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Abstract  — With the ongoing trends in computing and 

data systems, the time is not far when we will have exascale 

systems with millions of nodes and threads of execution 

being the major driving force for most of the large scale, 

distributed operations. Today, job management systems 

need to support a variety of applications, such as Many-

Task Computing - MTC and; High-Performance 

Computing - HPC, that have a bulk of tasks with finer 

granularity due to such high parallelism supported. Most of 

the popular systems today, have Master/Slave architectures 

where a centralized server is responsible for all resource 

management and job executions, making it a single point of 

failure and also inefficient to scale at petascale systems 

that require finer granular workloads. The goal of this 

project is to enhance the recently developed CloudKon 

system to support HPC jobs using the various public cloud 

services (Amazon's SQS, DynamoDB and EC2), and 

distinguishing HPC and MTC tasks by the number of 

cores/nodes a task requires. This would work in cohesion 

with the actual motive behind developing CloudKon, which 

is to act as a distributed job management system that can 

support millions of tasks from multiple users delivering 

over 2X the performance compared to other state-of-the-art 

systems in terms of throughput. 

Keywords - CloudKon, Many-Task Computing, High-

Performance Computing, distributed scheduling 

1.  INTRODUCTION 

Modern job schedulers aim to efficiently distribute jobs to 

the various available computing resources to gain peak 

resource utilization and maximum throughput. With the 

continuous increase in the scales of the systems, there is a 

clear need for highly efficient job schedulers. Predictions 

are that by the end of this decade, we will have exascale 

system with millions of nodes and billions of threads of 

execution. These schedulers are required to be highly fault 

tolerant and have high scalability to handle exascale 

systems with millions of nodes and billions of threads of 

execution [21].  

However paradigms like client server architecture are still 

being used in the state of the art systems where a 

centralized server is responsible for submitting the jobs to 

various available resources and collecting the execution 

results. The centralized dispatcher in these systems suffers 

scalability and reliability issues. With decentralization, the 

required scalability can be achieved.  

We propose a highly decentralized and distributed system 

that makes use of Amazon’s infrastructure services like 

Elastic Cloud Compute, Simple Queuing Service and the 

distributed NoSQL key/value store (DynamoDB). Our goal 

is to show that HPC is possible on the “Cloud” by using 

these systems and the quality of service provided is at par 

and sometimes better than some of the state of the art 

systems that run on grids and clusters.  

Our code base is relatively less compared to other systems. 

We use multiple distributed queues to deliver tasks to the 

workers and NoSQL database for various purposes like 

duplicate check and for deadlock avoidance and detection. 

This is very different from other approaches like random 

sampling, resource stealing or the hierarchical system. This 

systematic approach gives our system better predictability 

which is useful for debugging, performance improvements 

and adding new features.  

CloudKon[13] is the runtime system for workflow engines 

[22, 23, 24] that allows efficient remote execution of tasks 

on distributed systems. The components of this system 

mainly consist of a client component that submits the job, a 

highly distributed queue that holds the jobs and a set of 

nodes that poll the queue and get the job that will be 

executed. All these individual components are loosely 

coupled which abstracts the way in which the job is 

executed. 

This report makes the following contributions: 

1.  Describes the modifications made to CloudKon 

architecture and explain the design choices made to 

achieve maximum throughput to support HPC jobs. 
2.  Explains the working of the system and how individual 

components are used. 
3.  Performance evaluations on scales from 16 to 1200 

processes running on 300 nodes and comparing 

CloudKon with Slurm[12] and Slurm++. It 

outperforms these scheduling systems in terms of a 

high throughput. 

2.  BACKGROUND 

This section covers necessary background information of 

CloudKon, Amazon's SQS, EC2, and DynamoDB, Many-

Task Computing; and High Performance Computing. 

2.1. CloudKon 
It is a distributed task execution framework built upon 

cloud computing building blocks such as Amazon’s SQS, 

EC2 and, DynamoDB. It has been designed to support 
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MTC applications which will be extended to HPC 

applications too. CloudKon offers properties like scalability 

for high throughput with larger scales through distributed 

services, load balancing at large scale with heterogeneous 

workloads, light-weight to have minimum overhead while 

working at fine granular workloads and the last one being 

loosely coupled which makes the system compact and 

robust [1]. 

