFD of the conserved-transport part of the

fluid equations using a total variation diminishing

scheme to perform a non-oscillatory update. I

migrated only purehyro kernel, hence magnetic

parameters are all 0. For SciColSim I wrote kernel

for its expensive function. The third goal consists of

writing test cases for applications. The benchmarking

code for all the kernels were written and tested for

results. The fourth goal was comparative analysis of

CPU with GPU version of the code. I tried to plot as

many comparison graph marking impact of data size

on performance, impact of submitting bunch of tasks

together to GEMTC, time taken by single task in

kernel. For all the kernels their respective CPU only

code was also written. With that only the

benchmarking and performance analysis was made.

There is big list of techniques which were used for

this project. C/CUDA programming was the most

utilized programming languages used. Apart from

this Imogen required additional effort of learning

Matlab code, this was because there were few Matlab

library calls which were absent inside C/CUDA, I

have struggled to find C equivalents and 1-2 times

even implemented them. Also at the time of project

development I didn’t have any algorithm to start with

and the comments present inside Imogen were too

poor to get any idea what the kernel was solving. I

will specify that the equations itself were absent on

top of the kernel. There were lot of grep and search

on Imogen ‘s base to find what actually is happening.

(Just to mark it the equations were updated 11 days

back only in Imogen). Hence apart from porting it

was a reverse engineering effort (I guess it should

also be counted as technique) and I didn’t have any

previous experience on Matlab. So what was done is

usage of an online Matlab simulator to figure out the

outcome of code at various stages, especially the

unit-testing code of Imogen. The benchmarking code

has been adopted from unit-testing code of Imogen.

Imogen’s implicit grid, block and thread logic in its

CUDA kernel was broken for data processing by 1

single warp inside GEMTC. In Imogen we move in

all three dimensions and data to process is implicitly

determined by grids, block indices but GEMTC has

only 32 threads. Another time consuming effort was

on packing and unpacking of input, output

parameters for submitting tasks into GEMTC and

getting them back. All Imogen kernels required

passing of 5-6 3-dimensional parameters, 3-4 2-

dimensional parameters, and few single variables into

GEMTC. This was one among the calculation

intensive work. About 75% “Segmentation Fault”

bugs were due to incorrect pointer arithmetic. High

optimization for copying relevant parameters only

back from GEMTC was accomplished. Imogen’s unit

testing code generated inputs itself, this inbuilt input

generation code has also been written. The data

provided was used for 1 kernel only “FluidTVD.cu”

so for that kernel file read code was used. I also

encountered memory bug inside GEMTC which was

earlier thought to be a pointer arithmetic bug but I

was able to re-create the bug without GEMTC kernel

only via plain data copy to and fro from GEMTC. I

have written a small code to re-create the issue. This

is where we can clearly see that why we need to

migrate and test real world application into GEMTC,

sleep jobs will not encounter these bugs.

Each of ported Imogen’s kernel incurred some

challenges. “ArrayAtomic” kernel though looks

simple had an issue, Imogen’s kernel didn’t have to

care about processing the entire data with single

warp, it was to be achieved by us with 1 warp.

Imogen’s “ArrayRotate” relied on shared memory to

rotate the array but if GEMTC starts using shared

memory we will be limited on the maximum size

array which can be rotated as only 8192 bytes are

available per warp in GEMTC. As the data matrix is

double the number of elements will be 1024 or in

other terms 32*32 matrix of float. Imogen’s

“FluidW”, “FluidW” and “freezeAndPtot” had lack

of code comments, the unit-testing code required

Matlab’s library call hence had to be re-implemented

in C.

The application SciColSim required even more

techniques like tool-chaining. Making SciColSim

itself to work on Jarvis it took 3 days due to tool-

chain issues. The main was figuring out the proper

set of tools with which SciColSim worked. This went

as deep as finding out the date when SciColSim was

developed and downloading, installing tools with

version corresponding to that time period. SciColSim

requires STC, Turbine, MPICH, TCL, Boost, Swift.

