
Extending CloudKon to Support HPC Job Scheduling

Isha Kapur, Karthik Belgodu, Pankaj Purandare, Iman Sadooghi, Ioan Raicu

Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

ikapur@hawk.iit.edu, kbelgodu@hawk.iit.edu, ppuranda@hawk.iit.edu, isadoogh@iit.edu, iraicu@cs.iit.edu

Abstract — With the ongoing trends in computing and

data systems, the time is not far when we will have exascale

systems with millions of nodes and threads of execution

being the major driving force for most of the large scale,

distributed operations. Today, job management systems

need to support a variety of applications, such as Many-

Task Computing - MTC and; High-Performance

Computing - HPC, that have a bulk of tasks with finer

granularity due to such high parallelism supported. Most of

the popular systems today, have Master/Slave architectures

where a centralized server is responsible for all resource

management and job executions, making it a single point of

failure and also inefficient to scale at petascale systems

that require finer granular workloads. The goal of this

project is to enhance the recently developed CloudKon

system to support HPC jobs using the various public cloud

services (Amazon's SQS, DynamoDB and EC2), and

distinguishing HPC and MTC tasks by the number of

cores/nodes a task requires. This would work in cohesion

with the actual motive behind developing CloudKon, which

is to act as a distributed job management system that can

support millions of tasks from multiple users delivering

over 2X the performance compared to other state-of-the-art

systems in terms of throughput.

Keywords - CloudKon, Many-Task Computing, High-

Performance Computing, distributed scheduling

1. INTRODUCTION

Modern job schedulers aim to efficiently distribute jobs to

the various available computing resources to gain peak

resource utilization and maximum throughput. With the

continuous increase in the scales of the systems, there is a

clear need for highly efficient job schedulers. Predictions

are that by the end of this decade, we will have exascale

system with millions of nodes and billions of threads of

execution. These schedulers are required to be highly fault

tolerant and have high scalability to handle exascale

systems with millions of nodes and billions of threads of

execution [21].

However paradigms like client server architecture are still

being used in the state of the art systems where a

centralized server is responsible for submitting the jobs to

various available resources and collecting the execution

results. The centralized dispatcher in these systems suffers

scalability and reliability issues. With decentralization, the

required scalability can be achieved.

We propose a highly decentralized and distributed system

that makes use of Amazon’s infrastructure services like

Elastic Cloud Compute, Simple Queuing Service and the

distributed NoSQL key/value store (DynamoDB). Our goal

is to show that HPC is possible on the “Cloud” by using

these systems and the quality of service provided is at par

and sometimes better than some of the state of the art

systems that run on grids and clusters.

Our code base is relatively less compared to other systems.

We use multiple distributed queues to deliver tasks to the

workers and NoSQL database for various purposes like

duplicate check and for deadlock avoidance and detection.

This is very different from other approaches like random

sampling, resource stealing or the hierarchical system. This

systematic approach gives our system better predictability

which is useful for debugging, performance improvements

and adding new features.

CloudKon[13] is the runtime system for workflow engines

[22, 23, 24] that allows efficient remote execution of tasks

on distributed systems. The components of this system

mainly consist of a client component that submits the job, a

highly distributed queue that holds the jobs and a set of

nodes that poll the queue and get the job that will be

executed. All these individual components are loosely

coupled which abstracts the way in which the job is

executed.

This report makes the following contributions:

1. Describes the modifications made to CloudKon

architecture and explain the design choices made to

achieve maximum throughput to support HPC jobs.
2. Explains the working of the system and how individual

components are used.
3. Performance evaluations on scales from 16 to 1200

processes running on 300 nodes and comparing

CloudKon with Slurm[12] and Slurm++. It

outperforms these scheduling systems in terms of a

high throughput.

2. BACKGROUND

This section covers necessary background information of

CloudKon, Amazon's SQS, EC2, and DynamoDB, Many-

Task Computing; and High Performance Computing.

2.1. CloudKon
It is a distributed task execution framework built upon

cloud computing building blocks such as Amazon’s SQS,

EC2 and, DynamoDB. It has been designed to support

mailto:ikapur@hawk.iit.edu
mailto:kbelgodu@hawk.iit.edu
mailto:ppuranda@hawk.iit.edu
file:///C:/Users/iraicu/AppData/Local/Temp/isadoogh@iit.edu
mailto:iraicu@cs.iit.edu

MTC applications which will be extended to HPC

applications too. CloudKon offers properties like scalability

for high throughput with larger scales through distributed

services, load balancing at large scale with heterogeneous

workloads, light-weight to have minimum overhead while

working at fine granular workloads and the last one being

loosely coupled which makes the system compact and

robust [1].

2.2. Amazon SQS
Amazon SQS is a fast, reliable, scalable fully managed

distributed message delivery fabric which can queue

unlimited number of short messages. SQS makes it simple

and cost-effective to decouple the components of cloud

application. SQS can transmit any volume of data, at any

level of throughput, without losing messages or requiring

other services to be always available. The maximum size

for a message is 256 KB where each 64KB chunk of

payload is billed as one request or messages in a batch of

ten. Messages can be sent and read simultaneously on SQS.