2.2. Amazon SQS 
Amazon SQS is a fast, reliable, scalable fully managed 

distributed message delivery fabric which can queue 

unlimited number of short messages. SQS makes it simple 

and cost-effective to decouple the components of cloud 

application. SQS can transmit any volume of data, at any 

level of throughput, without losing messages or requiring 

other services to be always available. The maximum size 

for a message is 256 KB where each 64KB chunk of 

payload is billed as one request or messages in a batch of 

ten. Messages can be sent and read simultaneously on SQS. 

When a worker receives a message, before removing that 

message, SQS locks the message in the queue which keeps 

other computers from processing the message 

simultaneously. If the message processing fails, the lock 

will expire and the message will be available again. SQS 

guarantees delivery of each message at least once, and 

provides highly concurrent access to messages. That also 

means it does not guarantee the exactly once delivery. 

Hence, there could be multiple copies of the same message 

available to read by different workers [3]. 

2.3. Amazon EC2 
Amazon Elastic Compute Cloud is a Infrastructure as a 

Service (IaaS) that provides a raw infrastructure and the 

associated middleware to host a web service that allows 

anyone to run their applications on Amazon’s computing 

resources by letting customers rent the computing resources 

by hour. 

Amazon EC2 instance is a running virtual machine on 

Amazon’s cloud platform to which clients are given access 

for using their computing resources. Each of these 

instances is deployed with an Amazon Machine Image with 

pre-configured OS and some bundled application software. 

Amazon offers different types of instances, each having a 

different compute capacity, memory size, I/O performance 

and storage [4]. These instances are categorized into three 

classes as follows: 
 Reserved instances – Amazon allows us to pay upfront 

for each instance that we want to use during a given 

period of time, and in turn, gives us a lower hourly cost 

for each of them. 

 On demand instances – You only pay for what you use, 

allowing easy allocation and deallocation of resources, 

depending on your workload requirements. 

 Spot instances – These instances are more appropriate 

for running short-term applications under certain 

conditions. Amazon allows us to bid on unused EC2 

capacity and run instances until the current spot 

instance price exceeds our bid to achieve a better 

utilization of their infrastructure. The spot price is set 

by Amazon based on the available capacity and load of 

their systems and it is updated in a 5 minute period. 

 

2.4. Amazon DynamoDB 
DynamoDB is a fast, fully distributed highly scalable, 

NoSQL database service that provides users to store and 

retrieve any amount of data, and serve any level of request 

traffic. It is able to handle large amounts of simultaneous 

write and read which are atomic. DynamoDB does not 

provide complex data access queries. It lets users save and 

access the data using its coordinating key [5]. 

2.5. Many-Task Computing 
It aims to bridge the gap between the two computing 

paradigms High Performance Computing (HPC) and High 

Throughput Computing (HTC). MTC emphasizes one 

using many computing resources over short period of time 

to complete many tasks where primary metrics are 

measured in seconds. Tasks can be small or large, single 

processor or multiprocessor, compute intensive or data 

intensive. The set of tasks may be static or dynamic, 

homogeneous or heterogeneous, loosely coupled or tightly 

coupled. The aggregate number of tasks, quantity of 

computing, and volumes of data may be extremely large [6, 

18, 19, 20, 25, 27]. 

2.6. High Performance Computing 
High-performance computing (HPC) evolved to meet the 

increasing demands for processing speed. HPC brings 

together several technologies such as computer 

architecture, algorithms, programs and electronics, and 

system software under a single canopy to solve advanced 

problems effectively and quickly. A highly efficient HPC 

system requires a high-bandwidth, low-latency network to 

connect multiple nodes and clusters [7]. 

2.7. Google Protocol Buffer 
Google Protocol buffer are Google's language-neutral, 

platform-neutral, extensible mechanism for serializing 

structured data. We define how the data should be 

structured once and then use special code generator that 

helps us to create a data structure to easily write and read 

our structured data in Java. The metadata we need for job 

processing is available in this buffer and are fed into the 

various Amazon SQS instances. 

2.8. Java Remote Method Invocation 
This is a Java API that performs the object-oriented 

equivalent of remote procedure calls (RPC), with support 

for direct transfer of serialized Java objects. The various 

components are: 
 Client is the process that is invoking a method on the 

remote object. 
 Server is the process that owns the remote object. 



 Object Registry: Name Server that associates the 

objects with names. 
A server, upon starting, registers its objects with a textual 

name with the object registry. A client, before performing 

invoking a remote method, must first contact the object 

registry to obtain access to the remote object[17]. 

