
Exploring Data Compression in Distributed File
Systems

Dongfang Zhao, Ioan Raicu
Department of Computer Science
Illinois Institute of Technology

dzhao8@hawk.iit.edu, iraicu@cs.iit.edu

Abstract—The ever-growing imbalance between computation
and I/O is one of the fundamental challenges for current petascale
and future exascale systems. As these large systems become more
compute heavy by design, it is becoming harder to support data-
intensive applications with adequate performance. To narrow the
gap between computation and I/O, parallel and distributed file
systems have been introduced. A popular approach to further
ameliorate the I/O pressure is data compression, which aims to
reduce the data size and stress on the network. However, it unsur-
prisingly brings new challenges such as computational overhead,
programmability, and co-design with other components in the
orchestra of large systems. In order to reduce the computation
overhead of data compression in these large scale systems, this
paper proposes a new compression mechanism, namely multi-
reference compression (MRC), by introducing multiple references
to the underlying physical chunks. These multiple references
across the physical chunks enable an efficient decompression
of requested chunk subsets, thus bypassing the overhead on
decompressing the data outside of the requested range. To
make MRC easy to use by scientific computing applications,
we have adopted the FUSE kernel module to support POSIX.
The MRC system can be used in conjunction with parallel
file systems (e.g. GPFS) with no modifications needed to either
the application or the high level I/O libraries (e.g. netCDF,
HDF5). Towards achieving even higher I/O performance, we
have proposed and executed a tight integration of MRC with the
FusionFS distributed file system, and explored MRC’s impact on
basic file system components such as metadata management and
data movement. We show how MRC is able to improve parallel
and distributed file system performance by up to 2X over these
file systems without compression.

Keywords-data compression; parallel file systems; distributed
file systems

I. INTRODUCTION

Today’s science generates data at an unprecedented rate. For
instance, fusion science data are output at 2 gigabytes/second
per core, and 2 petabytes/second of checkpoint data need to
be stored every 10 minutes [17]. This amounts to about 3.5
terabytes/second, which is beyond the capability of today’s
fastest file system (1.4 terabytes/second, reported in [12]).
The conventional wisdom to address the I/O bottleneck is to
parallelize the data I/O by splitting data into smaller chunks
and process them concurrently on massive nodes. Data com-
pression is another way to addressing the I/O bottleneck by
shrinking the chunk size and effectively reducing the load on
the network and storage sub-system. While data compression
indeed reduces the I/O size, it brings several new challenges:

computational overhead, programmability, and co-design of
file systems.

Computational overhead. The reduced file size does not
come for free: the computation of (de)compressing data costs
scarce system resources such as CPU cycles and memory us-
age, and more importantly, takes time that hurts the end-to-end
I/O throughput. While the cost on computation is worthwhile
in the hope of being outweighed by the gain on reducing
the data size, the decompression in many cases induces a
significant overhead: the system still needs to decompress the
entire chunk even though only a small piece of data needs
to be retrieved. Although reducing the chunk size seems to
be a plausible solution, it would reduce the compression ratio
by compressing a relatively small chunk as discussed in our
previous work [50].

Programmability. Most state-of-the-art compression tech-
niques are stand-alone libraries, implying a programming
burden to the application developers to manually modify
the application source code, or to integrate the compression
method to either the high-level I/O library (e.g. netCDF [26],
HDF5 [5]) or the MPI-IO middleware (e.g. ROMIO [9]). Our
previous work [13] fit in this category by integrating a light-
weight and efficient compression method into the netCDF
library.

Co-design of file systems. Many existing efforts of embrac-
ing data compression in large scale systems reply on introduc-
ing an ad-hoc component into the popular parallel file systems
(e.g. GPFS [39], PVFS [20], Lusture [40]), and inevitably
needs to compromise with the design of these systems. In
particular, there is an increasing concern on the scalability
of their system designs at extreme scale (e.g. exa-scale). Our
previous work [28], [27] showed that the distributed key-
value store could be a strong candidate for excellent scalability
compared to conventional parallel file systems. However it is
still an open question on how to seamlessly support efficient
data compression in POSIX-compliant distributed file systems
and retain the scalability at large scale.

To solve the dilemma on the chunk size that affects both the
compression ratio and the computation overhead, we introduce
Multi-Reference Compression (MRC), which significantly re-
duces the computation overhead while only adding negligible
extra information to the compressed data. MRC is not a new
compression algorithm or a variant of any, but a general
approach that is applicable to specific algorithms by trading a



little space with significantly less computation overhead. We
provide a quantitative analysis on the optimal configuration of
the MRC mechanism, and discuss alternatives to our approach
within the context of parallel and distributed file systems.

We make MRC easily adoptable into existing parallel file
systems by implementing it with the FUSE framework to
support POSIX interface and deploy it as a mount point
on each compute node. Thus, to take advantages of MRC,
no modification is needed to the application, the high-level
I/O library, or the I/O middleware. We evaluate the loosely-
coupled MRC system by mounting it to GPFS [39] on an IBM
BlueGene/P [1] supercomputer at up to 1024 cores.

To investigate how MRC can be seamlessly integrated into
the next generation of scalable storage systems, we design
and implement a new distributed file system —FusionFS—
with built-in MRC support. We discuss our experience in de-
signing and implementing the metadata management, the data
movement, and how data compression interacts with them. We
evaluate FusionFS on a commodity 64-node Linux cluster, a
512-node enterprise-class cluster, and an IBM BlueGene/P [1]
supercomputer at 2048-core scale.

In summary, this paper makes the following contributions:
1) Propose and analyze the multi-reference compression

(MRC) mechanism to improve the end-to-end I/O
throughput of parallel and distributed file systems

2) Design and implement the integration of the MRC
system with the FusionFS distributed file system

3) Evaluate MRC as a loosely-coupled middleware for
parallel file systems, as well as a system component
for distributed file systems at large scales up to 2048
cores, delivering up to 2X improved throughput

The remainder of this paper is organized as follows. Sec-
tion II presents the MRC mechanism. We describe the design
and implementation of FusionFS in Section III. Section IV
evaluates MRC and FusionFS. We review additional related
work in Section V. Section VI concludes this paper.

