
NoVoHT: a Lightweight Dynamic Persistent NoSQL Key/Value Store

Kevin Brandstatter1, Tonglin Li1, Xiaobing Zhou1, Ioan Raicu1,2
kbrandst@iit.edu, tli13@iit.edu, xzhou40@hawk.iit.edu, iraicu@cs.iit.edu

1Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

Abstract—With the increased scale of systems in use and the need

to quickly store and retrieve information, key/value stores are

becoming an important element in the design of large-scale

storage systems. Key/value stores are well known for their

simplistic interfaces, persistent nature, and excellent operational

efficiency – they are also known as NoSQL databases. This paper

presents the design and implementation of a non-volatile hash

table (NoVoHT). NoVoHT was designed from the ground up to

be lightweight, fast, and dependency-free. Our goal was to create

a fast persistent key/value store that could be easily integrated

and operated in lightweight Linux OS typically found on today’s

supercomputers. We also aimed to develop a system that

performed as close as possible to an in-memory hash map, but

with the added benefit of being persistent. We also extended the

traditional key/value store interface (e.g. insert, lookup, remove)

to include a novel operation (e.g. append) that has allowed

NoVoHT to efficiently support lock-free concurrent write

operations. NoVoHT is also dynamic, supporting live migration

across node boundaries. We have run comparisons at significant

scales against some of the more commonly used key value stores

and have shown that NoVoHT can perform similarly or better

than other systems such as Kyoto Cabinet, and BerkeleyDB. We

observed up to 165K+ operations per second, up to 32X better

performance than competing systems. We have evaluated

NoVoHT with solid state disks (SSD) and have deployed NoVoHT

as the persistent back-end of a distributed hash table (ZHT) on

an IBM BlueGene/P supercomputer at up to 32K-cores.

I. INTRODUCTION

In the current decades-old architecture of HPC systems,

storage is completely segregated from the compute resources

and are connected via a network interconnect (e.g. parallel file

systems running on network attached storage, such as GPFS

[15], PVFS [16], and Lustre [17]). This approach is not able to

scale several orders of magnitude in terms of concurrency and

throughput, and will thus prevent the move from petascale to

exascale. If we do not solve the storage problem with new

storage architectures, it could be a “show-stopper” in building

exascale systems. The need for building efficient and scalable

distributed storage for high-end computing systems that will

scale three to four orders of magnitude is on the horizon.

One of the major bottlenecks in current state-of-the-art

storage systems is metadata management. Metadata operations

on parallel file systems (e.g. GPFS [15]) can be inefficient at

large scale. Experiments on the BlueGene/P system at 16K-

core scales showed basic metadata operations (e.g. create file)

growing from tens of milliseconds on a single node (four-

cores), to tens of seconds at 16K-core scales; at full machine

scale of 160K-cores, we expect a file create to take over two

minutes for the many directory case, and over 10 minutes for

the single directory case. The conclusion is that the distributed

metadata management in GPFS does not have enough degree

of distribution, and not enough emphasis was placed on

avoiding lock contention. GPFS’s metadata performance

degrades rapidly under concurrent operations, reaching

saturation at only 4~32 core scales (on a 160K-core machine).

Other distributed file systems (e.g. Google's GFS [18] and

Yahoo's HDFS [19]) have centralized metadata management,

making the problems observed with GPFS even worse from

the scalability perspective. We believe future storage systems

for high-end computing should support distributed metadata

management, in order to support close to constant time

inserts/lookups/removes.

In previous work, we developed a zero-hop distributed

hash table (ZHT) [9], which has been tuned for the specific

requirements of high-end computing. ZHT aims to be a

building block for future distributed file systems, with the goal

of delivering excellent availability, fault tolerance, high

throughput, scalability, persistence, and low latencies. ZHT

has three important characteristics that are relevant to this

paper, a customizable consistent hashing function, it

supports persistence for better recoverability in case of

faults, and supports unconventional operations such as

append (providing lock-free concurrent key/value

modifications) in addition to insert/lookup/remove.

