
CloudKon Reloaded with Efficient Monitoring, Bundled Responses,

and Dynamic Provisioning

Ajay Anthony
*
, Sandeep Palur

*
, ImanSadooghi

*
, IoanRaicu

*†

*
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

†
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

aanthon2@hawk.iit.edu, psandeep@hawk.iit.edu, isadoogh@hawk.iit.edu, iraicu@cs.iit.edu

Abstract - In today's world the emphasis is on distributed

systems which plays an important role on achieving good

performance , high system utilization and scalability. Task

scheduling and execution over large scale, distributed

systems plays an important role on achieving good

performance and high system utilization. Due to the

explosion of parallelism found in today’s hardware,

applications need to perform over-decomposition to deliver

good performance; this over-decomposition is driving job

management systems’ requirements to support applications

with a growing number of tasks with finer granularity.

Most of today’s state-of-the-art job execution systems have

predominantly Master/Slaves architectures, which have

inherent limitations, such as scalability issues at extreme

scales and single point of failures. On the other hand

distributed job management systems are complex, and

employ non-trivial load balancing algorithms to maintain

good utilization.

CloudKon is a distributed job management system that can

support distributed HPC and MTC scheduling, running

millions of tasks on multiple nodes. CloudKon, a compact,

light-weight, scalable, and distributed task execution

framework (CloudKon) that builds upon cloud computing

building blocks (Amazon EC2, SQS, and DynamoDB) has

been developed to support high performance , high system

utilization and scalability, however with some challenges

and drawbacks. The downsides lie in Worker-Client

communication, Monitoring system causing communication

overhead and resource contention respectively. This may

prove to be a potential bottleneck at higher scalable

systems. The goal in this project is to reload or extend

existing CloudKon with features like 1. Improved

Concurrency 2. Bundled Response 3. Efficient Monitoring

to address the existing challenges in CloudKon as well as

implementation of dynamic provisioning.

I. Introduction

The goal of a job scheduling system is to efficiently

manage the distributed computing power of workstations,

servers, and supercomputers in order to maximize job

throughput and system utilization. With the dramatic

increase of the scales of today’s distributed systems, it is

urgent to develop efficient job schedulers. Predictions are

that by the end of this decade, we will have exascale system

with millions of nodes and billions of threads of execution

[1].

Unfortunately, today’s schedulers have centralized

Master/Slaves architecture (e.g. Slurm[2], Condor [3][4],

PBS [5], SGE [6]), where a centralized server is in charge

of the resource provisioning and job execution. This

architecture has worked well in grid computing scales and

coarse granular workloads [7], but it has poor scalability at

the extreme scales of petascale systems with fine-granular

workloads [8][9]. The solution to this problem is to move

to the decentralized architectures that avoid using a single

component as a manager. Distributed schedulers are

normally implemented in either hierarchical [10] or fully

distributed architectures [31] to address the scalability

issue. Using new architectures can address the potential

single point of failure and improve the overall performance

of the system up to a certain level, but issues can arise in

distributing the tasks and load balancing among the nodes

[26].

The idea of using cloud services for high performance

computing has been around for several years, but it has not

gained traction primarily due to many issues. Having

extensive resources, public clouds could be exploited for

executing tasks in extreme scales in a distributed fashion.

Our goal in this project is to provide a compact and

lightweight distributed task execution framework that runs

on the Amazon Elastic Compute Cloud (EC2) [18], by

leveraging complex distributed building blocks such as the

Amazon Simple Queuing Service (SQS) [19] and the

Amazon distributed NoSQL key/value store (DynamoDB)

[34].

There have been many research works about utilizing

public cloud environment on scientific computing and High

Performance Computing (HPC). Most of these works show

that cloud was not able to perform well running scientific

applications [11][12][13][14]. Most of the existing research

works have taken the approach of exploiting the public

cloud using as a similar resource to traditional clusters and

super computers. Using shared resources and virtualization

technology makes public clouds totally different than the

traditional HPC systems. Instead of running the same

traditional applications on a different infrastructure, we are

proposing to use the public cloud service based applications

that are highly optimized on cloud environment. Using

public clouds like Amazon as a job execution resource

could be complex for end-users if it only provided raw

Infrastructure as a Service (IaaS) [35]. It would be very

useful if users could only login to their system and submit

jobs without worrying about the resource management.

Another benefit of the cloud services is that using those

services, users can implement relatively complicated

systems that are able to serve in larger scales with a very

short code base in a short period of time. Our goal is to

show evidence that using these services we are able to

provide a system that provides high quality service that is

on par with the state of the art systems in with a

significantly smaller code base. To our knowledge,

CloudKon [15] is the only distributed task scheduler with

the ability of running both MTC [16] and HPC tasks that is

designed and optimized to perform well on public cloud

environment.