II. MULTI-REFERENCE COMPRESSION

A. Overview

When compressing the original data, MRC logically seg-
ments the chunk with equidistant starting points (i.e. ref-
erences), and appends these references to the end of the
compressed chunk. These references would allow future reads
to only decompress the subset from the lowest upper reference
point, as opposed to the very beginning of the chunk. This “in-
cremental” idea was also proposed in author’s previous work
for large-volume data mining [49], [29], [48]. Two concerns
arise though: (1) adding these references would decrease the
compression ratio; (2) how many references should we choose
to optimize the end-to-end I/O throughput (duplicating every
data entry as a reference would only result in compressed
data that is twice larger than the original data). For the first
question, we will show that adding a very small number of
references would have a significant impact on reducing the
I/O cost of data-intensive applications (in Figure 9). For the

second question, we will provide an analysis on choosing the
optimal number of references in §II-C.

Reference points are evenly distributed across all the data
entries in the current design of MRC. This is based on
the assumption that the data access pattern has a uniform
distribution. If there are some “hot data” that are accessed
more frequently than others, it makes sense to allocate more
reference points in this area. That said, it is desired that the
positions of the reference points could be dynamically updated
according to user’s access pattern. This dynamic approach
would require a more delicate approach to dealing with a series
of new challenges, e.g. what metric(s) to be used to logically
allocate references in accordance to the access pattern, how to
efficiently implement the mapping between the lowest upper
reference and the requested starting point, etc. These open
questions will be studied quantitatively in our future work.

B. Method
We illustrate how MRC works by introducing an over-

simplified example on XOR-based delta compression, as
shown in Figure 1. The idea of XOR-based delta compression
is very straightforward: storing the XOR difference between
every pairs rather than the raw data. Suppose the original file
has 8 data entries, and we decide to have 2 reference points
on Data 0 and Data 4. So in the compressed file, we store 7
deltas and 2 reference points copied from Data 0 and Data 4.
Then when users need to read Data 7, we first copy the nearest
upper reference point to the beginning of the restored file (i.e.
Ref 1 in this case), and incrementally XOR the restored data
and the deltas.

Fig. 1. Two-Reference MRC on XOR compression

Formally, the procedure to compress a file is described in
Algorithm 1. For the sake of clear representation, we assume
the file content could be split into a logical array, so that each
element could be referenced by an index. The first phase of the
compression algorithm is to encode the original data entries
to the increments of every pairs of neighbor entries in the
original file, as shown in Lines 2 - 4. The second phase is to
append P reference points (i.e. partitions) to the end of the
compressed file, as shown in Lines 6 - 8.



Algorithm 1 Compress a file
Require: F d is the original file to be compressed; F e is the

name of the compressed file; P is the number of partitions
to be applied to the original file

Ensure: F e could be used to recover the content of F d

1: SIZE ← F d.size()
2: for (int i = 1; i < SIZE; i++) do
3: F e[i] ← encode(F d[i], F d[i - 1])
4: end for
5: BS ← SIZE / P
6: for (int j = SIZE; j < SIZE + P; j++) do
7: F e[j] ← F d[BS × (j - SIZE)]
8: end for

The decompression procedure, as shown in Algorithm 2,
decides the nearest upper reference point, and restores the orig-
inal data by applying the inverse function of encode() (i.e.
decode()). The nearest upper reference point is located as
IDX in Line 2, and GAP indicates the distance between the
user-requested starting address and the lowest upper reference
point in Line 3. Lines 4 - 7 restore the original data entries
by incrementally applying decode() from the lowest upper
reference point to the end of the requested data. This procedure
is applicable to both the entire chunk and its subsets.

Algorithm 2 Decompress a (portion of) file
Require: F e is the encoded file to be decompressed; F d− is

the decompressed data for the chunks to be decompressed;
SIZE is the original file size; P is the number of
partitions to be applied to the original file; BASE is the
starting position of the requested (chunks of) data; LEN
denotes the number of requested data entries

Ensure: F d− is identical to the (portion of) original file
1: BS ← SIZE / P
2: IDX ← BASE / BS
3: GAP ← BASE % BS
4: F d−[0] ← F e[F e.size() - P + IDX + 1]
5: for (int i = 1; i < GAP + LEN; i++) do
6: F d−[i] ← decode(F d−[i-1],F e[BASE-GAP+i])
7: end for

In both algorithms, encode() and decode() functions indicate
the compression and decompression methods, respectively.
They are not necessarily XOR operations as in the illustrating
example (Figure 1). In a more general sense, They do not even
have to calculate the metric on a pair of neighbors: as long as
the compressing method takes a “reference-increment” strat-
egy, encode() and decode() could be implemented accordingly.

C. Analysis

This section answers this question: how many references we
should pick to achieve the maximal throughput. By “maximal
throughput”, we mean the maximal throughput in the worst
case where all data are compressed followed by the request

(i.e. decompression) of the very last data entry. In general,
more reference points consume more storage space, but yield
a better chance of a closer lowest upper reference point,
which in turn improve the decompression throughput. On
the other hand, more references imply longer time to write
the compressed data to storage, which reduces the overall
throughput. Moreover, weights should be carefully assigned to
read and write, respectively. For example, an application with
10:1 read/write ratio should have a higher weight for read than
write. Also, we should differentiate write and read bandwidths
for data compression and decompression, respectively. We
define the parameters for the analysis on the optimal number
of reference points in Table I.