3.  DESIGN AND PROPOSED SOLUTION 

The goal of this project is to extend CloudKon, which is a 

distributed task management system, to support HPC tasks 

along with MTC tasks through various cloud services 

provided by Amazon like SQS, EC2 and DynamoDB. 

HPC involves a lot of workers and hence requires inter-

worker communications and synchronization. As a result, it 

slows down the system to some extent when compared to 

other MTC systems because of inherent latency in the 

network and also because of the synchronization between 

all the workers. One of our major design goals was to 

minimize the impact of our code on the existing 

performance of CloudKon for MTC. 

The project mainly concentrates on the development of a 

prototype application which will extend the existing 

CloudKon, which supports only MTC tasks, to add HPC 

support. The application is tuned to run on Amazon cloud 

using Amazon Web Services like Amazon SQS, Amazon 

EC2 and Amazon EC2. The test bed mainly consists of the 

following Amazon Services: 

1.  Two SQS instances. One is for maintaining the list of 

incoming job submissions to the system called Global 

Request Queue. The second is for the sub workers to 

connect to the worker manager depending on the 

number of threads needed for each task. 

2.  An instance of DynamoDB that hold the number of 

HPC tasks that are being currently run on the system. 

3.  EC2 M1.Medium instances of varied scales. 

As stated before our work was to add on top of the existing 

CloudKon which was developed for ground up by Iman 

Sadooghi in the DataSys lab at Illinois Institute of 

Technology. Our design includes the following components 

that are added to the CloudKon Architecture. 

1.  SQS to hold the HPC messages. If a HPC job requires 

n workers, n messages will be put into this queue. We 

had the idea of using DynamoDB but the main 

disadvantages are that it becomes comparatively to run 

and it will not let us traverse the whole  

2.  Modification of the client component to include the 

number of workers required for each HPC jobs. This is 

a critical step because we decide if the job is HPC or 

MTC depending on this value stored in each message. 

3.  A secondary DynamoDB that holds the state of system 

like number of HPC jobs that have been picked up and 

are in the system, waiting for more workers and the 

total number of workers that are needed to fulfill these 

jobs.  

4.  Various timeout mechanisms for deadlock detection 

and recovery. 

3.1. Archicture Overview 
This section explains about the various components that we 

are using and interaction between them. We concentrate on 

the components that we added by us to enable HPC support 

for CloudKon. We also discuss the modification made to 

existing components to get critical information regarding 

the HPC job requirements.  

Client: The working of the client is inherited from the 

original CloudKon architecture. The Client component is 

independent of other parts of the system. It can start 

running and submitting tasks without the need to register 

itself into the system. The client component is 

multithreaded and can submit tasks in parallel. For efficient 

message passing and minimizing the communication cost, 

we use message bundling to group ten tasks together before 

submitting it to the system. 

Global Request Queue (GRQ): An instance of SQS that is 

the main pool of tasks. The clients submit the jobs/tasks to 

this pool and the worker picks up these tasks for execution. 

This is highly scalable and any number of clients can put 

tasks into the queue without having to register or obtaining 

authorization. We rely on the access keys provided by 

Amazon for authorization. The maximum size of each 

message in SQS is 256KB which is sufficient for our 

implementation.  

Client Response Queues (CRQ): Before submitting a job 

to the Global Request Queue each client will create a queue 

for himself and this queue will be the output stream to the 

workers. After the execution of a job, the workers will 

write the output data to corresponding client request 

queues.  

Google Protocol Buffer (GPB): This buffer is used to 

store metadata like Number of workers required to execute 

a task, nature of the job - in our case it is a sleep job; and 

Client Response Queue IDs for the workers to submit their 

results to. 

Workers: These are the EC2 instances that perform the 

actual task execution. They poll the GRQ to get the task 

that they have to execute. These workers can join and leave 

the system any time during the execution. This makes our 

system dependent on the GRQ for scalability and will not 

put any additional loads on the workers like registration 

and authorization. The workers are subdivided into two 

categories and this is applicable only to HPC jobs:  

 Worker Managers: The worker who polled the GRQ 

and got a HPC job. 

 Sub Workers: The workers who help the manager to 

execute the HPC job. 

Any of the workers can be either a sub worker or worker 

manager depending on the messages in the HPCQ and 

GRQ. 

HPC Queue (HPCQ): The queue that holds the messages 

for the sub workers to be picked up. The manager puts 

messages into this queue for other workers to pick up and 



execute the HPC job. Only the workers have access to this 

queue and it is used to hold HPC job metadata like  

 Worker Manager IP and Port number for RMI 

communication. 