In this paper, we design and implement a scalable task

execution framework on Amazon cloud using different AWS

cloud services. The most important component of our

system is Amazon Simple Queuing Service (SQS) which

acts as a content delivery service for the tasks. Amazon

DynamoDB is another cloud service that is used to make

sure that the tasks are executed exactly once. We also

leverage the Amazon Elastic Compute Cloud (EC2) to

manage virtual resources. With SQS being able to deliver

extremely large number of messages to large number of

users simultaneously, the scheduling system can provide a

high throughput even in larger scales.

Today’s data analytics are moving towards interactive

shorter jobs with higher throughput and shorter latency

[36][10]. More applications are moving towards running

higher number of jobs in order to improve the application

throughput and performance. A good example for this type

of applications is Many Task Computing (MTC) [16].

MTC applications often demand a short time to solution

and may be communication intensive or data intensive [17].

Tasks may be small or large, uniprocessor or

multiprocessor, compute-intensive or data-intensive.

As we mentioned above, running jobs in extreme scales is

starting to be a challenge for current state of the art job

management systems that have centralized architecture. On

the other hand, the distributed job management systems

have the problem of low utilization because of their poor

load balancing strategies.

We propose CloudKon-Reloaded , which is an extension to

existing CloudKon [15] and built upon the prior work of

CloudKon [15], as a job management system that achieves

good load balancing and high system utilization on large

scales with extended features viz. 1. Improved Concurrency

2. Bundled Response 3. Efficient Monitoring , which

address the existing challenges in CloudKon [15]. Instead

of using trivial techniques such as random sampling or

hierarchical system design, CloudKon [15] uses distributed

queues to deliver the tasks fairly to the workers without any

need for the system to choose between the nodes. The

distributed queue serves as a big pool of tasks that is highly

available. The worker gets to decide when to pick up a new

task from the pool. This approach brings design simplicity

and efficiency. Moreover, taking this approach, the system

components are loosely coupled to each other. Therefore

the system will be highly scalable, robust, and easy to

upgrade.

The main contributions of this work are:

1. Extending the existing CloudKon framework with
improved level of concurrency at client and server side
for homogenous tasks.

2. Appending response bundling of tasks at server side to
client response queue reducing communication
overhead as an addition to existing CloudKon
framework.

3. Reloading the existing CloudKon framework with an
efficient monitoring feature that reduces the resource
contention and communication overhead.

4. Performance evaluation from 1 thru 1024 instances
scale on Cloudkon reloaded framework.

5. Contribution to evaluation of throughput and efficiency
to CloudKon paper submitted to CCGRID 2014.

II. Proposed Solution

We have designed the reloaded CloudKon framework with

the following improvements:

1. Improved Concurrency

2. Response bundling

3. Efficient Monitoring

Having these improvements has major focus we have

designed a new architecture. This section explains about

the system design of reloaded CloudKon. We have used a

component based design on this project for two reasons: (1)

A component based design fits better in the cloud

environment. It also helps designing the project in a

loosely-coupled fashion. (2) It will be easier to improve the

implementation in the future.

Figure 1 shows the different components of CloudKon .The

client node works as a front end to the users to submit their

tasks. SQS has a limit of 256 KB for the size of the

messages which is sufficient for CloudKon Task lengths. In

order to send tasks via SQS we need to use an efficient

serialization protocol with low processing overhead. We

use Google Protocol Buffer for this reason. The task saves

the system log during the process while passing different

components. Thus we can have a complete understanding

of the different components using the detailed logs.

The main components of the CloudKon for running MTC

jobs are Client, Worker, Global Request Queue and the

Client Response Queues. The system also has a Dynamic

Provisioner to handle the resource management and a

Monitoring System to monitor the system utilization.

The client component is independent of other parts of the

system. It can start running and submitting tasks without

the need to register itself into the system. Having the

Global Request Queue address is sufficient for a client

component to join the system. The client program is

multithreaded. The number of threads can be configured by

the user or also be made dynamic depending on the number

of cores in the system on which the client is running. So it

can submit tasks in parallel. Before sending any tasks, the

client creates a response queue for itself. All of the

submitted tasks carry the address of its Client Response

Queue. The client has also the ability to use task bundling

to reduce the communication overhead. The client has one

more level threading, created by client workers which is

used only when it pulls the results back from its response

queue. While pulling back results from the response queue

the client workers pulls a message bundle and creates task

threads that does the actual work. So that the client worker

need not wait until all the messages in the bundle are

deleted from the queue and stored in the list. The task

thread takes this responsibility. Task threads contribute a

lot to the increase in the throughput and decrease in latency

and high concurrency. The task threads run in Maximum

Concurrency Mode.