TABLE I
MRC PARAMETERS

Variable Description
Br Read Bandwidth
Bw Write Bandwidth
Wi Weight of input
Wo Weight of output
S File Size
N Number of Data Entries
R Number of Reference Points

The overhead to write the extra R reference points for data
compression is

Tc =
R · S ·Wo

N ·Bw
,

and we would save the following time in decompression:

Td =
(S − S

R ) ·Wi

Br
.

Now, we want to maximize

F (R) = Td − Tc.

By taking the derivative on R (suppose R̂ is continuous) and
solving the following equation

d

dR̂
(F (R̂)) =

S ·Wi

Br · R̂2
− S ·Wo

Bw ·N
= 0,

we have

R̂ =

√
N · Bw

Br
· Wi

Wo
.

Note that
d2

dR̂2
(F (R̂)) = − S ·Wi

Br · R̂3
< 0,

since all parameters are positive. And because R is an integer,
the optimal R is:

argmax
R

F (R) =

{
bR̂c if F (bR̂c) > F (dR̂e)
dR̂e otherwise

Thus we just show that, in order to guarantee the highest
end-to-end throughput, the number of reference points should
be set roughly to the squared root of the product of 3



factors: the total number of data entries, the ratio of the write
bandwidth over the read bandwidth, and the ratio of input
weight over output weight. A simplified version of this rule
can be stated as: the number of references should be set to the
squared root of the total number of data entries, on condition
that the read and write throughput/weights are comparable.

D. Discussions

When we designed MRC, we had several alternative de-
signs. This section discusses these ideas, and pinpoints their
potential limitations and tradeoffs.

Why does MRC not store references in-place? Instead of
storing all reference points at the end of the file, another (and
maybe more intuitive) option is to keep them in place. This in-
place design offers two benefits over the current MRC design:
(1) it saves space of (P−1) encoded chunks (e.g. Delta 4 is not
needed in Figure 1); (2) it avoids the computation on locating
the lowest upper reference at the end of the chunk, as shown
in Line 4 of Algorithm 2. We argue that the space saving
of the first benefit is insignificant because encoded chunks
are typically much smaller than the original chunks, not to
mention this gain is factored by a relatively small number
of reference points (comparing to the total number of data
entries). The second benefit on saving computation time is also
limited. Even though reducing computation overhead is one of
MRC goals, the CPU time on locating the reference at the end
of the chunk is almost negligible compared to compressing all
the data entries. The most critical drawback of the in-place
method is, however, on the huge overhead on decompressing
large data. For example in Figure 1, if the user requests the
entire chunk, then the user needs to read 2 raw data points:
Data 0 (i.e. Ref 0) and Data 4 (i.e. Ref 1). Note that Data 0
and Data 4 are original data entries, and are typically much
larger than the deltas. Thus, it would induce significantly more
overhead by reading these in-place reference points. This issue
does not exist in MRC, since all reference points are stored
at the end, and the user only needs to retrieve one reference
(i.e. Ref 0) and decode with those small deltas.

What if the data entries are not sorted by the natural
ordering of increments? This would indicate the compression
ratio would be low, and reduce the benefit of MRC in terms of
I/O throughput. In this case, we propose to add a preprocessing
component for the original data, which tries to explore the
inner similarity within the chunk and reorder the data if
possible. MRC does not provide such a built-in mechanism
at the moment, but would employ some existing systems, for
example DERD [15], which is a framework that efficiently
determines if a sufficient resemblance exists between two
objects in a relatively large collection.

What if the data is not compressible at all? MRC itself is
not a compression algorithm, but a mechanism to reduce the
computation overhead of the underlying compression method.
It assumes the compression method to be applied to could
yield a decent compression ratio, and selecting an appropriate
compression method is beyond what this paper is concerned.
Nevertheless, if a file (or chunk) is hardly compressible

due to a bad choice of the compression method and/or the
workload characteristic, compressing it would only degenerate
the performance [24]. In this case, it would be pointless to
apply MRC to such a bad choice of compression method.
Therefore it is desirable to have a mechanism to check if
the underlying compression method is effective. MRC could
leverage existing systems (e.g. [21]) to determine if it is worth
applying the compression at all.

III. THE FUSIONFS DISTRIBUTED FILE SYSTEM

A. Overview

The design principle of FusionFS [45] is to fully exploit
the available resources and avoid any centralized component.
Thus, we make each participating node play three roles at the
same time: client, metadata server, and data server, as show in
Figure 2. Users can log in any node to interact with the entire
system. Each node is able to pull the global view of all the
available data by the single metadata name space, even though
metadata is physically distributed on all the nodes. Each node
stores parts of the entire metadata and data at its local storage.

Fig. 2. Roles of participating nodes in FusionFS

Even though both are fully distributed on all nodes, local
metadata and data on the same node are completely decoupled.
The local data may or may not be described by the local
metadata. By decoupling metadata and data, we are able
to apply more flexible strategies on both, respectively. A
similar idea has also been proposed in our previous work [43]
for reducing the number of execution nodes for Byzantine
replication. In this work, we utilize distributed hash tables to
reach load balance for metadata, but for file data we apply a
different strategy (driven by the application I/O access pattern
with periodic load balance). Distributed hash tables are not
selected as the underlying data store because data locality
takes a higher priority for high aggregate throughput over
good load balance. To further exploit data locality, a remote
read would be, if possible, replaced by rescheduling the job to
the destination node of the desired data, followed by a local
read. On top of the data movement strategies, a local MRC
component works as a transparent filter that automatically



compresses the assigned data before writing to the persistent
storage, and decompresses the compressed data to return the
clients the raw data.

These ideas are illustrated in Figure 3, which is an oversim-
plified 2-node system. The metadata on Node 1 has nothing
to do with the files stored on Node 1. Moreover, the metadata
is distributed on both nodes, and each node harnesses the
data locality by only writing to its local storage and trying
to reschedule the job to realize local read if possible, e.g.
Client@Node1 7−→ Client@Node2. Both nodes have their
own MRC component to compress and decompress the re-
quested data between the client and the persistent storage via
a POSIX API. We will discuss more details on distributed
metadata in §III-B, data movement in §III-C, and MRC in
§III-D.