We achieved these features in ZHT through the design and

implementation of NoVoHT, the single node persistent

NoSQL Key/Value store. NoVoHT was designed from the

ground up to be lightweight, fast, and dependency-free. Our

goal was to create a fast persistent key/value store that could

be easily integrated and operated in lightweight Linux OS

typically found on today’s supercomputers. We also aimed to

develop a system that performed similar to an in-memory hash

map, but with the benefit of being persistent. Furthermore, we

extended the traditional key/value store interface (e.g. insert,

lookup, remove) to include a novel operation (e.g. append)

that has allowed NoVoHT to efficiently support lock-free

concurrent write operations. Finally, we have made NoVoHT

dynamic supporting live migration across node boundaries,

allowing the ZHT system to significantly simplify the needed

logic for dynamic membership.

We have run comparisons at significant scales against

some of the more commonly used key value stores and have

shown that NoVoHT can perform similarly or better than other

systems such as Kyoto Cabinet and BerkeleyDB. We observed

up to a 32X performance improvement compared to Kyoto

Cabinet at large scale, and on average a 4X performance

improvement over both Kyoto Cabinet and BerkeleyDB on a

variety of scales. We have evaluated NoVoHT with solid state

disks (SSD) and have deployed NoVoHT as the persistent

back-end of a distributed hash table (ZHT) on an IBM

mailto:kbrandst@iit.edu
mailto:tli13@iit.edu
mailto:xzhou40@hawk.iit.edu
mailto:iraicu@cs.iit.edu

BlueGene/P supercomputer at up to 32K-cores. We compared

NoVoHT with other key/value stores and found it offers

superior performance, features, and portability.

The contributions of this paper revolve around the design

and implementation of NoVoHT, a Lightweight Dynamic

Persistent NoSQL Key/Value Store. It’s novel features are:

 Lock-Free: Support for unconventional operation such

as append, allowing the efficiently support of lock-free

concurrent modification operations

 Dynamic: Support live migration across physical nodes

 Lightweight: Micro-benchmarks delivering over

165K+ operations/second on single-node deployment

 up to 32X faster than existing systems

 Persistent: Combines memory mapped and disk

mapped approaches to deliver both fast data access

and high data resilience at the same time

 Real-System: Adopted by ZHT and deployed on IBM

BlueGene/P supercomputer at 32K-core scales

II. NOVOHT DESIGN AND IMPLEMENTATION

NoVoHT is a persistent in memory hash map designed to
be fast and lightweight for running on large systems. It was
developed to support the ZHT distributed hash table in a
variety of features. The application programming interface
(API) of NoVoHT is kept simple and follows similar
interfaces for hash tables. The four operations NoVoHT
supports are 1. bool insert(key, value); 2. value lookup(key);
3. bool remove(key), and 4. bool append(key, value).

NoVoHT is built from scratch and features few
dependencies outside of the standard libraries. This makes it
easily portable and usable on large supercomputers which
often have restricted Linux environments not supporting a
large number of libraries and complex dependencies. It
features an efficient garbage collection mechanism to keep the
disk space utilized to a minimum. It is a basic building block
towards ZHT project, as well as the FusionFS filesystem [9].

A. Design Goals

Our goals for the design of NoVoHT were to make a very
lightweight key value store. For avoiding reliance on outside
dependencies and to maximize support on larger systems with
limited storage and libraries, we started with the basic building
blocks from scratch.

Secondly, we aimed to increase speed by holding the entire
table in memory so there wouldn’t be noticeable performance
degradation with large data sets. To do this, we relied on the
traditional style of a hash map and worked to make the
persistence layer as simple as possible. We aimed for
simplicity to reduce the overhead of the persistence, thus
keeping operation latency low.

Finally, we set out to solve the issue of garbage collection
to reclaim unused disk space. As a persistent storage system,
we expect the life of the data to be quite long, and varied in
amount over time. This variance would bloat normal NoSQL
systems as their database needs to expand to encapsulate the
data. However, should this data be reduced significantly, the
disk space is never reclaimed and continues to take up space
on the system. The way these systems usually handle

shrinking the storage, is to create a new instance and reinsert
the data. For many systems this is a poor option. NoVoHT
fixes this by implementing a system to transparently rebuild
the persistent storage. This way, disk utilization can remain
constrained to the size of the data. We have made this tunable.

B. Core Hash Table

NoVoHT is simply a custom built light-weight hash table

at the core, with added features built on top. The general

design of the map structure is an array of linked lists. This

structure makes collision handling more efficient. Rather than

searching for an open bucket, it simply adds it to the list

structure. Also, this helps lookup time, because it eliminates

the worst case of iterating the entire array in the case of it

being very full. Finally, this gives the application the ability to

overfill the map, with more keys than buckets. While this

would impact time of insert and remove, it keeps the space

used for the array lower. It also allows the key/value store to

allow lock-free read operations.