Figure 1.CloudKon Reloaded Architecture

Similar to the Client component, the Worker component

runs independently in the system. Having the Global

request queue, the Workers can join and leave the system

any time during the execution. The Global Request Queue

acts as a big pool of tasks. Clients can submit their tasks to

this queue and Workers can pull tasks from it. Using this

approach, the scalability of the system is only dependent on

the scalability of the Global Request Queue and it will not

put extra load on workers on larger scales. Worker code is

also multithreaded and is able to receive multiple tasks in

parallel. The number of threads can be configured by the

user or also be made dynamic, depending on the number of

cores in the system on which the client is running. So it can

submit tasks in parallel. Each thread can pull up to 10

bundled tasks together. Again, this feature is enabled to

reduce the large communication overhead. After pulling a

bundle of tasks from Global Request Queue the worker

thread creates task threads that does the actual work.It

deletes the task from the global queue and checks with the

DyanamoDB for duplication and then execute the actual

task and writes the result to the client specific array in the

buffer. The task threads run in Optimal Concurrency Mode.

The Send Response Thread sleeps and periodically empties

the buffer and sends all the results to the corresponding

Client Response Queue in bundles. Thus reduces the

network overhead and also utilizes the network bandwidth

efficiently as results (maximum of 10 at a time) to the same

client are bundled together and sent at one time. After

which the Client will be able to pull the results from its

response queue.

A. Concurrency

We increase the level of concurrency on both the server and

client by adding one more level of threading called Task

Threads (TT).We also have two modes in which the task

threads can be made to run: Optimal Concurrency Mode

and Maximum Concurrency Mode. If the threads don't do

I/O, synchronization, etc., and does only computation, 1

thread per core will get you the best performance. On the

Client side there is going to be no computation so we run

task threads on the Client side in Maximum Concurrency

Mode, but on the Server side there is going to be both

computation and also uses system services. So we run task

threads on the Server side in Optimal Concurrency Mode

1. Optimal Concurrency Mode 1: Figure 2 shows the

architecture of Optimal Concurrency Mode. In this mode

we control the number of task threads running

concurrently. That is we set a limit. The number can be

configured or also be made dynamic .The optimal number

of threads is not same for all tasksand is not always

proportional to the number of cores in the system. We use

this mode on server side for sleep 0 tasks for our

benchmarking.

Figure 2 Optimal Concurrency Model

2. Maximum Concurrency Mode 2: Figure 3 shows the

architecture of Optimal Concurrency Mode. In this mode

we don’t control the number of threads running parallel.

We just keep on creating threads .This mode can be used

only with tasks that have more I/O operations and

dependencies on system services. We use this mode on

client side for sleep 0 tasks for our benchmarking. As there

is no computation on the client side, we achieve very high

utilization.

In this section we evaluate the performance of the

CloudKon. We evaluate the performance on different

metrics such as throughput, efficiency, consistency,

utilization, latency. We compare CloudKon performance

with two other distributed job management systems as well.

Table 1 shows one of the experiments we ran to compare

the Maximum Concurrency Mode and Optimal

Concurrency Mode.

Figure 3 Maximum Concurrency Mode

Table 1 Experiments comparing the Maximum Concurrency Mode and
Optimal Concurrency Mode.

B. Task Execution Consistency Issues

A major limitation of SQS is that it does not guarantee

delivering the messages exactly once. It guarantees delivery

of the message at least once. That means there might be

duplicate messages delivered to the workers. The existence

of the duplicate messages comes from the fact that these

messages are copied to multiple servers in order to provide

high availability and increase the ability of parallel access.

We need to provide a technique to prevent running the

duplicate tasks delivered by SQS. In many types of

workloads running a task more than once is not acceptable.

In order to be compatible for these types of applications

CloudKon needs to guarantee the exactly once execution of

the tasks.

In order to be able to verify the duplication we use

DynamoDB. DynamoDB is a fast and scalable key-value

store. After receiving a task, the worker thread verifies that

if this is the first time that the task is going to run. The

worker thread makes a conditional write to the DynamoDB

table adding the unique identifier of the task which is a

combination of the Task ID and the Client ID. The

operation succeeds if the Identifier has not been written

before. Otherwise the service throws an exception to the

worker and the worker drops the duplicate task without

running it. This operation is an atomic operation. Using this

technique we have minimized the number of

communications between the worker and DynamoDB.

