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Abstract—It has become increasingly important to capture and
understand the origins and derivation of data (its provenance).
A key issue in evaluating the feasibility of data provenance is its
performance, overheads, and scalability. In this paper, we explore
the feasibility of a management layer for parallel file systems, in
which metadata includes both file operations and provenance
metadata. We design and implement a provenance layer within
a distributed file system —FusionFS, which implements a dis-
tributed file metadata management based on distributed hash
tables. Our results show that FusionFS with its own storage
layer for provenance capture is able to scale up to 1K nodes
on BlueGene/P supercomputer.

I. INTRODUCTION

Scientific advancement and discovery critically depends
upon being able to extract knowledge from extremely large
data sets, produced either experimentally or computationally.
In experimental fields such as high-energy physics datasets
are expected to grow by six orders of magnitude [2]. In
computational fields such as fusion science data will be
output at 2 gigabytes/second per core or 2 petabytes/second
of checkpoint data every 10 minutes [2]. This amounts to
an unprecedented I/O rate of 3.5 terabytes/second. To extract
knowledge from extremely large datasets in a scalable way,
architectural changes to HPC systems are increasingly being
proposed—changes that either reduce simulation output data
[5, 6] or optimize the current flop to I/O imbalance [1, 3].

A primary architectural change is a change in the design of
the storage layer, which is currently segregated from compute
resources. Storage is increasingly being placed close to com-
pute nodes in order to help manage large-scale I/O volume and
data movement [3, 8, 10, 11], especially for efficient check-
pointing at extreme scale [15]. This change in the storage layer
has a significant resulting advantage—it enables simulation
output data to be stored with the provenance metadata so that
analysis can be easily verified, validated as well as retraced
over time steps even after the simulation has finished.

While this architectural change is being deemed neces-
sary to provide the much needed scalability advantage of
concurrency and throughput, it cannot be achieved without
providing an efficient storage layer for conducting metadata
operations [9]. The centralized metadata repository in parallel
file systems has shown to be inefficient at large scale for
conducting metadata operations, growing for instance from
tens of milliseconds on a single node (four-cores), to tens of
seconds at 16K-core scales [9, 13]. Similarly, auditing and
querying of provenance metadata in a centralized fashion has
shown poor performance over distributed architectures [7].

In this paper, we explore the feasibility of a general meta-
data storage and management layer for parallel file systems, in
which metadata includes both file operations and provenance
metadata with the FusionFS [14] infrastructure. FusionFS
provides a POSIX interface and conducts data I/O in a
decentralized such that the resources at each node are fully
exploited.

II. DESIGN AND IMPLEMENTATION

Figure 1 illustrates how we integrate FusoinFS and ZHT
to support distributed provenance capture at the file system
level. Provenance is firstly generated in the FUSE layer in
FusionFS, and then is cached in the local provenance buffer.
And at a certain point (e.g. when the file is closed), the cached
provenance will be persisted into ZHT. Users can do query on
any node of the system using a ZHT client.

Fig. 1. FusionFS+ZHT architecture overview

Table I shows what is captured for the graph vertex in the
distributed provenance store. Basically there are two different
vertex types being tracked of: file and process. In other words,
we are interested in which file(s) have been touched by which
process(es). And we maintain a linked list for the tree topology
in ZHT.

TABLE I
ATTRIBUTES OF GRAPH VERTEXES IN DISTRIBUTED PROVENANCE

CAPTURE

Vertex Type Attributes
File [File path/name] [File version] [File size]

Process [Process host] [Process name]



We implement a light-weight command-line tool that end
users can use to query the provenance, in the following syntax:

query vertex [filename] [file version]
[ancestors -- descendants] [depth]

III. PRELIMINARY RESULTS

We have deployed the distributed provenance-aware file sys-
tem on 1K-node IBM BlueGene/P supercomputer Intrepid [4].
We also evaluated the system on a 32-node cluster, where each
node has two Quad-Core AMD Opteron 2.3GHz processors
with 8GB memory. All nodes are interconnected by 1Gbps
Ethernet.

We have scaled the distributed provenance system up to 1K-
node on IBM BlueGene/P. Figure 2 shows that the provenance
overhead is relative small even on 1K nodes (14%). Similarly,
we report the query time and overhead on the same workload
at large scale (i.e. 1K nodes) in Figure 3, which shows that
the overhead at 1K-nodes is about 18%.

Fig. 2. Throughput on BlueGene/P

Fig. 3. Query Time on BlueGene/P

IV. CONCLUSION AND FUTURE WORK

FusionFS with its own storage layer for provenance capture
is able to scale up to 1K nodes on BlueGene/P supercomputer.
As for the future work, we plan to integrate the Swift parallel
programming system [17] to deploy real scientific applica-
tions [12, 16] on FusionFS+SPADE and FusionProv, as well
as continue to scale FusionFS/FusionProv towards petascale
levels.
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