Path variable settings (as I wasn’t able to use default

tools on Jarvis because SciColSim didn’t work with

them). After the tool-chain effort another effort was

on installation of callgrind to figure out the order in

which call are happening when the application is

being run. Initially I attempted migrating the

complete application itself in GEMTC but it failed

because 1) the code piece is too larger involving C++
class. 2) The input to provided is a filename from

which graph gets constructed in the constructor. 3) It

involve bunch of global static variables and functions

which don't belong to class itself (have to figure out

where they will fit). 4) Porting will mean entirely

moving the whole computation including the object

creation, destruction in the GeMTC kernel. 5) There

are Boost objects (Have to think about compiling and

using them in GeMTC), I searched using boost in

CUDA and found that there is no RTT (Run Time

Type) support in CUDA. (Hence the idea of

migrating the complete application to GEMTC was

dropped). Also there is no Boost equivalent library

with graph support in C. 6) The graph construction

requires set of dynamically allocated edges, vertices,

state, probability double dimensional pointers. I also

noted that there is lot of sequential processing

happening inside SciColSim. For example when we

make a decision based on graph state it used to

depend on previously computed values, hence there

was a directly data dependency. This type of code

can’t be made parallel anyhow. So once I had the

output of callgrind and notes of SciColSim it clearly

brought out the most time consuming functions inside

SciColSim and I implemented the corresponding

GEMTC kernel for the same. Further there was more

struggle to integrate the application into GEMTC due

to shared library dependency. As per the work

accomplished I implemented 1 warp kernel for

processing and 1 thread only processing kernel for

SciColSim. During the integration work it was found

that SciColSim will launch multiple workers and

hence my application kept crashing. I found it latter

that it was due multiple calls to gemtcSetup() and the

only way to work around this was to move this call

inside swift code itself before parallel jobs are

launched. Inspite of multiple attempts I wasn’t able to

make multiple worker code work it kept crashing.

Hence benchmarking was done with single worker

only.

As per benchmarks done for Imogen I also anticipate

that even launching multiple workers will not let

GEMTC beat out CPU only code implementation.

This is because there is sequential code inside the

application which is run by each worker along with

the code I parallelized. The number workers which

can be launched by swift will be dependent on the

core on CPUs. Hence number of tasks inside

GEMTC queue will be limited to the number of CPU

cores (one-to-one correspondence with workers

launched by swift) this will have direct implications

on GEMTC performance. For evaluation I used

Jarvis cluster and workstations with accelerators. The

project required Swift/T scripting also. Software

requirement include CUDA C compiler, screen/Tmux

application for multiple session saving, Git repository

for code development, TCL, STC, swift, turbine,

mpich, matlab, boost etc.

The code for Imogen is about 4500 lines with proper

code comments. This has been created as separate

directory under GEMTC https://github.com/skrieder-

datasys/gemtc/tree/master/Tests/Imogen (the

README file inside provide all details on code

organization, building and executing, the input data is

generated by the code itself, “FluidTVD” kernel uses

the data present in the data directory).

The code for SciColSim kernels is about 600 lines

and few modified files inside the SciColSim

application itself. This has been created as a separate

directory under GEMTC https://github.com/skrieder-

datasys/gemtc/tree/master/Tests/SciColSim (the

README file inside provide all details on code

organization, compiling and executing).

5. EVALUATION

The benchmarking for Imogen and SciColSim

migrated kernels was done on per kernel basis. The

tests performed plot curves depicting effect of data-

size on application, impact of submitting multiple

tasks together, comparison with equivalent host code

on varying data sets, kernel processing time with

Host processing time for CPU only application. I also

https://github.com/skrieder-datasys/gemtc/tree/master/Tests/Imogen
https://github.com/skrieder-datasys/gemtc/tree/master/Tests/Imogen
https://github.com/skrieder-datasys/gemtc/tree/master/Tests/SciColSim
https://github.com/skrieder-datasys/gemtc/tree/master/Tests/SciColSim

present best tasks/sec achieved by each kernel and

the corresponding data set. Plot for SciColSim

depicts performance on Host only code v/s GEMTC

1-thread code and GEMTC 32-thread code. The

kernel and CPU processing time is also compared.