C. Resizability

In order for NoVoHT to scale to meet its dynamic

demands, the ability to expand its storage size is necessary.

Without resizing, over time inserts and removes would be

progressively slower as the number of collisions would

continue to increase. To resolve this, the constructor offers

parameterization of a value that corresponds to a percentage of

the size of the storage array. When the number of elements in

the map is equal to the size of the map times the percentage,

the map calls the re-size routine. The re-size routine creates a

new array of twice the size of the old one, then places the

address of each pair into the corresponding bucket of the new

array. Then it sets the new array as the maps array and frees

the old one. Since the base array simply holds the sentinel

head of each buckets linked list, this operation is

approximately as fast as rehashing each key, and adding the

address of the pair to the appropriate list. Of course, if the

number of elements to be inserted is known, the user could

turn off resizing to ensure this overhead isn’t incurred.

D. Persistence

NoVoHT’s major feature is its ability to save its state to a

POSIX file system, and allow it to recover its state in case of

an application crash. NoVoHT employs a log-based approach

to achieve persistence. When a key/value pair is inserted, it

writes the key-value pair to the file specified, and records

where it was written with the key-value pair in the map. By

recording the location in the file, removal is extremely

efficient. When an element is removed it removes the pair

from the map, and marks the spot in the file. By marking the

file, if the application crashes, that pair will not be inserted

into the map when the file state is recovered.

E. Garbage Collection

Through the constant adding and removal of key-value

pairs, the file grows and shrinks. In order to handle file

shrinking, NoVoHT allows the parameterization of a

threshold, which determines how many removes to do before

the file is rewritten with the pairs in the map (effectively

eliminating the pairs that were marked for removal from the

file). NoVoHT also supports periodic garbage collection to

reclaim free space at timed intervals.

Garbage collection occurs by rewriting the entire state of

NoVoHT. We chose this method because it allowed us to

simplify the file format to optimize inserts as one does not

have to keep track of available space or search for a fit --

insertions are then as simple as a write append. As a tradeoff,

the garbage collection requires a rewrite to clean out the

deleted records.

Normally the garbage collection would require a global

lock of the map to prevent changes to the map during the

rewrite. We designed a way to handle the majority of the file

rewrite without locking access to the table. First, we spawn a

background helper thread to manage the actual writing of the

file so that it doesn’t stall the application waiting for

completion. This is especially important for large maps where

the rewrite time can be potentially many seconds to minutes.

During this time, the hash table writes its activity to a merge

file by recording the pairs added, and the keys it deleted. Then,

when the write is complete, the map locks insert and remove

operations and performs the merge operation by implementing

the changes from the merge file ensuring consistency with

memory. The get operation needs not be locked because it

does not rely on access to the file since it gets the data from

memory. We chose this merge approach because we are under

the assumption that under our use case in a distributed file

system, inserts and removes will be less frequent while gets

are common and need to be always accessible. Also, we could

have tried to implement a queuing system for operations

during the merge phase, however we decided that a more

transactional operation model was appropriate and would like

to only return when the record is persisted.

F. Append Function

Since NoVoHT was designed with the initial intent for file

system metadata storage, we found it necessary to add a

nonstandard fourth operation, append. This may seem to be a

trivial addition; however it was complicated by the persistence

layer. In memory it is as simple as appending the new value to

the old value. For the persistence layer to do this it would

require us to remove the old record and write the entire key

and combined value at the end. This yielded degraded

performance as subsequent appends would take progressively

longer.

We achieved a constant time operation by fragmenting the

appended segments on disk. Thus, when a value is appended,

the appended value and the key are entered as a new record.

This location is also recorded by NoVoHT for removal

purposes. Also, these fragments will be merged on the next

garbage collection when the entire pair will be rewritten as a

single record.

G. Implementation

 NoVoHT has been under development for 1.5 years, and

it is an open source project accessible at [20]. It is

implemented in C++, and has very few dependencies.

Currently, NoVoHT only relies on a standard C++ compiler

such as the one provided by the GNU Compiler Collection, the

C++ standard libraries, and posix thread support. These very

basic requirements assure that NoVoHT is very light and can

be easily deployed in almost any Linux friendly environment.