When a worker receives a message, before removing that

message, SQS locks the message in the queue which keeps

other computers from processing the message

simultaneously. If the message processing fails, the lock

will expire and the message will be available again. SQS

guarantees delivery of each message at least once, and

provides highly concurrent access to messages. That also

means it does not guarantee the exactly once delivery.

Hence, there could be multiple copies of the same message

available to read by different workers [3].

2.3. Amazon EC2
Amazon Elastic Compute Cloud is a Infrastructure as a

Service (IaaS) that provides a raw infrastructure and the

associated middleware to host a web service that allows

anyone to run their applications on Amazon’s computing

resources by letting customers rent the computing resources

by hour.

Amazon EC2 instance is a running virtual machine on

Amazon’s cloud platform to which clients are given access

for using their computing resources. Each of these

instances is deployed with an Amazon Machine Image with

pre-configured OS and some bundled application software.

Amazon offers different types of instances, each having a

different compute capacity, memory size, I/O performance

and storage [4]. These instances are categorized into three

classes as follows:
 Reserved instances – Amazon allows us to pay upfront

for each instance that we want to use during a given

period of time, and in turn, gives us a lower hourly cost

for each of them.

 On demand instances – You only pay for what you use,

allowing easy allocation and deallocation of resources,

depending on your workload requirements.

 Spot instances – These instances are more appropriate

for running short-term applications under certain

conditions. Amazon allows us to bid on unused EC2

capacity and run instances until the current spot

instance price exceeds our bid to achieve a better

utilization of their infrastructure. The spot price is set

by Amazon based on the available capacity and load of

their systems and it is updated in a 5 minute period.

2.4. Amazon DynamoDB
DynamoDB is a fast, fully distributed highly scalable,

NoSQL database service that provides users to store and

retrieve any amount of data, and serve any level of request

traffic. It is able to handle large amounts of simultaneous

write and read which are atomic. DynamoDB does not

provide complex data access queries. It lets users save and

access the data using its coordinating key [5].

2.5. Many-Task Computing
It aims to bridge the gap between the two computing

paradigms High Performance Computing (HPC) and High

Throughput Computing (HTC). MTC emphasizes one

using many computing resources over short period of time

to complete many tasks where primary metrics are

measured in seconds. Tasks can be small or large, single

processor or multiprocessor, compute intensive or data

intensive. The set of tasks may be static or dynamic,

homogeneous or heterogeneous, loosely coupled or tightly

coupled. The aggregate number of tasks, quantity of

computing, and volumes of data may be extremely large [6,

18, 19, 20, 25, 27].

2.6. High Performance Computing
High-performance computing (HPC) evolved to meet the

increasing demands for processing speed. HPC brings

together several technologies such as computer

architecture, algorithms, programs and electronics, and

system software under a single canopy to solve advanced

problems effectively and quickly. A highly efficient HPC

system requires a high-bandwidth, low-latency network to

connect multiple nodes and clusters [7].

2.7. Google Protocol Buffer
Google Protocol buffer are Google's language-neutral,

platform-neutral, extensible mechanism for serializing

structured data. We define how the data should be

structured once and then use special code generator that

helps us to create a data structure to easily write and read

our structured data in Java. The metadata we need for job

processing is available in this buffer and are fed into the

various Amazon SQS instances.

2.8. Java Remote Method Invocation
This is a Java API that performs the object-oriented

equivalent of remote procedure calls (RPC), with support

for direct transfer of serialized Java objects. The various

components are:
 Client is the process that is invoking a method on the

remote object.
 Server is the process that owns the remote object.

 Object Registry: Name Server that associates the

objects with names.
A server, upon starting, registers its objects with a textual

name with the object registry. A client, before performing

invoking a remote method, must first contact the object

registry to obtain access to the remote object[17].

3. DESIGN AND PROPOSED SOLUTION

The goal of this project is to extend CloudKon, which is a

distributed task management system, to support HPC tasks

along with MTC tasks through various cloud services

provided by Amazon like SQS, EC2 and DynamoDB.

HPC involves a lot of workers and hence requires inter-

worker communications and synchronization. As a result, it

slows down the system to some extent when compared to

other MTC systems because of inherent latency in the

network and also because of the synchronization between

all the workers. One of our major design goals was to

minimize the impact of our code on the existing

performance of CloudKon for MTC.

The project mainly concentrates on the development of a

prototype application which will extend the existing

CloudKon, which supports only MTC tasks, to add HPC

support. The application is tuned to run on Amazon cloud

using Amazon Web Services like Amazon SQS, Amazon

EC2 and Amazon EC2. The test bed mainly consists of the

following Amazon Services:

1. Two SQS instances. One is for maintaining the list of

incoming job submissions to the system called Global

Request Queue. The second is for the sub workers to

connect to the worker manager depending on the

number of threads needed for each task.

2. An instance of DynamoDB that hold the number of

HPC tasks that are being currently run on the system.

3. EC2 M1.Medium instances of varied scales.

As stated before our work was to add on top of the existing

CloudKon which was developed for ground up by Iman

Sadooghi in the DataSys lab at Illinois Institute of

Technology. Our design includes the following components

that are added to the CloudKon Architecture.