As we mentioned above, exactly once delivery is necessary

for many type of applications such as scientific

applications. But there are some applications that have

more relaxed consistency requirements and can still

function without this requirement. Our program has ability

to disable this feature for these applications to reduce the

latency and increase the total performance. We will study

the overhead of this feature on the total performance of the

system in the evaluation section.

C. Dynamic Provisioning

One of the main goals in the public cloud environment is

the cost-effectiveness. The affordable cost of the resources

is one of the major features of the public cloud to attract

users. It is very important for a Cloud-enabled system like

this to keep the costs at the lowest possible rate. In order to

achieve the cost-effectiveness we have implemented the

dynamic provisioning system. Dynamic Provision is

responsible for assigning and launching new workers to the

system in order to keep up with the incoming workload.

We first considered using Amazon Cloud Watch for this

purpose. Amazon CloudWatch provides monitoring for

AWS cloud resources and the applications customers run

on AWS. Users can use it to collect and track metrics. The

problem with using Cloud Watch in our system is that the

shortest period for updating the state of the SQS is 5

minutes which makes the implementation slow to respond

to changes in workloads. This is not acceptable for our

application requirements running MTC and HPC tasks.

We decided to implement our own dynamic provision

which takes care of launching new worker instances in case

of resource shortage. The application checks the queue

length of the global request queue periodically and

compares the queue length with its previous size. If the

increase rate is more than the allowed threshold, it launches

a new worker. As soon as being launched, the worker

automatically joins the system. Both checking interval and

the size threshold are configurable by the user.

In order to use provide a solution for dynamically

decreasing the system scale to keep the costs low, we have

added a program to the workers that is able to terminate the

instance if two conditions hold. That only happens if the

worker goes to the idle state for a while and also if the

instance is getting close to its lease renewal. The instances

in Amazon EC2 are charged on hourly basis and will get

renewed every hour of the user don’t shut them down. This

mechanism helps our system scale down automatically

without the need to get any request from a component.

Using these mechanisms, the system is able to dynamically

scale up and down.

D.Monitoring

Monitoring is useful for many purposes such as utilization

monitoring and debugging in job management systems.

CloudKon uses DynamoDB to provide monitoring. There is

a monitoring thread running on each worker that

periodically reports utilization of each worker to the key

value store. The key value store in DynamoDB keeps track

of all of the workers. The monitoring component reads the

specific data it needs from the store in a real time fashion.

Here we have only one monitoring thread per instance

irrespective of number of worker threads running on the

instance .So that we could reduce a lot of contention as all

the monitor threads writes an update to the DynamoDB

every second.

E.Implementation Details

We have implemented all of the CloudKon components in

Java. Our implementation is multithreaded and has two

levels of threading in both Client and Worker component

codes. Many of the features in both of these systems such

as monitoring, consistency, number of threads and the task

bundling size is configurable as a program input

argument.Taking advantage of AWS service building

blocks, our system has a short and simple code base. The

code base of CloudKon is significantly shorter than other

common task execution systems like Falkon, Sparrow or

MATRIX. CloudKon code has about 1000 lines of code,

while Falkon has 33000+ lines, Sparrow has 24000+ lines

of code, and MATRIX has 10500++ lines of code. This can

highlight the potential benefits of the public cloud services.

We were able to create a fairly complicated and scalable

system by re-using scalable building blocks in the cloud.

III. Evaluation

A. Testbed

We deployed and ran CloudKon on Amazon EC2

instances. We have used m1.large instances on Amazon

EC2. We have run all of our experiments on us.east.1

datacenter of Amazon. We have scaled the experiments up

to 1024 nodes. In order to make the experiments efficient,

client and worker nodes both run on same node. All of the

instances had Linux Operating Systems. Our framework

works on any OS that has a JRE 1.7. We have used Bash

scripting language for calculating throughput, latency, file

transfer from EC2 instances, Parallel-SSH for parallel

execution of client and server code on EC2 instances , EC2

CLI (Command Line Interface) for EC2 instance startup,

termination, get EC2 IP address, etc, and AWS CLI

(Command Line Interface) for SQS operations and EC2

dynamic instance startup in Dynamic Provisioning.

B. Throughput

In order to measure the throughput of our system we run

sleep 0 tasks. There are 2 client threads and 4 worker

threads running on each instance. Each instance submits

16000 tasks.

Figure 4provides the throughput of CloudKon on different

scales. Each instance submits 16000 tasks aggregating to

16.38 million tasks on the largest scale. CloudKon achieves

almost linear throughput starting from 238 tasks per second

on 1 instance to 119K tasks per second on 1024 instances.