 Message Pickup count is used to differentiate between 

valid and stale messages. 

HPC DynamoDB: A record in DynamoDB helps us to 

make informed decisions with respect to the number of 

HPC jobs in the system and the number of workers that are 

needed to fulfill these HPC jobs. This instance is queried 

every time a new HPC job is picked up. The values in 

stored here help us decide if the sub worker requirement 

can be satisfied by the system. This is configured for a high 

read write throughput so that it can handle a lot of queries 

by different workers. Only the worker manger has access to 

DynamoDB and updates the values once it starts executing 

the job and after the job is executed. 

3.2.  Workflows in CloudKon-CKHPC: 

3.2.1. Client  

When client starts, it will first create a response queue 

for himself and then it will submit all jobs. Once the jobs 

are submitted, client will poll client response queue (CRQ) 

to check whether any response has been sent by worker or 

not. If it finds any response in the CRQ, it will retrieve the 

response i.e. message and the same will be deleted. Once 

client gets responses for all the jobs he submitted, then it 

will delete the respective CRQ. 

3.2.2. Worker 

Each worker in the worker pool will first check HPC 

worker manager queue (HPCQ). If there are any messages, 

implying that they would have been put by some other 

worker, it will pick one message and start working as a sub-

worker. If the HPCQ is empty, it will check the Global 

Request Queue (GRQ). If it contains any job to be 

executed, get job/s from this queue and run as a worker 

manager. If this queue is also empty, repeat the same 

procedure until we reach to the limit of checking empty 

queues. There is a strict rule that the workers have to check 

the HPCQ before the GRQ. Hence the jobs that are already 

in the system waiting for sub workers will be executed first. 

This helps us in creating architecture with systematic 

execution framework for HPC jobs requiring different sub 

workers. 

3.2.3. Worker Manager 

When worker picks up job/s from the GRQ, it will first 

identify whether the current job is MTC or HPC. If the job 

picked up is MTC, then worker will start executing this job 

on his own and after completion send the response back to 

the client using the respective CRQ. 

If the job is HPC, then worker manager will consult 

DynamoDB, to check whether the worker requirements for 

this HPC job are satisfied or not. This will help to avoid 

deadlocks in the system. If HPC job worker requirements 

cannot be satisfied by the system, then the worker will 

leave this job and start searching for new jobs. 

If worker manager gets a green signal from the 

DynamoDB, then worker manager will put n-1 messages, 

where n is required number of workers, into the HPCQ, 

from where other workers willing to work on some jobs, 

will pick these messages and communicate with this worker 

manager to share his work. Worker manager will wait until 

he gets all the required number of workers. Once he gets all 

the workers, he will send task notifications to every other 

sub-worker waiting for task from this worker manager. 

Once task is sent to all sub-workers, worker manager itself 

Figure 1: Architecture of CKHPC 



will execute his own task and then wait for responses from 

the associated sub-workers. Once worker manager gets all 

the responses, he will send the response back to the client 

to its respective CRQ. 

 

Figure 2: Main worker flow chart 

Deadlock Avoidance and Deadlock Detection: Whenever 

any worker manager gets a HPC job containing ‘n’ tasks, it 

will first check the DynamoDB, to find whether its worker 

requirements will be satisfied or not. The HPC DynamoDB 

contains information about how many workers are 

currently behaving as worker manager, each working on 

HPC jobs. It will also contain the information about how 

many workers are needed to satisfy the current HPC 

workload taken by worker managers. With this available 

information, a worker manager willing to work on a HPC 

job, will check these values and decide, whether to keep 

working on this HPC job or not and depending on it, will 

update the values in DynamoDB. In this way, we are 

limiting the number of workers from becoming worker 

managers and avoiding deadlocks in the system, arising 

when all workers are either associated with some worker 

manager waiting for task from them or all  worker 

managers are still waiting for few more sub-workers.  

When a worker manager waits for all the required workers, 

it will also start the timer. When this timer expires, the 

worker manager will go and check the DynamoDB values, 

to see if a deadlock has occurred in the system. If the 

deadlock has not occurred, then he will wait for all sub-

workers. If at all a deadlock occurs, which is a rare case, 

then the worker manager will notify all the associated sub-

workers to leave this task and along with itself and will 

release all the resources, thereby solving the issue of 

deadlock recovery. 