1. SQS to hold the HPC messages. If a HPC job requires

n workers, n messages will be put into this queue. We

had the idea of using DynamoDB but the main

disadvantages are that it becomes comparatively to run

and it will not let us traverse the whole

2. Modification of the client component to include the

number of workers required for each HPC jobs. This is

a critical step because we decide if the job is HPC or

MTC depending on this value stored in each message.

3. A secondary DynamoDB that holds the state of system

like number of HPC jobs that have been picked up and

are in the system, waiting for more workers and the

total number of workers that are needed to fulfill these

jobs.

4. Various timeout mechanisms for deadlock detection

and recovery.

3.1. Archicture Overview
This section explains about the various components that we

are using and interaction between them. We concentrate on

the components that we added by us to enable HPC support

for CloudKon. We also discuss the modification made to

existing components to get critical information regarding

the HPC job requirements.

Client: The working of the client is inherited from the

original CloudKon architecture. The Client component is

independent of other parts of the system. It can start

running and submitting tasks without the need to register

itself into the system. The client component is

multithreaded and can submit tasks in parallel. For efficient

message passing and minimizing the communication cost,

we use message bundling to group ten tasks together before

submitting it to the system.

Global Request Queue (GRQ): An instance of SQS that is

the main pool of tasks. The clients submit the jobs/tasks to

this pool and the worker picks up these tasks for execution.

This is highly scalable and any number of clients can put

tasks into the queue without having to register or obtaining

authorization. We rely on the access keys provided by

Amazon for authorization. The maximum size of each

message in SQS is 256KB which is sufficient for our

implementation.

Client Response Queues (CRQ): Before submitting a job

to the Global Request Queue each client will create a queue

for himself and this queue will be the output stream to the

workers. After the execution of a job, the workers will

write the output data to corresponding client request

queues.

Google Protocol Buffer (GPB): This buffer is used to

store metadata like Number of workers required to execute

a task, nature of the job - in our case it is a sleep job; and

Client Response Queue IDs for the workers to submit their

results to.

Workers: These are the EC2 instances that perform the

actual task execution. They poll the GRQ to get the task

that they have to execute. These workers can join and leave

the system any time during the execution. This makes our

system dependent on the GRQ for scalability and will not

put any additional loads on the workers like registration

and authorization. The workers are subdivided into two

categories and this is applicable only to HPC jobs:

 Worker Managers: The worker who polled the GRQ

and got a HPC job.

 Sub Workers: The workers who help the manager to

execute the HPC job.

Any of the workers can be either a sub worker or worker

manager depending on the messages in the HPCQ and

GRQ.

HPC Queue (HPCQ): The queue that holds the messages

for the sub workers to be picked up. The manager puts

messages into this queue for other workers to pick up and

execute the HPC job. Only the workers have access to this

queue and it is used to hold HPC job metadata like

 Worker Manager IP and Port number for RMI

communication.

 Message Pickup count is used to differentiate between

valid and stale messages.

HPC DynamoDB: A record in DynamoDB helps us to

make informed decisions with respect to the number of

HPC jobs in the system and the number of workers that are

needed to fulfill these HPC jobs. This instance is queried

every time a new HPC job is picked up. The values in

stored here help us decide if the sub worker requirement

can be satisfied by the system. This is configured for a high

read write throughput so that it can handle a lot of queries

by different workers. Only the worker manger has access to

DynamoDB and updates the values once it starts executing

the job and after the job is executed.

3.2. Workflows in CloudKon-CKHPC:

3.2.1. Client

When client starts, it will first create a response queue

for himself and then it will submit all jobs. Once the jobs

are submitted, client will poll client response queue (CRQ)

to check whether any response has been sent by worker or

not. If it finds any response in the CRQ, it will retrieve the

response i.e. message and the same will be deleted. Once

client gets responses for all the jobs he submitted, then it

will delete the respective CRQ.

3.2.2. Worker

Each worker in the worker pool will first check HPC

worker manager queue (HPCQ). If there are any messages,

implying that they would have been put by some other

worker, it will pick one message and start working as a sub-

worker. If the HPCQ is empty, it will check the Global

Request Queue (GRQ). If it contains any job to be

executed, get job/s from this queue and run as a worker

manager. If this queue is also empty, repeat the same

procedure until we reach to the limit of checking empty

queues. There is a strict rule that the workers have to check

the HPCQ before the GRQ. Hence the jobs that are already

in the system waiting for sub workers will be executed first.

This helps us in creating architecture with systematic

execution framework for HPC jobs requiring different sub

workers.

3.2.3. Worker Manager

When worker picks up job/s from the GRQ, it will first

identify whether the current job is MTC or HPC. If the job

picked up is MTC, then worker will start executing this job

on his own and after completion send the response back to

the client using the respective CRQ.

If the job is HPC, then worker manager will consult

DynamoDB, to check whether the worker requirements for

this HPC job are satisfied or not. This will help to avoid

deadlocks in the system. If HPC job worker requirements

cannot be satisfied by the system, then the worker will

leave this job and start searching for new jobs.