Fig. 3. An example FusionFS deployed on two nodes.

B. Metadata management

We illustrate how to achieve the global single name space by
maintaining partial metadata views on local nodes in Figure 4,
where an oversimplified example of two nodes is considered.
Node 1 and Node 2 only physically keep sub-graphs of the
entire metadata (top left and top right portion of the figure),
and store the information into the local component of the
global Distributed Hash Table (DHT). Nevertheless, client
could interact with the DHT for any key-value pair no matter
if it is on the local storage or on some remote nodes. Thus,
what any client could see is actually the global name space
of the entire system, as shown in the bottom portion of the
figure. In some sense, DHT is the translator between local
partial metadata and the global name space.

The global name space does not need to be aggregated
or flushed when local changes occur. In other words, any
changes in the local metadata storage are immediately visible
to the global name space without extra processing. It is an
analogy that modifying a subgraph will automatically update
the topology of the entire graph.

In essence, the directory hierarchy of traditional file systems
could be abstracted as a tree. In general, there are two options
to store a tree: adjacency matrix and adjacency lists. An

Fig. 4. Directory hierarchy in local physical nodes and global name space

adjacency matrix allows a constant-time lookup operation on
the relationship between two vertices, and requires O(n2)
storage, where n is the number of nodes in the graph. The
adjacency lists, on the other hand, require much less space
in practice particularly when the adjacency matrix is sparse,
which is the case for file systems. Another advantage of
adjacency lists is that it allows fast content retrieval of a
specific directory (i.e. constant time to retrieve the parent
node followed by sequential reads of the children), which is
a frequent operation in file systems. The potential issue with
adjacency lists, however, is that the relationship lookup oper-
ation could take up to O(n) in the worst case. However, this
lookup operation is relatively rare in file systems. Therefore,
we choose adjacency lists as the abstraction of the directory
hierarchy, and store them as key-value pairs in the DHT.

To make matters more concrete, Figure 5 shows the dis-
tributed hash table in according to the example graph shown
in Figure 4. It should be noted this DHT is only a logical view
of the aggregation of multiple partial metadata on local nodes
(in this case, Node 1 and Node 2). Five entries (3 directories,
2 regular files) are stored in the DHT, with their file names as
keys. The value is comprised of a list of properties delimited
by semicolons. The first and second portions of the values
are for permission flags and file size, respectively. The third
portion for a directory is a list of its children delimited by
commas, while for regular files is just physical location of the
file.

Fig. 5. A global name space represented by adjacency lists in a DHT

The example in Figure 5 is only to illustrate how the DHT



looks like for Figure 4, and we should mention the following
clarifications. (1) In real systems there is more metadata
information stored in the values, such as modification time,
owner ID, etc, that are commonly seen in i-nodes. We do not
list all of them here for the sake of limited space. (2) What is
shown in the value is a simple string delimited by semicolons.
This is only for clear presentation to explain what types of
information is stored. In implementation, the value is in fact a
serialization of the data structure for metadata. The structured
metadata is serialized by Google Protocol Buffer [4] before
sending over the network to the metadata servers. Similarly,
when the metadata is retrieved, we deserialize the blob back
into the structure. All the regular i-node information is tracked,
plus the list of children or the node location.

It should be noted that, the location information for a regular
file has nothing to do with which node this metadata itself
resides on. From Figure 4, we know the homefile metadata
is stored in Node 2, and the subfile metadata is in Node 1.
However, it is perfectly fine for homefile to reside on Node
1, and subfile reside on Node 2, as shown in Figure 5.

Besides the regular metadata information for files, there is
a special flag bit in the value indicating if this file is being
written. Specifically, any client who requests to write a file
needs to sets this flag before opening the file, and will not reset
it until the file is closed. This atomic operation guarantees the
consistency of the file data.

One issue with our early implementation on metadata was
on big directories, where many files exist in the same direc-
tory. In particular, when each of thousands of clients writes
thousands of files on the same directory concurrently, the value
of this directory in the key-value pair in the hash table gets
incredibly large. And the client would need to update the old
value with the new one, even though the majority of the old
value is unchanged. We designed a new append operation that
would allow clients to simply update large key-value pairs
efficiently. This is similar to the approach used in the Google
File System [18]. In the current implementation, when a new
file is created (or removed), we simply append the file and
its operation to the value rather than updating it immediately.
This append operation is atomic, so no inconsistency will be
encountered.

To deal with the high concurrency on metadata servers,
epoll is used instead of multithreading. The side effect of
epoll is that the received message packets are not kept in
the same order as on the sender. To address this, a header
[message id, packet id] is added to the message at the sender,
and the message is restored by sorting the packet id for each
message at the recipient. This is efficiently done by a sorted
map with message id as the key, mapping to a sorted set of
the message’s packets. The server also periodically triggers a
garbage collection for the orphan packets to deal with crashed
clients, unreliable network, etc.

C. Data movement

Our strategy to achieve high and scalable write throughput
is very straightforward: a client only writes data to its local

storage. In other words, it is independent write across data
nodes, in the sense that no interference exists on the layer
of physical data servers. This local-only write is not really
independent, in the sense that the metadata on the global
name space is up to date. When we discussed the distributed
metadata in §III-B, we showed that the metadata, even though
scattered on the same set of nodes as data, is completely
decoupled from data. However, the metadata is maintained as
a single and global view, so that these data-independent writes
are all reflected by the distributed metadata.

The aggregate write throughput is obviously optimal: all
writes are associated with local I/O throughput and avoids the
following two potential overheads commonly seen in other
systems: (1) the procedure to determine to which node the
data will be written, normally accomplished by pinging the
metadata nodes and/or some monitoring services, and (2)
transferring the data to a remote node.