 

 Figure 3: Main worker flow chart 



Effects of Deadlock Recovery (Stale messages in the 

system / System Slowdown): When worker manager 

detects a deadlock, it will leave the current HPC task and 

also it will tell currently associated sub-workers to stop 

waiting for the task and leave it. This will lead us to a 

problem of stale tasks messages left in the HPCQ. Let's 

assume worker manager requires 'n' workers and it has got 

'm' sub-workers before it detects the deadlock, then 'm' 

messages from HPCQ have already been deleted by 

respective sub-workers. Now, if worker manager detects a 

deadlock, then worker manager and associated sub-workers 

will leave this task. Due to this, though the current HPC job 

is aborted, 'n-m-1' messages for this HPC job, will still be 

there, resulting in stale messages, which slow down the 

process and will eventually result in deadlock. So to avoid 

the problem of stale messages, we have implemented two 

ways. First, if worker itself finds his own message in 

HPCQ, it will delete the message. If some other worker 

finds this message, it will try to connect with worker 

manager mentioned in the message. As this task message is 

no more valid and if worker is able to connect worker 

manager in the message, then worker will get negative 

response resulting in deletion of this stale message. If 

worker is not able to connect, then worker will increment 

the pick-up count. If this pick-up count reaches certain 

limit, this message will be deleted. 

3.2.4. Sub-worker 

If worker picks up a message from HPCQ, then it extracts 

the useful information from the message such as worker 

manager IP and worker manager port, which is used by 

sub-worker to communicate with worker manager. Also, 

while notifying manager that sub-worker is willing to work 

with him on this HPC job, it will share its IP and port 

number, so that worker manager can send tasks and control 

information to the worker. Once, worker notifies worker 

manager, it waits for next instructions from worker 

manager. Sub-worker will get two types of instructions, 

first where he is asked to start working on the task sent by 

the worker manager and after completion it sends back 

response accordingly to the worker manager. Second type 

of instruction will ask sub-worker to leave this task. If in 

case, something goes wrong and worker manager could not 

notify sub-worker, then after a timeout period, worker will 

ask worker manager, whether the task it is waiting for is 

still valid or not. If it is still valid, then, it will wait for the 

task else it will leave this task. 

3.2.5. Worker Communication 

Worker manager and sub-workers will communicate with 

each other using JAVA RMI[27]. Whenever any sub-

worker picks up a message from HPCQ, that sub-worker 

will notify the respective worker manager. In response to 

this notification, worker manager will either send positive 

or negative response. If response is negative, sub-worker 

will straightaway leave this task. If it is positive, then sub-

worker will wait for the task. Once worker manager gets all 

the required number of workers, including itself, it will 

notify each sub-worker associated with it to execute the 

task, which is also sent while notifying sub-worker. Once 

the task execution is over, sub-worker will send response 

back to the worker manager. If sub-worker does not get the 

notification for task from worker manager within the 

specified time limit, then sub-worker will communicate 

with worker manager to check whether the task, it is 

waiting for, is still valid or not. It will keep on waiting, if 

task is valid. Also, if worker manager finds that the system 

has entered into deadlock, it will communicate with 

associated sub-workers to leave the given task. If any 

worker faces issues while contacting some other worker 

due to connection issues, that worker will try two more 

times, even if he does not succeed, it leave that task. 

 

Figure 4: Sub-worker Flow Chart 

3.2.6. Techniques Used 

The project is implemented in Java. We have about 1400 

lines of code including extensive comments and logs being 

written to files for efficient debugging. Heavy logging was 

needed because we sometimes faced issues with Amazon’s 

internal connectivity while running the tests. These logs 

helped us a lot in identifying where the issues occurred. 

We are not implementing resource stealing so as to give 

every job in the system a fair chance of completion before 

timing out. The timeout is mainly because of connectivity 

issues that might occur in EC2 instances or messages in 



flight that are not considered by SQS while counting the 

number of messages SQS actually contains. 

3.2.7. Major Issues 

Issues we faced while using Amazon’s Infrastructure: 

 The major issue we faced was that we couldn’t have 

synchronized access on DynamoDB as is 

implementation is abstracted from us. 

 There were several issues with SQS since it will not 

give us accurate results on the number of messages it 

holds at any given point in time. This is of importance 

to us because we use these results to pick up a new 

task from the main queue or work on existing jobs that 

have been picked up. We are heavily dependent on 

these results to stop the execution of our threads. 

 We have also have problem with simultaneous 

communication of sub workers with a worker manager. 