ArrayAtomic plot for varying data-size and its impact

on turnaround time for completing a given number of

tasks. Please note that it is for comparing data-size

only hence there is only 1 task on GEMTC queue at a

time. We see linear rise in time taken to complete

jobs with increment in number of tasks also in each

set the time taken by larger data-size array is more

when compared to task with less data-size. This is all

expected behavior.

Here we see the impact of submitting multiple tasks

together into GEMTC queue the performance

increases as the total turnaround time for completion

is decrementing. The graph behaves linear then

suddenly seems saturating when number of tasks

reaches 12. This is because there is no control logic

by which we can instruct SM to executed particular

task. It is up to the warp scheduler to execute warp.

There is 1 more thing, we are under-utilizing

GEMTC, because at each step we submit 15 tasks,

then poll for them to complete and again submit 15

tasks. Now what happens is when we are submitting

the 11th task at that time warp executing 1st and 2nd

tasks become free, but only 1 can take the task (or it

may be some other warp, in that case also these 2 will

keep waiting till submission of next bundle of tasks).

This idle time gives the above plot. So the

fundamental is to schedule as much job as possible in

each iteration.

This plot tells us that CPU only code beats the

GEMTC code in performance. This is attributed to

the fact that the data-size is too small because of this

the GEMTC overhead of moving data Host to device

and back dominates the processing advantage given

by CUDA cores.

Here GEMTC outperforms CPU, because the data-

size is large GEMTC overhead is less than time

spend in data processing inside the kernel. The

interesting part to see is that the performance of

GeMTC is improving when number of tasks are 10 to

100 and but seems decrementing when number of

tasks is 1000. This sounded odd for a while and I

found latter that this is attributed to the fact that

“GTX 480” has 1.6 GB of memory and Array-size

with 1 M entries will occupy 8*1MB memory (8

because each entry is double). Now there is no way to

schedule 8*1000MB (8 GB) anyhow. Hence I

scheduled 100 batch jobs at a time, which gave the

above behavior and we can see that time taken at

1000 tasks is 10 times the time taken at 100 tasks for

GeMTC. In the table below we see that kernel itself

doesn’t take much time to execute for lower data

size. But at higher data size HOST takes over, this is

because the shader clock rate of GPU is lower than

CPU’s clock rate, which has direct implications on

Instructions per Second.

ArrayAtomic kernel benchmark inside CUDA.

The plot of ArrayRotate with varying data-size.

For comparing data-size only hence there is only 1

task on GEMTC queue at a time. We see linear rise

in time taken to complete jobs with increment in

number of tasks also in each set the time taken by

larger data-size array is more when compared to task

with less data-size. This is all expected behavior.

The behavior and its explanation is similar to that of

ArrayAtomic benchmark.

This plot tells us that CPU only code beats the

GEMTC code in performance. This is attributed to

the fact that the data-size is too small because of this

the GEMTC overhead of moving data Host to device

and back dominates the processing advantage given

by CUDA cores.

Here we see that GeMTC out-performs HOST when

10 to 500 tasks are submitted together in GeMTC

queue. The interesting part to see is that the

performance of GeMTC is improving when number

of tasks are 1 to 500. For this big data size

1024*1024 we can’t schedule more than 85 tasks at a

time in GeMTC queue.“GTX 480” has 1.6 GB of

memory and Matrix-size with 1024*1024 will

occupy 8*1MB memory (8 because each entry is

double). Also there are 2 matrices which are actually

transferred to the GeMTC kernel. Now there is no

way to schedule (2*8*1 MB * 85) (1.42 GB), there

will be GeMTC overhead of tasks descriptors, queues

also. At 500 tasks we start hitting memory leak bug if

we try to schedule more than 85 tasks per iteration.

The behavior of time taken in kernel v/s time taken

by host is almost dominated by host from 64*64 size

data. The shader clock rate of GPU is lower than

CPU’s clock rate, which has direct implications on

Instructions per Second.

The plot of FluidW with varying data-size.