The potential issue with local writes is equally obvious: no
guarantee for load balance is provided at all. The assumption
that all workloads are uniformly deployed on all nodes is too
strong, as we have often seen hot spots in large scale systems.
As a consequence, a periodical data migration is used to re-
balance the workload.

In some cases, the client is writing to a file that is originally
stored in another node. Per our policy, the newly written file
will not be sent back to the original node. Rather, the metadata
of this file will be updated in the metadata. This saves the cost
on transferring the file data over the network by a much faster
operation on updating the metadata. Question arises though:
what if two clients try to write to the same data? The answer is
that a distributed lock service (coordination) is available built
on top of the atomic cswap (compare and swap) operation
on the underlying DHT. This atomic cswap guarantees that in
any given period of time, at most one client could modify the
content.

Unlike data write, it is impossible to arbitrarily control
where the requested data reside. The location of the requested
data is highly dependent on the I/O pattern, and the probability
of the requested data residing on the local storage is still quite
small (i.e. P = 1

n , where n is the number of nodes) even
assuming the I/O has a uniform distribution.

Nevertheless, we could control which node the job is
executed on by some distributed work flow systems. When
a job on node A needs to read some data on node B, we
reschedule the job on node B. The overhead of rescheduling
the job is much smaller than transferring the data over the
network. In our previous work [35], [37], [36], we detailed
this approach, and justified it with a theoretical analysis and
experiments on benchmarks and real applications.

Indeed, some I/O pattern cannot avoid remote reading, e.g.
merge sort. The data need to be joined together, and shifting
the job does not help. In such cases, we could always transfer
the requested data from the remote node to the requesting
node; prefetching mechanism could be used to ameliorate the
impact of this for predictable I/O access patterns.



D. Compression and decompression with multiple references

The MRC compression is implemented in the fu-
sionfs write() interface, which is the handler for catching the
write system calls. fusionfs write() compressed the raw data,
cached it in the memory if possible, and wrote the compressed
data into the file system. The decompression algorithm was
implemented in the fusionfs read() interface, similarly. When
a read request came in, this function loaded the compressed
data (either from the cache or the disk) into memory, applied
the decompression algorithm to the compressed data, and
passed the result to the end users.

One obvious advantage of MRC implementation is the
high possibility of reusing the decompressed data, since the
decompressed data will be cached in the local node. Moreover,
because the original compressed chunk is logically split into
many partitions each of which can be decompressed by itself,
it allows a more flexible memory caching mechanism. We have
implemented a simple LRU caching mechanism for caching
the intermediate data. A more complicated strategy for the
globally optimal caching hit rate is beyond the scope of this
paper, and will be the subject of future work.

As another plausible option, the (de)compression could be
implemented at the file level, i.e. in file open (fusionfs open())
or file close (fusionfs close()). The issue with fusionfs open()
is that when the requested data is opened, the system is yet
to know which subsets need to be read into memory. Thus,
the entire chunk would be decompressed, which makes MRC
pointless by wasting the multiple references. Implementing the
(de)compression at file close does not have the issue as in
file open. However, it implies the decompressed data need
to be buffered until all the requested data are completed,
i.e. a blocking read. This is clearly not a desirable feature,
since many applications assume the blocks that have been
read into memory should be available immediately. Thus, file
open and file closes are not good places to implement data
(de)compression.

Even though the compression is implemented in the fu-
sionfs write() interface, the compressed file will not be per-
sisted into the hard disk until the file is closed. This approach
can aggregate the small blocks into larger ones, and reduce
the number of I/Os to improve the I/O throughput. In some
scenarios, users are more concerned on high availability rather
than the compressing time. In that case, a fsync() could be
invoked to the (partially) compressed data to ensure these
data is available at the persistent storage so that other pro-
cesses/nodes could start reading them, even though the end-
to-end compressing time would get degraded for the original
writing process.

IV. EVALUATION

Experiments are conducted on three test beds.
1) IIT-HEC is a 64-node Linux cluster at Illinois Institute of

Technology. Each node has 2 Quad-Core AMD Opteron
2.3GHz processors with 8GB RAM and 1TB Seagate
Barracuda hard drive. All nodes are interconnected with
1Gbps Ethernet.

2) Kodiak [8] is a 1024-node cluster at Los Alamos Na-
tional Laboratory. Each node has an AMD Opteron
252 CPU (2.6GHz), 4GB RAM, and 2 Western Digital
7200rpm 1TB hard drives.

3) Intrepid [6] is an IBM BlueGene/P supercomputer [1] of
160K cores at Argonne National Laboratory. We carried
out experiments on up to 2048 cores on Intrepid. Each
node has a 4-core PowerPC 450 processor (850MHz)
and 2GB of RAM. A 7.6PB GPFS [39] is deployed on
128 storage nodes.

We evaluate MRC and FusionFS on two representative data
sets in scientific computing.

1) Global Cloud Resolving Model (GCRM) [3] models the
cloud behavior of the entire globe at a fine scale (2-4
km). It is used to analyze to understand cloud’s influence
on the atmosphere and global climate, and more impor-
tantly to predict cloud’s behavior and the consequent
climate change. The GCRM data is originally stored
as the netCDF [26] format. We extract a subset of
temperature information at different latitude, longitude,
height, and time stamp.

2) Sloan Digital Sky Survey (SDSS) [11] contains a huge
collection of astronomical information, which records
one-quarter of the entire sky in detail including positions
and brightnesses of hundreds of millions of celestial
objects. The data are available in multiple formats for
different platforms. We obtain a subset of the SDSS data
set via the SQL query in the web portal [10], which
includes all galaxies whose blue surface brightness is
within a particular range.

All experiments are repeated at least five times, or until
results became stable (i.e. within 5% margin of error); the
reported numbers are the average of all runs. Caching effect
is carefully precluded by reading a file larger than the on-board
memory before the measurement.