If worker manager gets a green signal from the

DynamoDB, then worker manager will put n-1 messages,

where n is required number of workers, into the HPCQ,

from where other workers willing to work on some jobs,

will pick these messages and communicate with this worker

manager to share his work. Worker manager will wait until

he gets all the required number of workers. Once he gets all

the workers, he will send task notifications to every other

sub-worker waiting for task from this worker manager.

Once task is sent to all sub-workers, worker manager itself

Figure 1: Architecture of CKHPC

will execute his own task and then wait for responses from

the associated sub-workers. Once worker manager gets all

the responses, he will send the response back to the client

to its respective CRQ.

Figure 2: Main worker flow chart

Deadlock Avoidance and Deadlock Detection: Whenever

any worker manager gets a HPC job containing ‘n’ tasks, it

will first check the DynamoDB, to find whether its worker

requirements will be satisfied or not. The HPC DynamoDB

contains information about how many workers are

currently behaving as worker manager, each working on

HPC jobs. It will also contain the information about how

many workers are needed to satisfy the current HPC

workload taken by worker managers. With this available

information, a worker manager willing to work on a HPC

job, will check these values and decide, whether to keep

working on this HPC job or not and depending on it, will

update the values in DynamoDB. In this way, we are

limiting the number of workers from becoming worker

managers and avoiding deadlocks in the system, arising

when all workers are either associated with some worker

manager waiting for task from them or all worker

managers are still waiting for few more sub-workers.

When a worker manager waits for all the required workers,

it will also start the timer. When this timer expires, the

worker manager will go and check the DynamoDB values,

to see if a deadlock has occurred in the system. If the

deadlock has not occurred, then he will wait for all sub-

workers. If at all a deadlock occurs, which is a rare case,

then the worker manager will notify all the associated sub-

workers to leave this task and along with itself and will

release all the resources, thereby solving the issue of

deadlock recovery.

 Figure 3: Main worker flow chart

Effects of Deadlock Recovery (Stale messages in the

system / System Slowdown): When worker manager

detects a deadlock, it will leave the current HPC task and

also it will tell currently associated sub-workers to stop

waiting for the task and leave it. This will lead us to a

problem of stale tasks messages left in the HPCQ. Let's

assume worker manager requires 'n' workers and it has got

'm' sub-workers before it detects the deadlock, then 'm'

messages from HPCQ have already been deleted by

respective sub-workers. Now, if worker manager detects a

deadlock, then worker manager and associated sub-workers

will leave this task. Due to this, though the current HPC job

is aborted, 'n-m-1' messages for this HPC job, will still be

there, resulting in stale messages, which slow down the

process and will eventually result in deadlock. So to avoid

the problem of stale messages, we have implemented two

ways. First, if worker itself finds his own message in

HPCQ, it will delete the message. If some other worker

finds this message, it will try to connect with worker

manager mentioned in the message. As this task message is

no more valid and if worker is able to connect worker

manager in the message, then worker will get negative

response resulting in deletion of this stale message. If

worker is not able to connect, then worker will increment

the pick-up count. If this pick-up count reaches certain

limit, this message will be deleted.

3.2.4. Sub-worker

If worker picks up a message from HPCQ, then it extracts

the useful information from the message such as worker

manager IP and worker manager port, which is used by

sub-worker to communicate with worker manager. Also,

while notifying manager that sub-worker is willing to work

with him on this HPC job, it will share its IP and port

number, so that worker manager can send tasks and control

information to the worker. Once, worker notifies worker

manager, it waits for next instructions from worker

manager. Sub-worker will get two types of instructions,

first where he is asked to start working on the task sent by

the worker manager and after completion it sends back

response accordingly to the worker manager. Second type

of instruction will ask sub-worker to leave this task. If in

case, something goes wrong and worker manager could not

notify sub-worker, then after a timeout period, worker will

ask worker manager, whether the task it is waiting for is

still valid or not. If it is still valid, then, it will wait for the

task else it will leave this task.

3.2.5. Worker Communication

Worker manager and sub-workers will communicate with

each other using JAVA RMI[27]. Whenever any sub-

worker picks up a message from HPCQ, that sub-worker

will notify the respective worker manager. In response to

this notification, worker manager will either send positive

or negative response. If response is negative, sub-worker

will straightaway leave this task. If it is positive, then sub-

worker will wait for the task. Once worker manager gets all

the required number of workers, including itself, it will

notify each sub-worker associated with it to execute the

task, which is also sent while notifying sub-worker. Once

the task execution is over, sub-worker will send response

back to the worker manager. If sub-worker does not get the

notification for task from worker manager within the

specified time limit, then sub-worker will communicate

with worker manager to check whether the task, it is

waiting for, is still valid or not. It will keep on waiting, if

task is valid. Also, if worker manager finds that the system

has entered into deadlock, it will communicate with

associated sub-workers to leave the given task. If any

worker faces issues while contacting some other worker

due to connection issues, that worker will try two more

times, even if he does not succeed, it leave that task.

Figure 4: Sub-worker Flow Chart

3.2.6. Techniques Used

The project is implemented in Java. We have about 1400

lines of code including extensive comments and logs being

written to files for efficient debugging. Heavy logging was

needed because we sometimes faced issues with Amazon’s

internal connectivity while running the tests. These logs

helped us a lot in identifying where the issues occurred.