For example: Consider the scenario where the worker 

manager is waiting for a single sub worker, but there 

can be a scenario where multiple numbers of workers 

communicate with the worker manager. To solve this 

issue we had to maintain a log of number of sub 

workers that are communicating with the manager and 

this log is updated by the sub workers serially 

4.  EVALUATION 
In this section we evaluate the performance of CloudKon-

CKHPC using different metrics and also comparing it with 

other systems. In all of our experiments, we have used 

‘m1.medium’ instances for Amazon EC2, and have run all 

of our experiments on 'us.east.1' datacenter of Amazon. We 

have used a maximum of 300 nodes and 66 SQS queues in 

the experiments. In order to make the experiments efficient 

and reliable, client and worker nodes both run on each 

node, i.e. within the Amazon network itself. All of the 

instances had Linux Operating Systems. Our framework 

works on any OS that has a JRE 1.6 or above running on it. 

We have used bash scripting language with the help of 

some other programs like Parallel-SSH to run the 

experiments. This is only to facilitate the running of all 

tasks in parallel on all the nodes at the same time. 

The three main metrics on which we based our evaluations 

were: throughput, latency and number of messages 

overhead. We used five factors to include for each graph: 

 Number of nodes in the system 

 Time ( in milliseconds) 

 Number of workers processes 

 Sleep length ( in milliseconds) 

 Number of tasks per job. 

Throughput - The throughput is the measure of HPC jobs 

performed per second.  

Latency - Latency is calculated to show the time interval 

between submitting the job and getting back a response for 

it. 

4.1. Minimum Messages required on CloudKon-

CKHPC 
The figure talks about the minimum number of messages 

that will be generated for each HPC job. Here we are 

capturing the communication pattern that is a distinctive 

feature of our system. The number above each line in the 

diagram gives the number of messages that are passed and 

not the sequence of messages. The client submits the job to 

the GRQ by sending a single message to it. The worker 

manager will do a read and delete operation on the GRQ to 

get jobs. The worker manager will interact with the 

DynomoDB for four times in the sequence read, update, 

read and update for deadlock avoidance and detection. For 

(n-1) workers for an HPC job, the number of read and 

delete operations performed on the HPCQ is 2(n-1). There 

will be 3(n-1) messages being passed between the sub 

workers and the managers. The interaction between the 

manager and the sub worker is as follows: 

Sub worker initial notification to the manager,   

Task allocation from manager to sub worker,  

Task completion response from sub worker to manager.   

Worker managers will feed the output to the CRQ in a 

single message which will be picked up by the client. 

The client submits two messages to the CRQ for reading 

the values and deleting the queue. 

 

 
 

Figure 5: Message flow in the CKHPC system 

Minimum number of internal messages used for the HPC 

implementation = m (6n + 4) 

where,  

 n = Number of tasks per job 

 m = Number of HPC jobs  

 

4.2. Throughput and latency on CloudKon-

CKHPC 
In order to measure the throughput and latency of our 

system we run sleep 0 tasks on worker nodes. We have 

evaluated the performance of CloudKon on multiple 

instances, starting from 1 instance and extending the 



experiment up to 64 nodes. We have also compared the 

throughput of CloudKon with SLURM and SLURM++ for 

up to 300 nodes. There is 1 client thread and different 

number of worker threads (ranging from 1 to 256) running 

on each instance. Each instance submits jobs ranging from 

500 to 2000. On the largest scale (300 instances) our 

system has run 40 tasks for the comparison to other systems 

experiment. We have evaluated the throughput of 

CloudKon from 1 to 64 instances running 2 to 16 tasks.  

The simulations for workloads we ran are captured in the 

graphs below. 

4.2.1. Throughput 

The next two graphs shows that the throughput goes 

significantly higher with the increase in number of worker 

instances. This is because with more workers available to 

pick up the tasks, for the same job workload, the 

performance would be better. It is observed that for jobs 

requiring 4 tasks each, the throughput is higher as 

compared to jobs requiring double the tasks. Time taken to 

run tasks increases with the increase in the number of task 

requirement per job. Also if we run multiple worker 

processes per worker node, throughput increases with the 

increase number worker processes. 

As observed from figure 6, with 8 tasks/job we get a very 

small throughput for 16 worker processes whereas for 64 

processes, the throughput is around 400 jobs/sec. 

Each worker node may invoke a number of worker 

processes to run in parallel on the same node. This graph 

shows that the throughput goes significantly higher with the 

increase in number of worker processes. This is because 

more workers will be available to pick up the tasks, 

improving performance. 