CloudKon is not done by these instances. Since the job

management is handled by SQS, the performance of the

system is mainly dependent of this service. We predict that

the throughput continue to scale until it reaches the SQS

performance limits. Due to the budget limitation and AWS

policies for normal users, we were not able to expand our

scale more than 1024 instances.

Figure 4 Throughput of CloudKonupto 1024 instances (MTC tasks)

C. Comparison with Matrix and Sparrow

We also got oppurtunity to work on CCGrid 2014 paper,

where we published our throughput results. In the process,

we also got to compare our results with 2 other job

managements systems: Sparrow and MATRIX. Figure 5

compares the throughput of CloudKon with Sparrow and

MATRIX on different scales. Each instance submits 16000

tasks aggregating to 16.38 million tasks on the largest

scale.

The throughput of MATRIX is significantly higher than the

MATRIX and Sparrow on 1 instances scale. The reason is

that MATRIX runs locally without adding any scheduling

or network overhead. But on CloudKon the tasks go

through the network even if there is one node running on

the system. The gap between the throughputs of the

systems gets smaller as the network overhead adds up to

the other two systems.

The throughput of MATRIX starts to decrease on larger

scales. MATRIX schedulers synchronize with each other

using all to all synchronization method. Having too many

open TCP connections by workers and schedulers on 256

instances scale leads MATRIX to crash. We were not able

to run MATRIX on 256 instances. The network

performance on EC2 cloud is much lower than then HPC

clusters.

Sparrow is the slowest among the three systems in terms of

throughput. It shows a stable throughput with almost linear

speedup up to 64 instances. As the number of instances

increases more than 64, the list of instances to choose from

for each scheduler on Sparrow increases. Therefore, many

workers remain idle and the throughput will not increase as

expected. According to your suggestions we should try

making some configuration changes in Sparrow to make it

suitable to run on scales greater than 100.

Figure 5. Throughput of CloudKon, Sparrow and MATRIX (MTC tasks)

D) Efficiency:

We tested the system efficiency in case of homogeneous

tasks. The homogeneous tasks have a certain task duration

length. Therefore it is easier distribute them since the

scheduler assumes it takes the same time to run them. This

could give us a good feedback about the efficiency of the

system in case of running different task types with different

granularity. We can also assess the ability of the system to

run the very shot length tasks.

In this section we evaluate the efficiency of CloudKon sub

second tasks. It is important for sub-second task. Figure 8

shows the efficiency of 16 and 128 ms tasks on the

systems. On sleep 16 ms tasks, the efficiency of CloudKon

is around 40% which is low but is stable as the scale

increases. That shows that CloudKon achieves a better

scalability. On sleep 128 ms tasks, the efficiency of

CloudKon is as high as 88%as shown in Fig. 6.

Figure 6. Efficiency of CloudKon running homogenous workloads

E) Consistency Overhead:

In this section we evaluate effect of tasks execution

consistency on CloudKon. Figure 7 shows the system run-

time for sleep 16 ms with the duplication controller enabled

and disabled. The overhead for other sleep tasks were

similar to this experiment. So we have only included one of

the experiments in this paper.

The results show that the overhead increases with the scale.

The inconsistency on different scales comes from the fact

that the number of the duplicate messages on each

experiment could be different. That results in more random

system performance of the system on different experiments.

In general the overhead on scale of less than 10 is less than

%15. This overhead is mostly for the successful write

operations on DynamoDB. As the number of instances

increase, the probability of getting duplicate tasks becomes

more. Therefore there will be more exceptions. That leads

to a higher overhead. The overhead on larger scales goes up

to %35 but it appears to be stable and not increasing.

Figure 7. Consistency Overhead in CloudKon

Figure 8 also shows the throughput graph for forCloudKon

with duplication and without duplication check. Both the

throughput graphs are linear and increases with scale. The

difference in gap between the duplication and without

duplication graph is increasing at lower scales but is

constant at higher scales.

Figure 8. Throughput plot for Duplication and without Duplication

F) Utilization:

This section we evaluate the utilization of the worker

threads for the intended task. The overall utilization is

recorded and updated by Monitoring thread in Dynamo DB

for every sec. We have evaluated using sleep 100 taskson

2 scales i.e. 4 and 8 nodes as shown if Fig. 9 and Fig. 10

respectively. The total no. of worker thread for 4 nodes = 4

* 4 i.e 16 worker threads. and for 8 nodes = 8 * 4 i.e. 32

worker threads.