The above graph plots the time taken to complete

Imogen FluidW tasks by GeMTC. As usual the size

of data has direct impact on the time taken to

complete the number of tasks. We also observe that

there is almost linear increase in time taken to

complete tasks with rise in number of tasks. Also to

be noted that data size provided to GeMTC is

181.439 MB for 128*124*119 (because the number

of equation parameters are large), 220.634 MB for

333*69*100, 167KB for 12*12*12. Remember that

this weird data-set odd looking dimensions come

from testing program of FluidW kernel of Imogen.

The behavior and its explanation is similar to that of

ArrayAtomic benchmark.

Here we see that GeMTC out-performs HOST when

10 to 10000 tasks are submitted together in GeMTC

queue. For 10000 set of tasks 1000 tasks are

submitted in batch together in GeMTC queue.

We see that GeMTC outperforms HOST in respective

data set benchmarks. Points to note 1) For data-set

128*124*119 at best we can schedule 7 tasks at a

time in GeMTC queue because each task requires

181439824 bytes of data to be submitted to GeMTC.

2) For 100 and 1000 tasks only 4 jobs at a time were

scheduled to avoid GeMTC memory leaks. 3) For

data-set 333*69*100 at best we can schedule 6 tasks

at a time in GeMTC queue because each task requires

220634448 bytes of data to be submitted to GeMTC.

4) For 100 and 1000 tasks only 3 jobs at a time were

scheduled to avoid GeMTC memory leaks. 5) Due

large data set per kernel it is wasting CUDA cores by

keeping SMs idle. And we are not happy about it.

It becomes a notable point that if we are scheduling a

very heavy task in GEMTC it will under-utilize

processing power, the best case will be to sub-divide

this heavy task process it with GEMTC which will let

us high the sweet spot for performance gain and

utilization.

FluidW kernel benchmark from insde CUDA kernel.

freezeAndPtot benchmark

The above graph plots the time taken to complete

Imogen freezeAndPtot tasks by GeMTC. As usual

the size of data has direct impact on the time taken to

complete the number of tasks. We also observe that

there is almost linear increase in time taken to

complete tasks with rise in number of tasks. Also to

be noted that data size provided to GeMTC is 90.778

MB for 128*124*119 (because the number of

equation parameters are large). 110.344 MB for

333*69*100 and 84.136KB for 12*12*12.

This benchmark analyses impact of scheduling

multiple freezeAndPtot tasks in GeMTC queue. The

total number of tasks scheduled is 20000.

Here we see that GeMTC out-performs HOST when

10 to 10000 tasks are submitted together in GeMTC

queue.

We see that GeMTC outperforms HOST in respective

data set benchmarks. Points to note are 1) For data-

set 128*124*119 at best we can schedule 10 tasks at

a time in GeMTC queue because each task requires

90778952 bytes of data to be submitted to GeMTC.

2) For 100 and 1000 tasks only 8 and 7 jobs at a time

were scheduled respectively to avoid GeMTC

memory leaks. 3) For data-set 333*69*100 at best we

can schedule 10 tasks at a time in GeMTC queue

because each task requires 110344840 bytes of data

to be submitted to GeMTC. 4) For 100 and 1000

tasks only 7 jobs at a time were scheduled to avoid

GeMTC memory leaks. 5) Due large data set per

kernel it is wasting CUDA cores by keeping SMs

idle. Table for kernel time v/s host only time.

The above graph plots the time taken to complete

Imogen FluidTVD tasks by GeMTC. As usual the

size of data has direct impact on the time taken to

complete the number of tasks. We also observe that

there is almost linear increase in time taken to

complete tasks with rise in number of tasks.Also to

be noted that data size provided to GeMTC is

10.104688 MB for 410*280*1 (because the number

of equation parameters are large). This was the data

set provided by Erik the original writer of Imogen.

This benchmark analyses impact of scheduling

multiple FluidTVD tasks in GeMTC queue. The total

number of tasks scheduled is 1000, the explanation is

same as of ArrayRotate.

Here we see that GeMTC out-performs HOST when

10 to 10000 tasks are submitted together in GeMTC

queue. At 1000 we were only able to submit 50 jobs

together in GeMTC queue (memory bug becomes

dominant). At 10000 we were only able to submit 4

jobs together in GeMTC queue (memory bug

becomes dominant).