NoVoHT also is tested to work well with strings generated by

the Google Protocol Buffers [3] (on the BG/P) to support the

storage and retrieval of complex objects, but the Google

Protocol Buffer is not necessary if key/value pairs are

constrained to string types.

III. PERFORMANCE EVALUATION

All NoVoHT experiments were performed on Fusion.

 Fusion: a 48-core x64 server: quad AMD Opteron 12-

core processors, 256GB RAM. This machine was used

to compare NoVoHT, BerkeleyDB and KyotoCabinet.

A. Hashing Functions

In this section we discuss the hash functions that can be

used to map keys to nodes. We investigate some of the usual

hash functions for figuring out the performance and load

balancing abilities. As shown in Figure 1 that some hash

functions are faster than others, but a more important concern

rather than performance is the evenness (see Figure 2).

Figure 1: Time per hash for a variety of hashing functions

An ideal hash function should be able to spread keys

evenly. Additionally it should not increment the time too

rapidly as the length of key increased. We need the hash

function to be even to provide a natural load balancing

mechanism. But obviously sometimes we can’t obtain both

performance and evenness, as can be seen by the SuperFast

hash unevenness (see Figure 2). We adopted the FNVHash

hash function in NoVoHT. As observed in the charts below,

FNVHash offers a good performance while providing

evenness as well. We measure 1 million keys distribution over

1000 buckets, then find that the standard deviation is only 138

keys (or 1. 38%). This is on par with most of the other hash

functions’ standard deviation (see Figure 2).

Figure 2: Load balancing across different hashing functions

0

5

10

15

20

25

128 256 512 1024 2048

s
e

c
 p

e
r

m
il

li
o

n
 h

a
s

h
in

g

Length of key

Hashing performance

CRC32
OneAtATimeHash
SDBM
BobJenkin's
SuperFastHash
FNVHash

1.43 1.38 1.41 1.41 0.65 1.46

12.28

0.00

5.00

10.00

15.00

St
an

d
ar

d
 d

e
vi

at
io

n

Hash functions

Evenness
Bob Jenkins
FNV
alphaNumHash
oneAtaTime
SDBM

B. NoVoHT Persistence

We compared NoVoHT with persistence to KyotoCabinet

and BerkeleyDB with identical workloads up to 100 million

inserts, gets, and removes, with fixed length key value pairs.

The results (see Figure 3) show NoVoHT scales near perfect in

terms of time per operation; experiments not shown in this

figure also show that memory overheads follow the same near

perfect trends. It is interesting to note that persistency of

writing key/value pairs to disk only adds about 3us of latency

on top of the in-memory implementation.

Figure 3: Comparison between NoVoHT, KyotoCabinet, and

BerkeleyDB

When comparing NoVoHT with KyotoCabinet or

BerkeleyDB, we see much better scalability properties, as they

both show a significant increase in the cost per operation as

the size increases from 1M to 100M key/value pairs. Also, it’s

worth pointing out that although BerkeleyDB has some

advantages such as memory usage, it clearly does this at a big

performance cost. When comparing NoVoHT persistence to

non-persistence (see Figure 4, we noticed that most of the

overhead of the operations is held in the disk I/O portion.

Figure 4: NoVoHT persistence vs. non persistent

Figure 5 shows the performance of NoVoHT with
persistence disabled, and compared to unordered_map. It’s
interesting that NoVoHT was able to outperform the C++
native unordered_map by over 20%.

Figure 5: NoVoHT non persistant vs. unordered_map

C. NoVoHT Append

Since most hash tables do not implement and append

function, we could not compare our implementation to others.

However, we did run several tests to verify that the append

function would scale properly and was a constant time

operation as intended. To do this we first implemented a naïve

implementation that rewrote the new record and removed the

old. As expected, this did not scale very well but it provided us

with a baseline measurement to judge our optimized version.

The results as shown in Figure 6 show that our optimized

append operation scales very well and has latency comparable

to the other hash table functions.

Figure 6 Append method latency comparisons

Comparing the range of operations on each hash table we

can confirm that NoVoHT is able to exceed or match its

competitors. Thus we have achieved the goal of providing a

lightweight replacement without a performance degradation.

Also, we can see that this performance is more scalable than

the previous use of Kyoto Cabinet. For future tests we would

like to try more varied workloads to avoid discrepancies due to

specific optimization advancements.