Figure 9. Average Utilization for sleep 100 on 4 node scale

Figure 10. Average Utilization for sleep 100 on 8 node scale

The average utilization of the number of threads is around

13-14 threads/sec and 29-30 threads/sec respectively for 4

and 8 nodes as inferred from the Fig. 9 and 10. This shows

that all the worker threads are effectively utilized during

the system execution time.

G) Latency:

In order to measure latency accurately, the system has to

record the request and respond timestamps of each task.

Figure 11 shows the latency of CloudKon for sleep 0 ms

scaling from 1 to 1024 instances. Each instance is running

2 client thread and 4 worker threads and sending 16000

tasks per instance. The latency of the system at 1 node is

relatively high showing 3s overhead added by the system.

But this will be acceptable when the scale increase. The

latency is not too low because of the response bundling.

The latency can be further reduced by adjusting the sleep

time and bundling size on the server. The fact that the

latency doesn’t increase more than 5 s while increasing the

scale from 1 instance to 1024 instance shows that

CloudKon is stable. The main reason for that is that SQS as

the task pool is a highly scalable service being backed up

with multiple servers keeping the service very scalable.

Therefore scaling up the system by adding threads and

increasing the number of tasks doesn’t affect the SQS

performance. The client and worker nodes always handle

the same number of tasks on different scales. Therefore

scaling up doesn’t affect the instances

Figure 11. Latency of CloudKonsleep 0 ms tasks

IV. Related Work

The job schedulers could be centralized, where a single

dispatcher manages the job submission, and job execution

state updates; or hierarchical, where several dispatchers are

organized in a tree-based topology; or distributed, where

each computing node maintains its own job execution

framework. In this section, we study commonly used

examples of each type and point out their benefits and

weaknesses compared to CloudKon [15].

Condor [3] was implemented to harness the unused CPU

cycles on workstations for long-running batch jobs. Slurm

[2] is a resource manager designed for Linux clusters of all

sizes. It allocates exclusive and/or non-exclusive access to

resources to users for some duration of time so they can

perform work, and provides a framework for starting,

executing, and monitoring work on a set of allocated nodes.

Portable Batch System (PBS) [5] was originally developed

at NASA Ames to address the needs of HPC, which is a

highly configurable product that manages batch and inter-

active jobs, and adds the ability to signal, rerun and alter

jobs. LSF Batch [20] is the load-sharing and batch-queuing

component of a set of workload management tools.

All these systems target as the HPC or HTC applications,

and lack the granularity of scheduling jobs at finer levels

making them hard to be applied to the MTC applications.

What’s more, the centralized dispatcher in these systems

suffers scalability and reliability issues. In 2007, a light-

weight task execution framework, called Falkon [9] was

developed. Falkon also has a centralized architecture, and

although it scaled and performed magnitude orders better

than the state of the art, its centralized architecture will not

even scale to petascale systems [8]. A hierarchical

implementation of Falkon was shown to scale to a petascale

system in [8], the approach taken by Falkon suffered from

poor load balancing under failures or unpredictable task

execution times.

Although distributed load balancing at extreme scales is

likely a more scalable and resilient solution, there are many

challenges that must be addressed (e.g. utilization,

partitioning). Fully distributed strategies have been

proposed, including neighborhood averaging scheme

(ACWN) [21][22][23][24]. In [24], several distributed and

hierarchical load balancing strategies are studied, such as

Sender/Receiver Initiated Diffusion (SID/RID), Gradient

Model (GM) and a Hierarchical Balancing Method (HBM).

Other hierarchical strategies are explored in [23]. Charm++

[25] supports centralized, hierarchical and distributed load

balancing. In [25], the authors present an automatic

dynamic hierarchical load balancing method for Charm++,

which scales up to 16K-cores on a Sun Constellation

supercomputer for a synthetic benchmark.

Sparrow is another scheduling system that focuses on

scheduling very short jobs that complete within hundreds of

milliseconds [26]. It has a decentralized architecture that

makes it highly scalable. It also claims to have a good load

balancing strategy with near optimal performance using a

randomized sampling approach. It has been used as a

building block of other systems.

Work stealing is another approach that has been used at

small scales successfully in parallel languages such as Cilk

[27], to load balance threads on shared memory parallel

machines [28][29][31]. However, the scalability of work

stealing has not been well explored on modern large-scale

systems. In particular, concerns exist that the randomized

nature of work stealing can lead to long idle times and poor

scalability on large-scale clusters [31]. The largest studies

to date of work stealing have been at thousands of cores

scales, showing good to excellent efficiency depending on

the workloads [31].