We are not implementing resource stealing so as to give

every job in the system a fair chance of completion before

timing out. The timeout is mainly because of connectivity

issues that might occur in EC2 instances or messages in

flight that are not considered by SQS while counting the

number of messages SQS actually contains.

3.2.7. Major Issues

Issues we faced while using Amazon’s Infrastructure:

 The major issue we faced was that we couldn’t have

synchronized access on DynamoDB as is

implementation is abstracted from us.

 There were several issues with SQS since it will not

give us accurate results on the number of messages it

holds at any given point in time. This is of importance

to us because we use these results to pick up a new

task from the main queue or work on existing jobs that

have been picked up. We are heavily dependent on

these results to stop the execution of our threads.

 We have also have problem with simultaneous

communication of sub workers with a worker manager.

For example: Consider the scenario where the worker

manager is waiting for a single sub worker, but there

can be a scenario where multiple numbers of workers

communicate with the worker manager. To solve this

issue we had to maintain a log of number of sub

workers that are communicating with the manager and

this log is updated by the sub workers serially

4. EVALUATION
In this section we evaluate the performance of CloudKon-

CKHPC using different metrics and also comparing it with

other systems. In all of our experiments, we have used

‘m1.medium’ instances for Amazon EC2, and have run all

of our experiments on 'us.east.1' datacenter of Amazon. We

have used a maximum of 300 nodes and 66 SQS queues in

the experiments. In order to make the experiments efficient

and reliable, client and worker nodes both run on each

node, i.e. within the Amazon network itself. All of the

instances had Linux Operating Systems. Our framework

works on any OS that has a JRE 1.6 or above running on it.

We have used bash scripting language with the help of

some other programs like Parallel-SSH to run the

experiments. This is only to facilitate the running of all

tasks in parallel on all the nodes at the same time.

The three main metrics on which we based our evaluations

were: throughput, latency and number of messages

overhead. We used five factors to include for each graph:

 Number of nodes in the system

 Time (in milliseconds)

 Number of workers processes

 Sleep length (in milliseconds)

 Number of tasks per job.

Throughput - The throughput is the measure of HPC jobs

performed per second.

Latency - Latency is calculated to show the time interval

between submitting the job and getting back a response for

it.

4.1. Minimum Messages required on CloudKon-

CKHPC
The figure talks about the minimum number of messages

that will be generated for each HPC job. Here we are

capturing the communication pattern that is a distinctive

feature of our system. The number above each line in the

diagram gives the number of messages that are passed and

not the sequence of messages. The client submits the job to

the GRQ by sending a single message to it. The worker

manager will do a read and delete operation on the GRQ to

get jobs. The worker manager will interact with the

DynomoDB for four times in the sequence read, update,

read and update for deadlock avoidance and detection. For

(n-1) workers for an HPC job, the number of read and

delete operations performed on the HPCQ is 2(n-1). There

will be 3(n-1) messages being passed between the sub

workers and the managers. The interaction between the

manager and the sub worker is as follows:

Sub worker initial notification to the manager,

Task allocation from manager to sub worker,

Task completion response from sub worker to manager.

Worker managers will feed the output to the CRQ in a

single message which will be picked up by the client.

The client submits two messages to the CRQ for reading

the values and deleting the queue.

Figure 5: Message flow in the CKHPC system

Minimum number of internal messages used for the HPC

implementation = m (6n + 4)

where,

 n = Number of tasks per job

 m = Number of HPC jobs

4.2. Throughput and latency on CloudKon-

CKHPC
In order to measure the throughput and latency of our

system we run sleep 0 tasks on worker nodes. We have

evaluated the performance of CloudKon on multiple

instances, starting from 1 instance and extending the

experiment up to 64 nodes. We have also compared the

throughput of CloudKon with SLURM and SLURM++ for

up to 300 nodes. There is 1 client thread and different

number of worker threads (ranging from 1 to 256) running

on each instance. Each instance submits jobs ranging from

500 to 2000. On the largest scale (300 instances) our

system has run 40 tasks for the comparison to other systems

experiment. We have evaluated the throughput of

CloudKon from 1 to 64 instances running 2 to 16 tasks.

The simulations for workloads we ran are captured in the

graphs below.

4.2.1. Throughput

The next two graphs shows that the throughput goes

significantly higher with the increase in number of worker

instances. This is because with more workers available to

pick up the tasks, for the same job workload, the

performance would be better. It is observed that for jobs

requiring 4 tasks each, the throughput is higher as

compared to jobs requiring double the tasks. Time taken to

run tasks increases with the increase in the number of task

requirement per job. Also if we run multiple worker

processes per worker node, throughput increases with the

increase number worker processes.

As observed from figure 6, with 8 tasks/job we get a very

small throughput for 16 worker processes whereas for 64

processes, the throughput is around 400 jobs/sec.

Each worker node may invoke a number of worker

processes to run in parallel on the same node. This graph

shows that the throughput goes significantly higher with the

increase in number of worker processes. This is because

more workers will be available to pick up the tasks,

improving performance.

There is a limit on how many number of worker processes

per node can be invoked. After certain number of process

per node, performance will start decreasing, which depends

on the number of cores available on the system, which is

the major factor for the parallelization that can be achieved

on the system using multiple processes.