A. Compression ratio of MRC

We show how MRC affects the compression ratio with
244.25GB GCRM data. The compression ratio is shown in
Figure 6 when different numbers of reference points (1 to
2000) are stored. As expected, the compression ratio decreases
when more reference points are added. However, the loss
on compression ratio is almost negligible (i.e. within 0.002
between 1 reference and 2000 references).

Fig. 6. Compression ratios with MRC



B. Boosting GPFS with MRC

We deploy the MRC implementation on each of the 256
nodes (1024-core) with a FUSE mount point to a 128-node
GPFS file system on Intrepid. The dataset is 244.25GB of
GCRM climate data. Block size is default to 64KB. Through-
put is measured for sequential writes, if not otherwise speci-
fied.

Since MRC is implemented with FUSE [2], which adds
extra context switches when making I/O system calls, we
need to know how much overhead is induced from FUSE.
To measure the impact of this overhead, the GCRM dataset
was written to the original GPFS and the GPFS+FUSE file
system (without MRC), respectively. The difference is only
2.2%, which could be best explained by the fact that in parallel
file systems the bottleneck is on networking rather than the
latency on local operating systems. Since the FUSE overhead
on GPFS is negligible, we will not list two setups (vanilla
GPFS and FUSE+GPFS) in the following experiments.

Since more reference points reduce the compression ratio,
the I/O time is expected to increase accordingly. However,
the extra cost is about negligible (< 0.2 second) for 1 - 2000
reference points as shown in Figure 7. The speedup comparing
to the original GPFS is also reported.

Fig. 7. I/O throughput with MRC

The time breakdown of end-to-end I/O time is shown in
Figure 8. The overhead introduced by the compression layer
is about 8.4%, and has a slightly smaller portion (hardly
visible in the figure though) when increasing the number of
reference points. This is because the resultant file size is
larger when more reference points are stored, which implies a
longer I/O time while the computing cost is relatively constant.
The relative low computational overhead infers that for those
incompressible data MRC would not cause much performance
degradation (compression ratio is 1.492, from Figure 6):

Compute%

(1-Compute%)× Ratio
=

8.4%

(1− 8.4%)× 1.492
= 6.1%,

even though skipping the compression is preferred as discussed
in §II-D.

To verify the effectiveness of MRC on reduced decompres-
sion overhead, we ran a straightforward application of the
routine workload: archival of all the available data followed
by the retrial of the latest temperature. The I/O time was
reported in Figure 9. We observed that with multiple reference
points (200 – 2000), the I/O time reached below 384 seconds

Fig. 8. Breakdown of compute overhead and I/O transfer with MRC

comparing to 501 seconds with a single reference, resulting in
1.31X speedup.

Fig. 9. I/O time to record the GCRM data and retrieve the latest temperature

We then ran the MMAT application [13] that calculated the
minimal, maximal and average temperatures on the GCRM
dataset. The breakdown of different portions was shown in Fig-
ure 10, when compressing the data with R = 800 and directly
calculating on the raw data (i.e. R = 0). After applying the
compression layer, the I/O portion was significantly reduced.
And this reduction outweighed the overhead introduced by the
compression layer, resulting in 1.24X speedup on the overall
execution time.

Fig. 10. Execution time of the MMAT application



C. FusionFS performance

We compare the metadata performance between FusionFS
and HDFS [42] on Kodiak. Both storage systems have
FUSE/POSIX disabled. We have each node create (i.e.
“touch”) a large number of empty files (with unique names),
and we measure the number of files created per second. In
essence, each touched file indicates a metadata operation. The
aggregate metadata throughput of different scales is reported
in Figure 11. The gap between FusionFS and HDFS is about
more than 3 orders of magnitude. Note that, HDFS starts to
taper off from 128 nodes, while FusionFS keeps doubling the
throughput all the way to 512 nodes, ending up with almost 4
orders of magnitude speedup (509022 vs. 57). The reason why
HDFS metadata is so slow is twofold: (1) HDFS has a single
metadata server that is easily saturated by high concurrency;
(2) HDFS’ Java overhead is much more significant than the
C/C++ implementation of FusionFS.

Fig. 11. FusionFS metadata performance on Kodiak

We then compare the metadata performance between Fu-
sionFS and PVFS on Intrepid. Both systems turn on the
POSIX interfaces. PVFS is deployed on Intrepid with the
1-1-1 mapping between clients, metadata servers and data
servers, just like FusionFS. Each client creates 10K empty
files on the same directory. The result is reported in Figure 12.
FusionFS outperforms PVFS on a single node, which justifies
that our metadata optimization for big directory (i.e. append
vs. update) is quite efficient. While PVFS is saturated at 32
nodes, FusionFS shows a linear scalability due to its unique
design of the DHT-based metadata management.

We illustrate how MRC helps FusionFS to improve the I/O
throughput on different data sets in IIT-HEC, as shown in
Figure 13. R is set to 2 when MRC is enabled. Results show
that both read and write throughput are significantly improved.
Note that, the I/O throughput of SDSS is higher than GCRM,
because the compression ratio of SDSS is 2.29, which is higher
than GCRM’s compression ratio 1.49. In particular, we observe
a 2X speedup when MRC is enabled (SDSS write: 8206 vs.
4101).

We report the throughput of FusionFS on Intrepid, compared
to the default GPFS file system, in Figure 14. Both the read
and the write throughput are scalable at up to 2048 cores,
which justifies that MRC component does not intervene the

Fig. 12. FusionFS Metadata performance on Intrepid

Fig. 13. FusionFS Throughput on IIT-HEC

scalability of the overall throughput of FusionFS. FusionFS’
throughput is orders of magnitude higher than GPFS, which
can be best explained by FusionFS’ better data locality
and the MRC component. In particular, FusionFS reaches
over 100GB/s at 2048 cores, which surpasses GPFS’ peak
throughput of 4.6GB/s at 2048-core scale, as well as the peak
throughput of 65GB/s [7] at the full scale of 160K cores.