To our knowledge CloudKon [15] is the only job

management system along with Slurm++ that is able to

support distributed HPC scheduling. It is able to run

workloads of MTC, HPC or even workloads with

combination those two. Moreover, CloudKon [15] is the

only distributed task scheduler that is designed and

optimized to run on public cloud environment. Slurm++ is

a distributed job launch prototype, built on top of Slurm

and ZHT (a distributed key value store) [32][33]. It

supports job both HPC and MTC workloads. Slurm++ has

been compared to SLURM up to 500 nodes and has shown

10X speedup.

This work aims to leverage existing distributed and scalable

building blocks to deliver an extremely compact distributed

task execution framework while maintaining the same level

of performance as the best of breed systems. Moreover,

CloudKon [15] is the only distributed task scheduler that is

designed and optimized to run on public cloud

environment. CloudKon-Reloaded makes the maximum

utilization of the processor with high level of concurrency,

less network overhead and high efficiency.

V. Conclusion

We learned a lot of concepts about distributed system from

this project. We were able to apply many theoretical

concepts that we had learned in distributed system field.

We became familiar with the Cloud computing building

blocks (Amazon EC2, SQS, and DynamoDB) , problems in

distributed system, multithreading, thread pool in

java,developing a scalable and efficient code suitable for

distributed system, debugging a highly distributed and

multithreaded code, benchmarking at high scales, shell

scripting, shell commands.

It is important for the scheduling system to provide high

throughput and low latency on the larger scales and add

minimal overhead to the workflow.Our benchmarking

results prove that the reloaded Cloudkon is highly scalable

and provides high throughput, which also proves that the

scalability of the system is only dependent on the

scalability of the Global Queue and it will not put extra

load on workers on larger scales. The comparison of

CloudKon with other similar systems clearly shows that

CloudKon was able to outperform other systems like

Sparrow and MATRIX on scales of 128 instances or more

in terms of throughput. From the Efficiency plot we can say

that the code is about 87% efficient and the utilization of

the system for the intended task is also very high as you can

see from the utilization plot.

Future work can be done in many directions . One of the

works would be to build a similar architecture outside

cloud with same reliability, scalability and efficiency. With

help from other systems such as ZHT Distributed Hash

Table [32] [33] we will implement a SQS like queue in a

way that can guarantee exactly once delivery. Another

future direction of this work is to implement a more tightly

coupled version of CloudKon and test it on supercomputers

and HPC environments while running HPC jobs in a

distributed fashion.

VI. References

[1] P. Kogge, et. al., “Exascale computing study: Technology challenges
in achieving exascale systems,” 2008.

[2] M. A. Jetteet. al, Slurm: Simple linux utility for resource
management. In In Lecture Notes in Computer Sicence: Proceedings
of Job Scheduling Strategies for PrarallelProcesing (JSSPP) 2003
(2002), Springer-Verlag, pp. 44-60.

[3] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in
Practice: The Condor Experience” Concurrency and Computation:
Practice and Experience 17 (2-4), pp. 323-356, 2005.

[4] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke. “Condor-G:
A Computation Management Agent for Multi-Institutional Grids,”
Cluster Computing, 2002.

[5] B. Bode et. al. “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters,” Usenix, 4th Annual Linux Showcase
& Conference, 2000.

[6] W. Gentzsch, et. al. “Sun Grid Engine: Towards Creating a Compute
Power Grid,” 1st International Symposium on Cluster Computing
and the Grid, 2001.

[7] C. Dumitrescu, I. Raicu, I. Foster. “Experiences in Running
Workloads over Grid3”, The 4th International Conference on Grid
and Cooperative Computing (GCC 2005)

[8] I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale
Systems,” IEEE SC 2008.

[9] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasKexecutiON
Framework,” IEEE/ACM SC 2007.

[10] S. Melnik, A. Gubarev, J. J. Long, G. Romer,S. Shivakumar, M.
Tolton, and T. Vassilakis. Dremel: Interactive Analysis of Web-
Scale Datasets. Proc. VLDB Endow., 2010

[11] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and N. J.
Wright. Evaluating Interconnect and virtualization performance for
high performance computing, ACM Performance Evaluation
Review, 40(2), 2012.

[12] PiyushMehrotra, JahedDjomehri, Steve Heistand, Robert Hood,
Haoqiang Jin, Arthur Lazanoff, Subhash Saini, and Rupak Biswas.
2012. Performance evaluation of Amazon EC2 for NASA HPC
applications. In Proceedings of the 3rd workshop on Scientific Cloud
Computing (ScienceCloud '12). ACM, NY, USA, pp. 41-50.

[13] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. “Case study
for running HPC applications in public clouds,” In Proc. of ACM
Symposium on High Performance Distributed Computing, 2010.

[14] Guohui Wang and T. S. Eugene Ng. The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center. In IEEE
INFOCOM, 2010.