Figure 6: System throughput with different number of worker

processes

Figure 7: System throughput with single worker process per node

for different nodes

Figure 8: System throughput with different worker process per

node (Tasks/Job: Nodes = 1:4)

Also, having the same number of jobs being submitted,

with increase in number of tasks per job the throughput

goes down as the communication cost also increases

amongst the workers. Hence, time taken to run tasks

increases with the increase in the number of task

requirement per job.

4.2.2. Latency

With the increase in the number of nodes the latency for the

system decreases as the number of jobs being submitted is

same and more workers become available to carry out the

same workload. Hence, we can justify the latency being

higher for lower number of workers processes per node.

Figure 9: System throughput with single worker process per node

for different nodes

As observed from Figure 9, for single worker process per

node latency was 1294450 ms for 16 nodes and it went

down drastically to 300864 ms for 64 nodes.

Also, with the increase in number of worker processes per

node the latency starts decreasing.

4.2.3. Comparison between CloudKon, CloudKon-

CKHPC, Slurm, and Slurm++ for MTC tasks
To compare CloudKon-CKHPC with CloudKon we have

used MTC jobs i.e.1task per job with each task being a

'Sleep 0' task. For this evaluation, 16000 MTC jobs were

submitted per node. And evaluations were carried for 4

worker processes per node with number of nodes varying

from 1 to 64. As seen from the figure 10, the throughput for

Cloudkon is higher than the Cloudkon-CKHPC when

handling MTC tasks. This is because CloudKon-CKHPC

have used some additional resources to support HPC,

which is the overhead to carry out MTC jobs. Throughput

obtained for MTC jobs on CloudKon-CKHPC with 1 node

is 157 Jobs/sec while for CloudKon it is 238 Jobs/sec. At

the scale of 64 nodes, throughput for CloudKon-CKHPC is

8722 which less than throughput obtained for CloudKon

which is 12947. Performance of CloudKon-CKHPC for

MTC jobs is almost 2/3rd of the performance of CloudKon.

Figure 10: Comparing the Throughput for CloudKon and CKHPC

Figure 11: Comparing the Throughput for different job execution

systems

We have also compared CloudKon-CKHPC with SLURM

and SLRUM++. The comparison was carried at the scales

of 100 nodes to 300 nodes. Also we had submitted 500

medium size jobs i.e. each job containing 1 to 50 tasks. It is

observed that the throughput of CloudKon -CKHPC is

higher than SLURM++ and way better than SLURM.

The results show that CloudKon-CKHPC was able to

outperform the other two systems after the scale of 100

instances. SLURM performs slower than the other two

systems and cannot scale up. One of the main reasons that

CloudKon-CKHPC is outperforming the other two is being

optimized for the public cloud environment.

5. RELATED WORK

Job management system can be centralized or hierarchical

or distributed. In centralized systems, jobs are scheduled by

only one centralized node on to the other nodes, where as in

distributed systems each and every node maintains its own

job framework. In hierarchical job scheduler, several job

dispatchers are organized in the tree topology to manage

jobs for their child nodes.

SLURM is an open source, centralized job management

system suitable for Linux clusters of all sizes to target

mainly HPC and HTC applications [2,12]. Condor was one

of the earliest job schedulers developed to harness the

unused CPU cycles on workstations for long-running batch

jobs. Falkon, developed in 2007, also has a centralized

architecture. Despite scaling and performing magnitude

orders better than the state of the art, its centralized

architecture hinders it from scaling to petascale systems

[8].

SLURM++ [11] is a distributed job launch prototype,

which extends the SLURM resource manager by

integrating the ZHT [26, 28] zero-hop distributed key-value

store for distributed state management. SLURM++ is

comprised of multiple controllers with each one managing

several SLURM daemons, while ZHT is used to store all

the job metadata and the SLURM daemons’ state.

All these systems lack the granularity of scheduling jobs at

node/core level, which makes them incompatible for MTC

applications. Moreover, they also face scalability and

reliability issues as they are centralized systems.

MATRIX[10] is an execution framework that focuses on

running Many Task Computing (MTC) jobs [26]. It is

highly scalable and dynamic as it uses an adaptive job

stealing approach. It also supports the execution of

complex large-scale workflows, and has scaled up to 1K-

nodes. Sparrow is another scheduling system that focuses

on scheduling very short jobs that complete within

hundreds of milliseconds [9,11]. It has a decentralized

architecture making it highly scalable and also has a good

load balancing strategy with near optimal performance

using a randomized sampling approach[14,15,16].

Most of the above light-weight task execution frameworks

have been developed from scratch, hence having tens of

thousands of lines of code. Due to such large code bases,

maintenance of these systems is difficult as well as

expensive, and also its much harder for them to evolve

once initial prototypes have been completed. CloudKon

aims to make use of existing distributed and scalable

building blocks to deliver an extremely compact distributed

task execution framework that maintains the same levels of

performance as the state-of-the-art systems.

To overcome the limitations of SLURM and other systems

introduced above, CloudKon has been developed which

adds support for MTC applications providing fine

granularity for scheduling jobs at the node/core level.

