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Abstract—This work analyzes the performance increases
gained from enabling Swift applications to utilize the GPU
through the GeMTC Framework. By identifying computationally
intensive portions of Swift applications, we can easily turn these
code blocks into GeMTC microkernels. Users can then call these
microkernels throughout the lifetime of their Swift application.
The GeMTC API handles task overlap and data movement,
providing transparent GPU acceleration for the user. This work
highlights preliminary performance results from the scientific
application MDProxy. This application determines the energy of
particles in a modeled universe as they move around in space.
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I. BACKGROUND INFORMATION

GeMTC (GPU enabled Many-Task Computing) [1], is a
CUDA-based framework which provides efficient support for
Many-Task Computing [2] workloads on accelerators. [3] The
GeMTC framework has been integrated into Swift/T [4],
a parallel programming framework from Argonne National
Laboratory and the University of Chicago, providing GPU
functionality for the Swift language. [5]

A microkernel is a traditional CUDA kernel that is modified
to run in the GeMTC framework. A CUDA kernel is a user-
defined function that runs on a NVIDIA GPU.

II. MDPROXY ARCHITECTURE

In Figure 1 the call stack architecture is shown for MD-
Proxy through Swift and GeMTC. The user writes a Swift
script that will build an array of potential particles and calls
GeMTC MDProxy with this array as a parameter. Each call
to MDProxy creates it’s own universe of particles and ships
the universe to the GPU. Finally the MDProxy application
consists of three functions 1) initialize the universe, 2) run the
computation, and 3) update the result.

III. TESTING ENVIRONMENT

In this work we conduct our evaluation on a GTX 670
GPU with 7 Streaming Multiprocessors (SMXs). In addition
this GPU contains 84 Warps(utilized as workers), 1344 CUDA
Cores, and 2GB of DDR5 RAM. CPU results are tested on a
6 core 3Ghz AMD CPU.

Fig. 1. Call stack architecture for the MDProxy implementation.

IV. MDPROXY EVALUATION

In Figure 2 the GeMTC MDProxy micro-kernel is evaluated
with 2,688 particles and scaled up to 900 steps of computation
from within the application. In addition, a comparison is drawn
against a threaded CPU implementation of MDProxy with the
GPU version showing a 10x speedup. Finally, Figure 3 shows
how tasks per second are calculated based on varying the
number of particles per universe. This work achieves almost
12k tasks per second for workloads with 500 particles in a
given universe.

Fig. 2. MDProxy evaluation of the GPU vs. CPU implementations.

V. CONCLUSIONS

In conclusion this work aimed to evaluate a real scientific
application. While the MD code evaluated here is not a
production code it provides a skeleton of data movement and
compute that is performed by MD Codes. MDProxy highlights
the GeMTC potential by launching small compute universes
on each compute element in the GPU. Finally, our preliminary



Fig. 3. Tasks per second achieved during MDProxy.

results show that GeMTC 10x faster than a threaded CPU
implementation.

VI. FUTURE WORK

Future work will aim to improve the MD algorithm, this will
provide for a more through analysis of the potential improved
performance that GeMTC can provide. We will also extend
our evaluation by testing MDProxy at Multi-Node scale.
MDProxy provides an array of input parameters that affect
the computation, further investigation will aim to find optimal
task sizes. Finally, we aim to compare performance against
other GeMTC-enabled accelerators and develop high level
abstractions for the Swift/T + GeMTC stack while Expanding
the library of GeMTC microkernels.
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