This is benchmark for CUDA kernel time taken.

Explanation is same as for ArrayRotate.

Here are the set of performance evaluation of

SciColSim

Time taken by GeMTC kernel is more than HOST

code itself. But this has always been there in Imogen

also. GeMTC gets performance by scheduling

multiple tasks in GeMTC queue together, which are

in parallel taken up by workers and executed. This is

not happening for SciColSim. Why this can’t be

achieved ? (remember there is only 1 GeMTC kernel

for an expensive function but application launch as

such has good amount of sequential code also.

Multiple GeMTC tasks can be submitted only when

there are multiple launch of SciColSim via Swift

script. (But how many launch can work in parallel

directly depends on host processor.

6. RELATED WORK

Exploiting MIMD control flow on SIMD GPUs has

been explored in [4] where a stack is added to allow

SIMD processing elements to execute distinct

program path post occurrence of a branching

instruction. It proposes dynamic warp formation for

regrouping of processing elements of individual

SIMD warps for efficient branch handling. MIND

Interpretation on GPU[5] discusses compiler,

assembler and interpreter which will not only allow

MIMD execution model but also supports message

passing, shared memory communication etc. [6] has

analyzed CUDA workloads using a GPU simulator.

The paper establishes that non-graphics applications

are more sensitive to bisection bandwidth than

latency and many times it is better to reduce the

number of threads to avoid content on memory

resources. [7] Summarizes tools and techniques in

GPU computing. [8] Discusses implementation and

design of SIMD-MIMD GPU architecture. [14]

Discusses the problem statement of integrating data

flow driven parallel programming systems and

hardware accelerators. The work aimed to enable

Swift to efficiently use accelerators to further

accelerator wide range of applications, on a growing

portion of high end systems. [15] Discusses static

batch FIFO scheduler which sits between Swift and

GPU handles multiple inputs from Swift and

condenses these into single GPU calls.

7. CONCLUSION

5 Imogen purehydro kernels were successfully ported

to GeMTC and were benchmarked. Also Host only

code corresponding for these kernels was written and

compared with GeMTC. It was observed that there is

sweet space between the varying data sizes for each

kernel where it was outperforming HOST only code.

Expensive function from SciColSim was successfully

ported and benchmarked. A good amount of time was

spend in feasibility analysis for complete SciColSim

migration to GeMTC kernel.

Future work on Imogen includes 1) Achieve better

performance by breaking kernels into smaller pieces

and submit these smaller pieces as tasks to GeMTC.

Migrate magnetic kernels also (as of now I migrated

fluid kernels only). All these kernels have to be

integrated together to get Imogen’s complete

behavior. Future work of SciColSim include best

case to be to find equivalent or implement 1 library

just for all graph features being used by SciColSim. I

still have doubt on whether this will still result in

better performance as lot of other functions in

SciColSim are sequentially dependent. This can have

serious implication as it will result in 1 CUDA core

running this sequential code which will be too slow.

Enable support for launching multiple workers using

GeMTC kernel.

As part of the project I also identified class of

applications which when migrated to GeMTC will

show very high efficiency. Monte Carlo methods are

broad class of computational algorithms that rely on

repeated random sampling to obtain numerical

results. There is a large class of application which

utilize this method for obtaining results ranging from

physical sciences, engineering, computational

biology, computer graphics, applied statistics etc. As

a start I wrote a program to calculate value of PI

using GeMTC. It relied on sending random values to

GeMTC and calculating PI inside the kernel. This can

be avoided by directly generating random values

inside the GPU kernel itself. These classes of

applications will benefit a lot for GeMTC because the

amount of data to be moved to and fro between CPU

and CPU will be less which will directly result in

significant performance improvement. Hence

migrating these classes of application to GeMTC will

also be attempted.