IV. APPLICATIONS

This section presents a real systems that has adopted

NoVoHT as a building block to build a large-scale distributed

systems. ZHT [9] is a zero-hop distributed hash table, which

uses NoVoHT as backend. ZHT aims to be a building block

for future distributed systems, such as parallel and distributed

file systems, distributed job management systems, and parallel

programming systems. The goals of ZHT are delivering high

availability, good fault tolerance, high throughput, and low

latencies, at extreme scales of millions of nodes. Using micro-

benchmarks, we scaled ZHT up to 32K-cores with latencies of

only 1.1ms and 18M operations/sec throughput (see Figure 9).

Figure 7: Performance evaluation of ZHT with different numbers of

instances per node plotting throughput vs. scale (1 to 8K-nodes on BG/P)

1

10

100

1000

100000 1000000 10000000 100000000

La
te

n
cy

 (
u

s)

Operations

Kyoto Cabinet

BerkeleyDB

NoVoHT

0

5

10

15

100000 1000000 10000000 100000000

La
te

n
cy

 (
u

s)

Operations

Persistence

Nonpersistent

0

0.5

1

1.5

2

100000 1000000 10000000 100000000

La
te

n
cy

 (
u

s)

Operations

unordered_map
"NoVoHT (nonpersistent)"

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7

3

0 200000 400000 600000 800000 1000000

La
te

n
cy

 (
u

s)

Number operations

Append Lists

Rewrite Record

0
2,000,000
4,000,000
6,000,000
8,000,000

10,000,000
12,000,000
14,000,000
16,000,000
18,000,000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

Th
ro

u
gh

p
u

t
(o

p
s/

s)

Scale (# of Nodes)

1 instances/node

2 instances/node

4 instances/node

V. RELATED WORK

NoSQL Key/Value stores have been around for some time,

some dating back to the early 1990s (e.g. BerkeleyDB [13]).

Instead of listing dozens of key/value stores, we focus this

section on several systems that are most similar, namely

BerkelyDB [13], KyotoCabinet [4], and LevelDB [14].

KyotoCabinet is a file based hash database that is

optimized for speed. KyotoCabinet is a project by FAL Labs

that provides various persistent database APIs and libraries [4].

We particularly explored their HashDB, which implements a

hash database backed with file persistence. HashDB works by

allocating a file as a database and managing it as it would an

in memory hash map with use of mmap to map portions of the

file directly to memory[10]. This allows them to have capped

memory usage that is independent of the database size.

However, since all key/value pairs are mapped directly to a

file, garbage collection (the reclaiming of unused space in

files) is not trivial; our experience with HashDB was that

garbage collection was non-functional. Furthermore, since

HashDB is file-based, it has to map the file to memory in

order to perform retrieval functions. This is a significantly

slower system call. At small scales, it is not very noticeable as

it doesn’t always have to remap the file, but as the database

increases in size, the odds of successive queries being in the

same region becomes very small, and the file must be

constantly remapped. The constant remapping causes

KyotoCabinet to scale significantly worse than NoVoHT.

BerkeleyDB is also a file based database that can either be

managed as a hash database or a binary tree database. It is

often very popular for storing file system metadata and as such

was a good second model of performance we aimed to

surpass. BerkeleyDB [13] is a persistent NoSQL database

maintained by Oracle. It was designed to be very robust and

able to recover from most failures using features such as write

ahead logging to ensure data consistency [12]. It has four main

methods of access, B-tree, Hash, recno, and queue, though we

are mainly concerned with the B-tree and hash methods. While

B-tree provides faster access due to locality of reference, for

large data sets the index does not fit in memory and thus data

access is not optimal [12]. BerkeleyDB, like KyotoCabinet,

uses a memory buffer to store pages of the file in memory.

This renders it vulnerable to the same scaling issues. The

strong point of BerkeleyDB is its recovery functions and

emphasis on fault tolerance for data integrity. However, this

makes it slower and heavier than other option.

LevelDB [14] is a lightweight key value storage system

written at Google. It features sorted data and data

compression.

None of these other systems support the wide range of

unique features of NoVoHT, such as support for

unconventional operation (e.g. append) allowing the

efficiently support of lock-free concurrent modification

operations, support for live migration across physical nodes,

support for both memory mapped and disk mapped approaches

to deliver both fast data access and high data resilience at the

same time, up to 32X better performance than existing

systems.