There is a limit on how many number of worker processes 

per node can be invoked. After certain number of process 

per node, performance will start decreasing, which depends 

on the number of cores available on the system, which is 

the major factor for the parallelization that can be achieved 

on the system using multiple processes. 

 
Figure 6: System throughput with different number of worker 

processes 

 
Figure 7: System throughput with single worker process per node 

for different nodes 

 
Figure 8: System throughput with different worker process per 

node (Tasks/Job: Nodes = 1:4) 

Also, having the same number of jobs being submitted, 

with increase in number of tasks per job the throughput 

goes down as the communication cost also increases 

amongst the workers. Hence, time taken to run tasks 

increases with the increase in the number of task 

requirement per job.  

4.2.2. Latency  

With the increase in the number of nodes the latency for the 

system decreases as the number of jobs being submitted is 

same and more workers become available to carry out the 

same workload. Hence, we can justify the latency being 

higher for lower number of workers processes per node.  

 
Figure 9: System throughput with single worker process per node 

for different nodes 



As observed from Figure 9, for single worker process per 

node latency was 1294450 ms for 16 nodes and it went 

down drastically to 300864 ms for 64 nodes.  

Also, with the increase in number of worker processes per 

node the latency starts decreasing. 

4.2.3. Comparison between CloudKon, CloudKon-

CKHPC, Slurm, and Slurm++ for MTC tasks 
To compare CloudKon-CKHPC with CloudKon we have 

used MTC jobs i.e.1task per job with each task being a 

'Sleep 0' task. For this evaluation, 16000 MTC jobs were 

submitted per node. And evaluations were carried for 4 

worker processes per node with number of nodes varying 

from 1 to 64. As seen from the figure 10, the throughput for 

Cloudkon is higher than the Cloudkon-CKHPC when 

handling MTC tasks. This is because CloudKon-CKHPC 

have used some additional resources to support HPC, 

which is the overhead to carry out MTC jobs. Throughput 

obtained for MTC jobs on CloudKon-CKHPC with 1 node 

is 157 Jobs/sec while for CloudKon it is 238 Jobs/sec. At 

the scale of 64 nodes, throughput for CloudKon-CKHPC is 

8722 which less than throughput obtained for CloudKon 

which is 12947. Performance of CloudKon-CKHPC for 

MTC jobs is almost 2/3rd of the performance of CloudKon. 

 
Figure 10: Comparing the Throughput for CloudKon and CKHPC 

 
Figure 11: Comparing the Throughput for different job execution 

systems 

We have also compared CloudKon-CKHPC with SLURM 

and SLRUM++. The comparison was carried at the scales 

of 100 nodes to 300 nodes. Also we had submitted 500 

medium size jobs i.e. each job containing 1 to 50 tasks. It is 

observed that the throughput of CloudKon -CKHPC is 

higher than SLURM++ and way better than SLURM. 

The results show that CloudKon-CKHPC was able to 

outperform the other two systems after the scale of 100 

instances. SLURM performs slower than the other two 

systems and cannot scale up. One of the main reasons that 

CloudKon-CKHPC is outperforming the other two is being 

optimized for the public cloud environment. 

5. RELATED WORK 

Job management system can be centralized or hierarchical 

or distributed. In centralized systems, jobs are scheduled by 

only one centralized node on to the other nodes, where as in 

distributed systems each and every node maintains its own 

job framework. In hierarchical job scheduler, several job 

dispatchers are organized in the tree topology to manage 

jobs for their child nodes. 

SLURM is an open source, centralized job management 

system suitable for Linux clusters of all sizes to target 

mainly HPC and HTC applications [2,12]. Condor was one 

of the earliest job schedulers developed to harness the 

unused CPU cycles on workstations for long-running batch 

jobs. Falkon, developed in 2007, also has a centralized 

architecture. Despite scaling and performing magnitude 

orders better than the state of the art, its centralized 

architecture hinders it from scaling to petascale systems 

[8]. 

SLURM++ [11] is a distributed job launch prototype, 

which extends the SLURM resource manager by 

integrating the ZHT [26, 28] zero-hop distributed key-value 

store for distributed state management. SLURM++ is 

comprised of multiple controllers with each one managing 

several SLURM daemons, while ZHT is used to store all 

the job metadata and the SLURM daemons’ state. 

All these systems lack the granularity of scheduling jobs at 

node/core level, which makes them incompatible for MTC 

applications. Moreover, they also face scalability and 

reliability issues as they are centralized systems. 