[15] Iman Sadooghi, Ioan Raicu. "CloudKon: a Cloud enabled
Distributed tasK executiON framework", Illinois Institute of
Technology, Department of Computer Science, PhD Oral Qualifier,
2013

[16] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and
Supercomputers,” 1st IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS) 2008.

[17] I. Raicu. "Many-Task Computing: Bridging the Gap between High
Throughput Computing and High Performance Computing",
Computer Science Dept., University of Chicago, Doctorate
Dissertation, March 2009

[18] Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web
Services, [online] 2013, http://aws.amazon.com/ec2/

[19] Amazon SQS, [online] 2013, http://aws.amazon.com/sqs/

[20] LSF:http://platform.com/Products/TheLSFSuite/Batch, 2012.

[21] L. V. Kal´eet. al. “Comparing the performance of two dynamic load
distribution methods,” In Proceedings of the 1988 International
Conference on Parallel Processing, pages 8–11, August 1988.

[22] W. W. Shu and L. V. Kal´e, “A dynamic load balancing strategy for
the Chare Kernel system,” In Proceedings of Supercomputing ’89,
pages 389–398, November 1989.

[23] A. Sinha and L.V. Kal´e, “A load balancing strategy for prioritized
execution of tasks,” In International Parallel Processing Symposium,
pages 230–237, April 1993.

[24] M.H. Willebeek-LeMair, A.P. Reeves, “Strategies for dynamic load
balancing on highly parallel computers,” In IEEE Transactions on
Parallel and Distributed Systems, volume 4, September 1993

[25] G. Zhang, et. al, “Hierarchical Load Balancing for Charm++
Applications on Large Supercomputers,” In Proceedings of the 2010
39th International Conference on Parallel Processing Workshops,
ICPPW 10, pages 436-444, Washington, DC, USA, 2010.

[26] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND
STOICA, I. Sparrow: Scalable scheduling for sub-second parallel
jobs. Tech. Rep. UCB/EECS-2013-29, EECS Department,
University of California, Berkeley, Apr 2013.M.

[27] Frigo, et. al, “The implementation of the Cilk-5 multithreaded
language,” In Proc. Conf. on Prog. Language Design and
Implementation (PLDI), pages 212–223. ACM SIGPLAN, 1998.

[28] R. D. Blumofe, et. al. “Scheduling multithreaded computations by
work stealing,” In Proc. 35th FOCS, pages 356–368, Nov. 1994.

[29] V. Kumar, et. al. “Scalable load balancing techniques for parallel
computers,” J. Parallel Distrib. Comput., 22(1):60–79, 1994.

[30] Anupam Rajendran, Ioan Raicu. "MATRIX: Many-Task Computing
Execution Fabric for Extreme Scales", Department of Computer
Science, Illinois Institute of Technology, MS Thesis, 2013

[31] J. Dinanet. al. “Scalable work stealing,” In Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis (SC '09), 2009.

[32] T. Li, et al., “ZHT: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table,” in IEEE International
Parallel & Distributed Processing Symposium, IEEE IPDPS ’13,
2013.

[33] Tonglin Li, Raman Verma, Xi Duan, Hui Jin, IoanRaicu. “Exploring
Distributed Hash Tables in High-End Computing”, ACM
Performance Evaluation Review (PER), 2011

[34] Amazon DynamoDB (beta), Amazon Web Services, [online] 2013,
http://aws.amazon.com/dynamodb

[35] P. Mell and T. Grance. NIST definition of cloud computing. National
Institute of Standards and Technology. October 7, 2009.

[36] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster Computing with Working Sets,” in
Proceedings of the 2nd USENIX Conference on Hot topics in Cloud
Computing, (Boston,MA), June 2010.

[37] P. Mehrotra, et al. 2012. “Performance evaluation of Amazon EC2
for NASA HPC applications” In Proceedings of the 3rd work-shop
on Scientific Cloud Computing (ScienceCloud '12). ACM, New
York, NY, USA, pp. 41-50.

[38] I. Raicu, I. Foster, et. al. “The Quest for Scalable Support of Data
Intensive Workloads in Distributed Systems,” ACM HPDC 2009.

http://aws.amazon.com/ec2/

	I. Introduction
	II. Proposed Solution
	Figure 3 Maximum Concurrency Mode
	Table 1 Experiments comparing the Maximum Concurrency Mode and Optimal Concurrency Mode.
	B. Task Execution Consistency Issues
	C. Dynamic Provisioning
	E.Implementation Details

	III. Evaluation
	IV. Related Work
	V. Conclusion
	VI. References