Amazon SQS used in the CloudKon guarantees the

scalability and reliability as it is scalable and will deliver

each message at least once. Though CloudKon supports

MTC applications and overcomes limitations of SLURM, it

lacks support for HPC applications and MPI applications so

far.

To our knowledge, CloudKon is the only distributed task

scheduler with the ability of running both MTC and HPC

tasks that is designed and optimized to perform well on

public cloud environment. This eliminates the need for

having expensive grids or clusters for running HPC jobs.

Another benefit of the cloud services is that using those

services, users can implement relatively complicated

systems that are able to serve in larger scales with a very

short code base in a short period of time. We are able to

keep up with other systems like SLURM and SLURM++ in

terms of performance and these state of the art systems are

written in programming languages that run faster than Java.

We have to note that our system is able to compete with

these systems by running on public clouds and using web

services which are slower than dedicated clusters and grids

running on high speed low latency networks. We attribute

this performance of our system to the distributed nature of

the system and the short code base.

6. CONCLUSION AND FUTURE WORK

By the end of this project we have a set of deliverables that

enable us to have a running implementation of a prototype

of real time HPC tasks being supported by the CloudKon

framework. The following are some of important things we

learned while working on this project:

 Deadlock avoidance is better than deadlock recovery.

This increases the resource utilization and has little

effect on the throughput of the system. With

distributed storage of system state, the adverse effect

on the throughput can be minimized. We have

implemented an algorithm that helps the system

recover from the deadlock and restore the system to a

normal state since every unutilized worker has an

adverse effect on the number of tasks being executed

in the system.

 The use of RMI is much better than the use of socket

based connections for handling simultaneous

communication with multiple sub workers. This

eliminates the need for opening multiple ports and

having a lot of threads listening on individual ports.

 Handling race conditions and deadlocks in a real time

scheduling system.

 Invoking more processes per node gives better

performance than a single process per node.

 Got good hands on experience working with Amazon

web services and the Google protocol buffer.

 The use of extensive shell scripting for starting and

running multiple worker instances in parallel.

 Writing modular code with high cohesion.

 Having multiple classes for decreased coupling

amongst the classes in the code.

We can say that our project was a success based on the

below evaluations:

 On comparing system performance with other systems

like SLURM and SLURM++, higher throughputs were

observed for CKHPC.

 With the implementation of deadlock detection and

avoidance, the system runs consistently on scales of up

to 1200 processes running on 300 nodes.

We strongly believe that with most software systems there

is always space for improvement and ours is an evolving

prototype and with scope for improvement in the following

areas:

 Extend support for MPI applications for distributed

processing.

 Make it run it for real-time tasks, instead of sleep

tasks.

 Limit the use of centralized DynamoDB and build a

decentralized system for deadlock avoidance and

efficient handling of race conditions.

 Use Dynamo instead of DynamoDB for eventual

consistency resulting in high scalability.

 Dynamic calculation of time out rather than a fixed

time for better resource utilization. The dynamic

calculation of time out takes into account the time

required to complete the previous HPC task, number of

sub workers required for last HPC task and estimated

time for completion of current task.

REFERENCES

[1] P. Kogge, et. al., “Exascale computing study:

Technology challenges in achieving exascale

systems,” DARPA-IPTO, [2008].

http://users.ece.gatech.edu/mrichard/ExascaleComput

ingStudyReports/exascale_final_report_100208.pdf

[2] SLURM, Lawrence Livermore National Laboratory,

[online] 2013,

https://computing.llnl.gov/linux/SLURM/

[3] Amazon SQS, Amazon Web Services, [online] 2013,

http://aws.amazon.com/sqs/

[4] Amazon EC2, Amazon Web Services, [online] 2013,

http://aws.amazon.com/ec2/

[5] Amazon DynamoDB, Amazon Web Services,

[online] 2013, http://aws.amazon.com/dynamodb

https://computing.llnl.gov/linux/slurm/
https://computing.llnl.gov/linux/slurm/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/dynamodb
http://aws.amazon.com/dynamodb

[6] I. Raicu, I. Foster, Y. Zhao. "Many-Task Computing

for Grids and Supercomputers", Invited Paper, IEEE

Workshop on Many-Task Computing on Grids and

Supercomputers (MTAGS08), 2008, co-located with

IEEE/ACM Supercomputing 2008.

[7] High Performance Computing, Techopedia, [online]

2013,

http://www.techopedia.com/definition/4595/high-

performance-computinghpc

[8] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman,

K. Iskra, B. Clifford. "Toward Loosely Coupled

Programming on Petascale Systems", IEEE/ACM

Supercomputing 2008.

[9] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica.

"Sparrow: Scalable scheduling for sub-second parallel

jobs", Tech. Rep. UCB/EECS-2013-29, EECS

Department, University of California, Berkeley, Apr

2013.

[10] A. Rajendran, I. Raicu. "MATRIX: Many-Task

Computing Execution Fabric for Extreme Scales",

Department of Computer Science, Illinois Institute of

Technology, MS Thesis, 2013.

[11] K. Wang, X. Zhou, H. Chen, M. Lang, I. Raicu. “Next

Generation Job Management Systems for Extreme

Scales”, under review at ACM HPDC 2014.