VI. CONCLUSIONS

. This paper presented the design and implementation of a

non-volatile hash table (NoVoHT). NoVoHT was designed

from the ground up to be lightweight, fast, and dependency-

free. Our goal was to create a fast persistent key/value store

that could be easily integrated and operated in lightweight

Linux OS typically found on today’s supercomputers. We also

aimed to develop a system that performed as close as possible

to an in-memory hash map, but with the added benefit of being

persistent. We also extended the traditional key/value store

interface (e.g. insert, lookup, remove) to include a novel

operation (e.g. append) that has allowed NoVoHT to efficiently

support lock-free concurrent write operations. NoVoHT is also

dynamic, supporting live migration across node boundaries.

We have run comparisons at significant scales against some of

the more commonly used key value stores and have shown that

NoVoHT can perform similarly or better than other systems

such as Kyoto Cabinet, and BerkeleyDB. We observed up to

165K+ operations per second, up to 32X better performance

than competing systems. We have evaluated NoVoHT with

solid state disks (SSD) and have deployed NoVoHT as the

persistent back-end of a distributed hash table (ZHT) on an

IBM BlueGene/P supercomputer at up to 32K-cores.

REFERENCES

[1] FusionFS: Fusion distributed File System,

http://datasys.cs.iit.edu/projects/FusionFS/index.html, 2013

[2] ZHT: Zero-Hop Distributed Hash Table for High-End Computing,

Tonglin Li, Raman Verma, Xi Duan, Hui Jin, Ioan Raicu., ACM

Performance Evaluation Review (PER), 2012

[3] Google Protocol Buffers: http://code.google.com/apis/protocolbuffers/,

2013

[4] Kyotocabinet http://fallabs.com/kyotocabinet/, 2013

[5] BlueGene supercomputer

 http://en.wikipedia.org/wiki/Blue_Gene, 2013

[6] MATRIX http://datasys.cs.iit.edu/projects/MATRIX/index.html, 2013

[7] ALCF, Argonne Leadership Computing Facility, https://www.alcf.anl.gov

[8] ZHT source code. https://github.com/mierl/ZHT, 2013

[9] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z.

Zhang, I. Raicu. “ZHT: A Light-weight Reliable Persistent Dynamic

Scalable Zero-hop Distributed Hash Table”, IEEE IPDPS, 2013

[10] KyotoCabinet Specifications http://fallabs.com/kyotocabinet/spex.html,

2013

[11] KyotoCabinet HashDB

http://fallabs.com/kyotocabinet/api/classkyotocabinet_1_1HashD

B.html, 2013

[12] Margo Seltzer, Keith Bostic. “Berkeley DB”,

http://www.aosabook.org/en/bdb.html, 2013

[13] BerkeleyDB,

http://www.oracle.com/technetwork/products/berkeleydb/overview/index.

html, 2013

[14] LevelDB, https://code.google.com/p/leveldb/, 2013

[15] F. Schmuck, R. Haskin, “GPFS: A Shared-Disk File System for Large

Computing Clusters,” FAST 2002

[16] P. H. Carns, W. B. Ligon III, R. B. Ross, R. Thakur. "PVFS: A parallel

file system for linux clusters", Proceedings of the 4th Annual Linux

Showcase and Conference, 2000

[17] P. Schwan. "Lustre: Building a file system for 1000-node clusters," Proc.

of the 2003 Linux Symposium, 2003

[18] S. Ghemawat, H. Gobioff, S.T. Leung. “The Google file system,” 19th

ACM SOSP, 2003

[19]A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley. “Hadoop: A

Framework for Running Applications on Large Clusters Built of

Commodity Hardware”, 2005

[20] NoVoHT GitHub Source, https://github.com/kev40293/NoVoHT/, 2013

http://datasys.cs.iit.edu/projects/FusionFS/index.html
http://code.google.com/apis/protocolbuffers/
http://fallabs.com/kyotocabinet/
http://en.wikipedia.org/wiki/Blue_Gene
http://datasys.cs.iit.edu/projects/MATRIX/index.html
https://github.com/mierl/ZHT
http://fallabs.com/kyotocabinet/spex.html
http://fallabs.com/kyotocabinet/api/classkyotocabinet_1_1HashDB.html
http://fallabs.com/kyotocabinet/api/classkyotocabinet_1_1HashDB.html
http://www.aosabook.org/en/bdb.html
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/products/berkeleydb/overview/index.html
https://code.google.com/p/leveldb/
https://github.com/kev40293/NoVoHT/