MATRIX[10] is an execution framework that focuses on 

running Many Task Computing (MTC) jobs [26]. It is 

highly scalable and dynamic as it uses an adaptive job 

stealing approach. It also supports the execution of 

complex large-scale workflows, and has scaled up to 1K-

nodes. Sparrow is another scheduling system that focuses 

on scheduling very short jobs that complete within 

hundreds of milliseconds [9,11]. It has a decentralized 

architecture making it highly scalable and also has a good 

load balancing strategy with near optimal performance 

using a randomized sampling approach[14,15,16].  

Most of the above light-weight task execution frameworks 

have been developed from scratch, hence having tens of 

thousands of lines of code. Due to such large code bases, 

maintenance of these systems is difficult as well as 



expensive, and also its much harder for them to evolve 

once initial prototypes have been completed. CloudKon 

aims to make use of existing distributed and scalable 

building blocks to deliver an extremely compact distributed 

task execution framework that maintains the same levels of 

performance as the state-of-the-art systems. 

To overcome the limitations of SLURM and other systems 

introduced above, CloudKon has been developed which 

adds support for MTC applications providing fine 

granularity for scheduling jobs at the node/core level. 

Amazon SQS used in the CloudKon guarantees the 

scalability and reliability as it is scalable and will deliver 

each message at least once.  Though CloudKon supports 

MTC applications and overcomes limitations of SLURM, it 

lacks support for HPC applications and MPI applications so 

far. 

To our knowledge, CloudKon is the only distributed task 

scheduler with the ability of running both MTC  and HPC 

tasks that is designed and optimized to perform well on 

public cloud environment. This eliminates the need for 

having expensive grids or clusters for running HPC jobs. 

Another benefit of the cloud services is that using those 

services, users can implement relatively complicated 

systems that are able to serve in larger scales with a very 

short code base in a short period of time. We are able to 

keep up with other systems like SLURM and SLURM++ in 

terms of performance and these state of the art systems are 

written in programming languages that run faster than Java. 

We have to note that our system is able to compete with 

these systems by running on public clouds and using web 

services which are slower than dedicated clusters and grids 

running on high speed low latency networks. We attribute 

this performance of our system to the distributed nature of 

the system and the short code base. 

6.  CONCLUSION AND FUTURE WORK 

By the end of this project we have a set of deliverables that 

enable us to have a running implementation of a prototype 

of real time HPC tasks being supported by the CloudKon 

framework. The following are some of important things we 

learned while working on this project:  

 Deadlock avoidance is better than deadlock recovery. 

This increases the resource utilization and has little 

effect on the throughput of the system. With 

distributed storage of system state, the adverse effect 

on the throughput can be minimized. We have 

implemented an algorithm that helps the system 

recover from the deadlock and restore the system to a 

normal state since every unutilized worker has an 

adverse effect on the number of tasks being executed 

in the system. 

 The use of RMI is much better than the use of socket 

based connections for handling simultaneous 

communication with multiple sub workers. This 

eliminates the need for opening multiple ports and 

having a lot of threads listening on individual ports. 

 Handling race conditions and deadlocks in a real time 

scheduling system. 

 Invoking more processes per node gives better 

performance than a single process per node. 

 Got good hands on experience working with Amazon 

web services and the Google protocol buffer. 

 The use of extensive shell scripting for starting and 

running multiple worker instances in parallel. 

 Writing modular code with high cohesion. 

 Having multiple classes for decreased coupling 

amongst the classes in the code. 

We can say that our project was a success based on the 

below evaluations: 

 On comparing system performance with other systems 

like SLURM and SLURM++, higher throughputs were 

observed for CKHPC. 

 With the implementation of deadlock detection and 

avoidance, the system runs consistently on scales of up 

to 1200 processes running on 300 nodes. 

We strongly believe that with most software systems there 

is always space for improvement and ours is an evolving 

prototype and with scope for improvement in the following 

areas: 

 Extend support for MPI applications for distributed 

processing. 

 Make it run it for real-time tasks, instead of sleep 

tasks. 

 Limit the use of centralized DynamoDB and build a 

decentralized system for deadlock avoidance and 

efficient handling of race conditions. 

 Use Dynamo instead of DynamoDB for eventual 

consistency resulting in high scalability. 

 Dynamic calculation of time out rather than a fixed 

time for better resource utilization. The dynamic 

calculation of time out takes into account the time 

required to complete the previous HPC task, number of 

sub workers required for last HPC task and estimated 

time for completion of current task. 
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