Fig. 14. Throughput on Intrepid

V. RELATED WORK

Some frameworks are proposed as middleware to allow
applications call high-level I/O libraries for data compression
and decompression, e.g. [13], [38], [23]. None of these
techniques take consideration of the overhead involved in
decompression by assuming the chunk allocated to each node
would be requested as an entirety. In contrast, FusionFS
exploits a finer granularity of chunks and aims to support
compression transparently at the file system layer.



Some previous work studied the file system support for
data compression. Integrating compression to log-structured
file systems was proposed decades ago [14], which suggested
a hardware compression chip to accelerate the compressing
and decompressing. Later, XDFS [30] described the systematic
design and implementation for supporting data compression
in file systems with BerkeleyDB [33]. MRAMFS [16] was a
prototype file system to support data compression to leverage
the limited space of non-volatile RAM. In contrast, FusionFS
is a fully-fledged POSIX-compliant distributed file system
with built-in efficient MRC support.

Data deduplication is a general inter-chunk compression
technique that only stores a single copy of the duplicate chunks
(or blocks). For example, LBFS [32] was a networked file
system that exploited the similarities between files (or versions
of files) so that chunks of files could be retrieved in the client’s
cache rather than transferring from the server. CZIP [34] was a
compression scheme on content-based naming, that eliminated
redundant chunks and compressed the remaining (i.e. unique)
chunks by applying existing compression algorithms. Recently,
the metadata for the deduplication (i.e. file recipe) was also
slated for compression to further save the storage space
[31]. While deduplication focuses on inter-chunk compressing,
MRC focuses on the I/O improvement within the chunk.

Index has been introduced to data compression to improve
the compressing and query speed e.g. [25], [19], [22]. The
advantage of indexing is highly dependent on the chunk
size: large chunks are preferred to achieve high compression
ratios in order to amortize the indexing overhead. However
large chunks would cause potential decompression overhead
as explained earlier in this paper. MRC overcomes the large-
chunk issue by logically splitting the large chunks with fine-
grained partitions while still keeping the physical coherence.

VI. CONCLUSION

This paper proposes and analyzes the MRC compression
mechanism to improve the end-to-end I/O throughput in large
scale distributed systems. MRC works as a loosely-coupled
middleware on top of parallel file systems, and is integrated
into the FusionFS distributed file system with the unique
designs of distributed metadata management and location-
aware data movement. We deploy MRC-enabled file systems
on three test beds from a commodity Linux clusters to a
flagship supercomputer, and carry out experiments of both
benchmarks and applications at up to thousands of cores. With
MRC we observe up to 2X faster I/O throughput for parallel
and distributed file systems.

There are two major directions in the future work. First, we
will explore how to support inter-node cooperative caching in
the data compression layer, to achieve an high cache hit rate
from the global perspective by extending our previous work
in the single-node setting [46], especially in the contexts of
checkpointing [51], reliability [44], and provenance [47], [41].
Second, we will study dynamic reference distributions to better
match the data access patterns, which we believe would further

improve the I/O performance of parallel and distributed file
systems.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under grant OCI-1054974 (CAREER), CNS-
1042537, CNS-1042543 (PRObE), and the Office of Bio-
logical and Environmental Research, Office of Science, U.S.
Department of Energy, under contract DE-ACO2-O6CH11357.
This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] Blue Gene. http://en.wikipedia.org/wiki/Blue Gene.
[2] FUSE Project. http://fuse.sourceforge.net/.
[3] The global cloud resolving model. http://kiwi.atmos.colostate.edu/gcrm/.
[4] Google protocol buffers. http://code.google.com/p/protobuf/.
[5] HDF5. http://www.hdfgroup.org/HDF5.
[6] Intrepid.

https://www.alcf.anl.gov/user-guides/intrepid-challenger-surveyor.
[7] Intrepid file system. https://www.alcf.anl.gov/user-guides/intrepid-

challenger-eureka-file-systems.
[8] Kodiak. https://www.nmc-probe.org/wiki/Kodiak:Nodes.
[9] ROMIO. http://www.mcs.anl.gov/research/projects/romio/.

[10] SDSS Query. http://cas.sdss.org/astrodr6/en/help/docs/realquery.asp.
[11] Sloan digital sky survey. http://cas.sdss.org/astrodr6/en/.
[12] Supercomputer titan to get world’s fastest storage system.

http://phys.org/news/2013-04-supercomputer-titan-world-fastest-
storage.html.

[13] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt. Integrating
online compression to accelerate large-scale data analytics applications.
IPDPS, 2013.

[14] M. Burrows, C. Jerian, B. Lampson, and T. Mann. On-line data
compression in a log-structured file system. ASPLOS, 1992.

[15] F. Douglis and A. Iyengar. Application-specific delta-encoding via
resemblance detection. USENIX ATC, 2003.

[16] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt. Mramfs: A
compressing file system for non-volatile ram. MASCOTS, 2004.

[17] P. A. Freeman, D. L. Crawford, S. Kim, and J. L. Munoz. Cyber-
infrastructure for science and engineering: Promises and challenges.
Proceedings of the IEEE, 93(3):682–691, 2005.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
SOSP, 2003.

[19] Z. Gong, S. Lakshminarasimhan, J. Jenkins, H. Kolla, S. Ethier, J. Chen,
R. Ross, S. Klasky, and N. F. Samatova. Multi-level layout optimization
for efficient spatio-temporal queries on isabela-compressed data. IPDPS,
2012.

[20] I. F. Haddad. PVFS: A Parallel Virtual File System for Linux Clusters.
Linux J., 2000(80es), Nov. 2000.

[21] D. Harnik, R. Kat, O. Margalit, D. Sotnikov, and A. Traeger. To zip or
not to zip: Effective resource usage for real-time compression. FAST,
2013.