8. REFERENCES

[1] Scott Krieder, Ioan Raicu. "GEMTC: GPU

Enabled Many-Task Computing", Illinois

Institute of Technology, Department of

Computer Science, PhD Oral Qualifier,

2013

[2] Erik Keever, James N. Imamura “Imogen: A

Parallel 3D Fluid and MHD Code for

GPUs”, University of Oregon, OR, USA,

27th International ACM conference on

International conference on supercomputing,

2013

[3] Justin M. Wozniak, Timothy G. Armstrong,

Ketan Maheshweri, Ewing L. Lusk, Daniel

S. Katz, Michael Wilde, Ian T. Foster

“Turbine: A distributed-memory dataflow

engine for extreme many-task applications”,

Proceedings of the 1st ACM SIGMOD

Workshop on Scalable Workflow Execution

Engines and Technologies, 2012

[4] Wilson W. L. Fung, Ivan Sham, George

Yuan, Tor M. Aamodt, “Dynamic Warp

Formation: Exploiting Thread Scheduling

for Efficient MIMD Control Flow on SIMD

Graphics Hardware”, Department of

Electrical and Computer Engineering,

University of British Columbia, 40th

IEEE/ACM International Symposium of

Microarchitecture

[5] Henry G. Dietz, B. Dalton Young, “MIMD

Interpretation on a GPU”, Electrical and

Computer Engineering, University of

Kentucky, Proceedings of the 22nd

international conference on Languages and

Compilers for Parallel Computing, 2009

[6] Ali Bakhoda, George L. Yuan, Wilson W. L.

Fung, Henry Wong, Tor M. Aamolt,

“Analyzing CUDA Workloads Using a

Detailed GPUSimulator “, Performance

Analysis of Systems and Software, 2009,

IEEE international Symposium

[7] John D. Owens, Mike Houston, David

Luebke, Simon Green, John E. Stone, James

C. Philips, “GPU Computing”, University of

California, Proceedings of IEEE Volume 96,

Issue 5

[8] J. Lucas, S. Lal, M. Alvarez-Mesa, A.

Alhossini, B. Juurlink, “Design and

Implementation of SIMD-MIMD GPU

architecture “, IISWC, 2010 IEEE

International Symposium, 2010

[9] “NVIDIA’s next generation CUDA

computing architecture Fermi”, Whitepaper

[10] Benjamin Grimmer, Scott Krieder, Ioan

Raicu, “Enabling Dynamic Memory

Management Support for MTC on NVIDIA

GPUs”, Illinois Institute of Technology,

EuroSys 2013

[11] Dustin Shahidehpour, Scott Krieder, Ben

Grimmer, Ioan Raicu. "Accelerating

Scientific Workflow Applications with

GPUs", 2nd Greater Chicago Area System

Research Workshop (GCASR), 2013

[12] Scott J. Krieder, Benjamin Grimmer, Dustin

Shahidehpour, Jeffrey Johnson, Justin M.

Wozniaky, Michael Wildeyz, Ioan Raicu.

"Towards Efficient Many-Task Computing

on Accelerators in High-End Computing

Systems", 2nd Greater Chicago Area System

Research Workshop (GCASR), 2013

[13] Jeff Johnson, Scott Krieder, Benjamin

Grimmer, Justin Wozniak, Michael Wilde,

Ioan Raicu. "Understanding the Costs of

Many-Task Computing Workloads on Intel

Xeon Phi Coprocessors", 2nd Greater

Chicago Area System Research Workshop

(GCASR), 2013

[14] Scott Krieder, Ioan Raicu. “Towards the

Support for Many-Task Computing on

Many-Core Computing Platforms”, Doctoral

Showcase, IEEE/ACM Supercomputing/SC

2012

[15] Scott Krieder, Ben Grimmer, Ioan Raicu.

“Early Experiences in running Many-Task

Computing workloads on GPGPUs”,

XSEDE 2012

[16] Scott Krieder, Ioan Raicu. "An Overview of

Current and Future Computing Accelerator

Architectures”, 1st Greater Chicago Area

System Research Workshop, 2012

[17] A Primer on Eulerian Computational Fluid

Dynamics for Astrophysics

Publications of the Astronomical Society of

the Pacific 115:303–321, 2003 March

