
• State-of-the-art job schedulers have
master/slave architecture, where the master
becomes a performance bottleneck and is
susceptible to single point of failure, especially
at petascales

• Develop a dynamic distributed scalable job
scheduling system at the granularity of
node/core levels with distributed load balancing
algorithm (work stealing) leading to high
throughput and system utilization.

Motivation and Goal

• MATRIX: a task execution framework which
applies work stealing algorithm for achieving
efficient distributed job scheduling
• Support single core tasks, single node tasks

or multi-node tasks
• Also supports task dependency
• Scales up to 4096 cores

• ZHT: a distributed key-value store designed for
extreme-scales
o Distributed metadata and data management
o Scales up to 32K-cores

Building Blocks

MATRIX: MAny-Task computing execution fabRIc for eXtreme scales

MATRIX Architecture
 Workload Submission
• The task dispatcher can submit the entire

workload either to one compute node
(worst case) or spread it evenly across
multiple nodes (best case)

• For the worst case the work stealing
algorithm quickly distributes the load
evenly across all the compute nodes to
get full system utilization and high
throughput

 Workload Execution
1. Client generates a workload of tasks,

submits the workload to the compute
nodes and periodically monitors the status

2. The compute nodes execute the tasks in
the workload

3. Idle nodes gather load information from
busy nodes

4. Then they find the node with heaviest
load and steal tasks from that node

Anupam Rajendran
Department of Computer Science

Illinois Institute of Technology
arajend5@hawk.iit.edu

Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
iraicu@cs.iit.edu

Ke Wang
Department of Computer Science

Illinois Institute of Technology
kwang22@hawk.iit.edu

Performance on BlueGene/P
Parameter Space

• Task duration – 64ms ~ 8s
• Type of workload– Bag of tasks (no task

dependency), Fan-In DAG, Fan-Out DAG,
Pipeline DAG

• Number of nodes – 64 ~ 1024 nodes

Request and
Receive load
information

Request and
Receive load
information

Request
and Receive
Tasks

Submit
Workload

Monitor
workload
execution

Comparison of MATRIX and SimMatrix Efficiency

 Real implementation matches the simulation results with 4% difference
 Excellent scalability with about constant efficiency (80%+) for workload of different granularities up to 4096 cores
 System utilization is 100% at most of the time thus achieving excellent throughput
 Number of messages per-task for different types of workload is about constant
 References

[1] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and Supercomputers,” 1st IEEE
Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS) 2008.

[2] J. Dinan, D.K. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha, “Scalable work stealing,” In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis,
2009.

[3] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke~Wang, Anupam Rajendran, Zhao
Zhang, and Ioan Raicu. ZHT: A Light-weight Reliable Persistent Dynamic Scalable Zero-hop Distributed
Hash Table. IEEE IPDPS, Boston, MA, 2013, to appear.

Future Work
 Integrate with Slurm job manager for HPC workloads
 Integrate with Swift for running real scientific

application
 Add network topologies such as logarithmic topology

to allow each compute node select neighbors based
on location to optimize network traffic

 Develop and improve scalability of MATRIX

Scalability of Adaptive Work Stealing algorithm for
tasks of different granularities

Comparison of MATRIX and SimMatrix Throughput

System Utilization for different types of workload No. of messages per task for different workloads

Acknowledgement
This work is supported by NSF
grant OCI-1054974.
Special thanks to Tonglin Li,
Xiaobing Zhou, Kevin
Brandstatter and Zhao Zhang
for their collaboration.

Metrics
• Throughput
• Efficiency

• System Utilization
• Network Traffic

Results and Conclusion

	MATRIX: MAny-Task computing execution fabRIc for eXtreme scales