[22] J. Jenkins, I. Arkatkar, S. Lakshminarasimhan, N. Shah, E. Schendel,
S. Ethier, C.-S. Chang, J. Chen, H. Kolla, S. Klasky, R. Ross, and
N. Samatova. Analytics-Driven Lossless Data Compression for Rapid
In-situ Indexing, Storing, and Querying. In Database and Expert Systems
Applications, Lecture Notes in Computer Science, 2012.

[23] J. Jenkins, E. R. Schendel, S. Lakshminarasimhan, D. A. Boyuka, II,
T. Rogers, S. Ethier, R. Ross, S. Klasky, and N. F. Samatova. Byte-
precision level of detail processing for variable precision analytics. SC,
2012.

[24] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energy and perfor-
mance evaluation of lossless file data compression on server systems.
SYSTOR, 2009.

[25] S. Lakshminarasimhan, D. A. Boyuka, S. V. Pendse, X. Zou, J. Jenkins,
V. Vishwanath, M. E. Papka, and N. F. Samatova. Scalable in situ
scientific data encoding for analytical query processing. HPDC, 2013.



[26] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netcdf: A
high-performance scientific i/o interface. SC, 2003.

[27] T. Li, R. Verma, X. Duan, H. Jin, and I. Raicu. Exploring distributed
hash tables in highend computing. SIGMETRICS Perform. Eval. Rev.,
39(3):128–130, Dec. 2011.

[28] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,
Z. Zhang, and I. Raicu. ZHT: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table. IPDPS, 2013.

[29] R. Lohfert, J. J. Lu, and D. Zhao. Solving sql constraints by incremental
translation to sat. In Proceedings of the 21st International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent
Systems: New Frontiers in Applied Artificial Intelligence, IEA/AIE ’08,
pages 669–676, 2008.

[30] J. P. MacDonald. File system support for delta compression. Technical
report, University of California, Berkley, 2000.

[31] D. Meister, A. Brinkmann, and T. Süß. File recipe compression in data
deduplication systems. FAST, 2013.

[32] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth
network file system. SOSP, 2001.

[33] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db. USENIX ATC,
1999.

[34] K. Park, S. Ihm, M. Bowman, and V. S. Pai. Supporting practical
content-addressable caching with czip compression. USENIX ATC,
2007.

[35] I. Raicu, I. Foster, M. Wilde, Z. Zhang, K. Iskra, P. Beckman, Y. Zhao,
A. Szalay, A. Choudhary, P. Little, C. Moretti, A. Chaudhary, and
D. Thain. Middleware support for many-task computing. Cluster
Computing, 13(3):291–314, Sept. 2010.

[36] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C. M. Moretti, A. Chaud-
hary, and D. Thain. Towards data intensive many-task computing. Data
Intensive Distributed Computing: Challenges and Solutions for Large-
scale Information Management, 13(3):28 – 73, Sept. 2012.

[37] I. Raicu, I. T. Foster, Y. Zhao, P. Little, C. M. Moretti, A. Chaudhary,
and D. Thain. The quest for scalable support of data-intensive workloads
in distributed systems. HPDC, 2009.

[38] E. R. Schendel, S. V. Pendse, J. Jenkins, D. A. Boyuka, II, Z. Gong,
S. Lakshminarasimhan, Q. Liu, H. Kolla, J. Chen, S. Klasky, R. Ross,

and N. F. Samatova. Isobar hybrid compression-i/o interleaving for large-
scale parallel i/o optimization. HPDC, 2012.

[39] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for Large
Computing Clusters. FAST, 2002.

[40] P. Schwan. Lustre: Building a file system for 1,000-node clusters. In
Proceedings of the linux symposium, page 9, 2003.

[41] C. Shou, D. Zhao, T. Malik, and I. Raicu. Towards a provenance-aware
distributed filesystem. In 5th USENIX Workshop on TaPP, NSDI 2013,
Lombard, IL, 2013.

[42] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
distributed file system. MSST, 2010.

[43] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Sep-
arating agreement from execution for byzantine fault tolerant services.
SOSP, 2003.

[44] D. Zhao, K. Burlingame, C. Debains, P. Alvarez-Tabio, and I. Raicu.
Towards high-performance and cost-effective distributed storage systems
with information dispersal algorithms. IEEE CLUSTER ’13, 2013.

[45] D. Zhao and I. Raicu. Distributed file systems for exascale computing.
SC, Doctoral Showcase, 2012.

[46] D. Zhao and I. Raicu. Hycache: A user-level caching middleware for
distributed file systems. In Proceedings of the 2013 IEEE 27th Inter-
national Symposium on Parallel and Distributed Processing Workshops
and PhD Forum, IPDPSW ’13, pages 1997–2006, 2013.

[47] D. Zhao, C. Shou, T. Malik, and I. Raicu. Distributed data provenance
for large-scale data-intensive computing. IEEE CLUSTER ’13, 2013.

[48] D. Zhao and L. Yang. Incremental construction of neighborhood graphs
for nonlinear dimensionality reduction. In Proceedings of the 18th
International Conference on Pattern Recognition - Volume 03, ICPR ’06,
pages 177–180, Washington, DC, USA, 2006. IEEE Computer Society.

[49] D. Zhao and L. Yang. Incremental isometric embedding of high-
dimensional data using connected neighborhood graphs. IEEE Trans.
Pattern Anal. Mach. Intell., 31(1):86–98, Jan. 2009.

[50] D. Zhao, J. Yin, and I. Raicu. Improving the i/o throughput for data-
intensive scientific applications with efficient compression mechanisms.
SC, 2013.

[51] D. Zhao, D. Zhang, K. Wang, and I. Raicu. Exploring reliability of
exascale systems through simulations. In Proceedings of the High
Performance Computing Symposium, HPC ’13, pages 1:1–1:9, 2013.