[12] M. Jette, M. Grondona. "SLURM: Simple Linux

Utility for Resource Management", Cluster

Conference and Expo, June 23, 2003.

[13] I. Sadooghi, I. Raicu. "CloudKon: a Cloud enabled

Distributed tasK executiON framework", Illinois

Institute of Technology, Department of Computer

Science, PhD Oral Qualifier, 2013.

[14] A. Sinha, L.V. Kal´e. “A load balancing strategy for

prioritized execution tasks", in International Parallel

Processing Symposium, pages 230–237, April 1993.

[15] M.H. Willebeek-LeMair, A.P. Reeves. “Strategies for

dynamic load balancing on highly parallel

computers,” in IEEE Transactions on Parallel

and Distributed Systems, volume 4, September 1993.

[16] G. Zhang, et. al, “Hierarchical Load Balancing for

Charm++ Applications on Large Supercomputers,” In

Proceedings of the 2010 39th

International Conference on Parallel Processing

Workshops, ICPPW 10, pages 436-444, Washington,

DC, USA, 2010.

[17] Java RMI, UMM Directory, [online] 2013,

http://directory.umm.ac.id/Networking%20Manual/O

Reilly.Java.Rmi.pdf.

[18] I. Raicu, I. Foster, M. Wilde, Z. Zhang, Y. Zhao, A.

Szalay, P. Beckman, K. Iskra, P. Little, C. Moretti, A.

Chaudhary, D. Thain. "Middleware Support for

Many-Task Computing", Cluster Computing, The

Journal of Networks, Software Tools and

Applications, 2010.

[19] I. Raicu. "Many-Task Computing: Bridging the Gap

between High Throughput Computing and High

Performance Computing", Computer Science

Department, University of Chicago, Doctorate

Dissertation, March 2009.

[20] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C. M.

Moretti, A. Chaudhary, D. Thain. "Towards Data

Intensive Many-Task Computing", book chapter in

"Data Intensive Distributed Computing: Challenges

and Solutions for Large-Scale Information

Management", IGI Global Publishers, 2009.

[21] Y. Zhao, I. Raicu, S. Lu, X. Fei. "Opportunities and

Challenges in Running Scientific Workflows on the

Cloud", IEEE International Conference on Network-

based Distributed Computing and Knowledge

Discovery (CyberC) 2011.

[22] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B.

Clifford, M. Hategan, K. Iskra, P. Beckman, I. Foster.

"Extreme-scale scripting: Opportunities for large task-

parallel applications on petascale computers", Journal

of Physics: Conference Series 180, 012046 2009.

[23] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. "Swift:

Fast, Reliable, Loosely Coupled Parallel

Computation", IEEE Workshop on Scientific

Workflows, 2007.

[24] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V.

Nefedova, M. Wilde. "Realizing Fast, Scalable and

Reliable Scientific Computations in Grid

Environments", book chapter in Grid Computing

Research Progress, ISBN: 978-1-60456-404-4, Nova

Publisher 2008.

[25] I. Raicu, I. Foster, A. Szalay, G. Turcu. "AstroPortal:

A Science Gateway for Large-scale Astronomy Data

Analysis", TeraGrid Conference 2006, June 2006

[26] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,

A. Rajendran, Z. Zhang, I. Raicu. “ZHT: A Light-

weight Reliable Persistent Dynamic Scalable Zero-

hop Distributed Hash Table”, IEEE International

Parallel & Distributed Processing Symposium

(IPDPS) 2013

[27] I. Raicu, C. Dumitrescu, I. Foster. "Dynamic

Resource Provisioning in Grid Environments",

TeraGrid Conference 2007

[28] T. Li, R. Verma, X. Duan, H. Jin, I. Raicu. “Exploring

Distributed Hash Tables in High-End Computing”,

ACM Performance Evaluation Review (PER), 2011

http://datasys.cs.iit.edu/publications/2010_Cluster_MTC_middleware.pdf
http://datasys.cs.iit.edu/publications/2010_Cluster_MTC_middleware.pdf
http://datasys.cs.iit.edu/publications/2009_PhD-UChicago_dissertation.pdf
http://datasys.cs.iit.edu/publications/2009_PhD-UChicago_dissertation.pdf
http://datasys.cs.iit.edu/publications/2009_PhD-UChicago_dissertation.pdf
http://datasys.cs.iit.edu/publications/2009_DIDC09_data-intensive-MTC.pdf
http://datasys.cs.iit.edu/publications/2009_DIDC09_data-intensive-MTC.pdf
http://datasys.cs.iit.edu/publications/2011_cyberc.pdf
http://datasys.cs.iit.edu/publications/2011_cyberc.pdf
http://datasys.cs.iit.edu/publications/2011_cyberc.pdf
http://datasys.cs.iit.edu/publications/2009_SciDAC09_ExtremeScaleScripting.pdf
http://datasys.cs.iit.edu/publications/2009_SciDAC09_ExtremeScaleScripting.pdf
http://datasys.cs.iit.edu/publications/2007_SWF07_Swift.pdf
http://datasys.cs.iit.edu/publications/2007_SWF07_Swift.pdf
http://datasys.cs.iit.edu/publications/2007_SWF07_Swift.pdf

