
NoVoHT: a Lightweight Dynamic Persistent NoSQL Key/Value Store 
 

Kevin Brandstatter1, Tonglin Li1, Xiaobing Zhou1, Ioan Raicu1,2 
kbrandst@iit.edu, tli13@iit.edu, xzhou40@hawk.iit.edu, iraicu@cs.iit.edu  

1Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA 
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA 

 
Abstract—With the increased scale of systems in use and the need 

to quickly store and retrieve information, key/value stores are 

becoming an important element in the design of large-scale 

storage systems. Key/value stores are well known for their 

simplistic interfaces, persistent nature, and excellent operational 

efficiency – they are also known as NoSQL databases. This paper 

presents the design and implementation of a non-volatile hash 

table (NoVoHT). NoVoHT was designed from the ground up to 

be lightweight, fast, and dependency-free. Our goal was to create 

a fast persistent key/value store that could be easily integrated 

and operated in lightweight Linux OS typically found on today’s 

supercomputers. We also aimed to develop a system that 

performed as close as possible to an in-memory hash map, but 

with the added benefit of being persistent. We also extended the 

traditional key/value store interface (e.g. insert, lookup, remove) 

to include a novel operation (e.g. append) that has allowed 

NoVoHT to efficiently support lock-free concurrent write 

operations. NoVoHT is also dynamic, supporting live migration 

across node boundaries. We have run comparisons at significant 

scales against some of the more commonly used key value stores 

and have shown that NoVoHT can perform similarly or better 

than other systems such as Kyoto Cabinet, and BerkeleyDB. We 

observed up to 165K+ operations per second, up to 32X better 

performance than competing systems. We have evaluated 

NoVoHT with solid state disks (SSD) and have deployed NoVoHT 

as the persistent back-end of a distributed hash table (ZHT) on 

an IBM BlueGene/P supercomputer at up to 32K-cores.     

I. INTRODUCTION  

In the current decades-old architecture of HPC systems, 

storage is completely segregated from the compute resources 

and are connected via a network interconnect (e.g. parallel file 

systems running on network attached storage, such as GPFS 

[15], PVFS [16], and Lustre [17]). This approach is not able to 

scale several orders of magnitude in terms of concurrency and 

throughput, and will thus prevent the move from petascale to 

exascale. If we do not solve the storage problem with new 

storage architectures, it could be a “show-stopper” in building 

exascale systems. The need for building efficient and scalable 

distributed storage for high-end computing systems that will 

scale three to four orders of magnitude is on the horizon. 

One of the major bottlenecks in current state-of-the-art 

storage systems is metadata management. Metadata operations 

on parallel file systems (e.g. GPFS [15]) can be inefficient at 

large scale. Experiments on the BlueGene/P system at 16K-

core scales showed basic metadata operations (e.g. create file) 

growing from tens of milliseconds on a single node (four-

cores), to tens of seconds at 16K-core scales; at full machine 

scale of 160K-cores, we expect a file create to take over two 

minutes for the many directory case, and over 10 minutes for 

the single directory case. The conclusion is that the distributed 

metadata management in GPFS does not have enough degree 

of distribution, and not enough emphasis was placed on 

avoiding lock contention. GPFS’s metadata performance 

degrades rapidly under concurrent operations, reaching 

saturation at only 4~32 core scales (on a 160K-core machine).  

Other distributed file systems (e.g. Google's GFS [18] and 

Yahoo's HDFS [19]) have centralized metadata management, 

making the problems observed with GPFS even worse from 

the scalability perspective. We believe future storage systems 

for high-end computing should support distributed metadata 

management, in order to support close to constant time 

inserts/lookups/removes.  

In previous work, we developed a zero-hop distributed 

hash table (ZHT) [9], which has been tuned for the specific 

requirements of high-end computing. ZHT aims to be a 

building block for future distributed file systems, with the goal 

of delivering excellent availability, fault tolerance, high 

throughput, scalability, persistence, and low latencies. ZHT 

has three important characteristics that are relevant to this 

paper, a customizable consistent hashing function, it 

supports persistence for better recoverability in case of 

faults, and supports unconventional operations such as 

append (providing lock-free concurrent key/value 

modifications) in addition to insert/lookup/remove.  

We achieved these features in ZHT through the design and 

implementation of NoVoHT, the single node persistent 

NoSQL Key/Value store. NoVoHT was designed from the 

ground up to be lightweight, fast, and dependency-free. Our 

goal was to create a fast persistent key/value store that could 

be easily integrated and operated in lightweight Linux OS 

typically found on today’s supercomputers. We also aimed to 

develop a system that performed similar to an in-memory hash 

map, but with the benefit of being persistent. Furthermore, we 

extended the traditional key/value store interface (e.g. insert, 

lookup, remove) to include a novel operation (e.g. append) 

that has allowed NoVoHT to efficiently support lock-free 

concurrent write operations. Finally, we have made NoVoHT 

dynamic supporting live migration across node boundaries, 

allowing the ZHT system to significantly simplify the needed 

logic for dynamic membership.  

We have run comparisons at significant scales against 

some of the more commonly used key value stores and have 

shown that NoVoHT can perform similarly or better than other 

systems such as Kyoto Cabinet and BerkeleyDB. We observed 

up to a 32X performance improvement compared to Kyoto 

Cabinet at large scale, and on average a 4X performance 

improvement over both Kyoto Cabinet and BerkeleyDB on a 

variety of scales. We have evaluated NoVoHT with solid state 

disks (SSD) and have deployed NoVoHT as the persistent 

back-end of a distributed hash table (ZHT) on an IBM 
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BlueGene/P supercomputer at up to 32K-cores. We compared 

NoVoHT with other key/value stores and found it offers 

superior performance, features, and portability. 

The contributions of this paper revolve around the design 

and implementation of NoVoHT, a Lightweight Dynamic 

Persistent NoSQL Key/Value Store. It’s novel features are: 

 Lock-Free: Support for unconventional operation such 

as append, allowing the efficiently support of lock-free 

concurrent modification operations 

 Dynamic: Support live migration across physical nodes 

 Lightweight: Micro-benchmarks delivering over 

165K+ operations/second on single-node deployment 

 up to 32X faster than existing systems 

 Persistent: Combines memory mapped and disk 

mapped approaches to deliver both fast data access 

and high data resilience at the same time 

 Real-System: Adopted by ZHT and deployed on IBM 

BlueGene/P supercomputer at 32K-core scales   

II. NOVOHT DESIGN AND IMPLEMENTATION 

NoVoHT is a persistent in memory hash map designed to 
be fast and lightweight for running on large systems. It was 
developed to support the ZHT distributed hash table in a 
variety of features. The application programming interface 
(API) of NoVoHT is kept simple and follows similar 
interfaces for hash tables. The four operations NoVoHT 
supports are 1. bool insert(key, value); 2. value lookup(key); 
3. bool remove(key), and 4. bool append(key, value). 

NoVoHT is built from scratch and features few 
dependencies outside of the standard libraries. This makes it 
easily portable and usable on large supercomputers which 
often have restricted Linux environments not supporting a 
large number of libraries and complex dependencies. It 
features an efficient garbage collection mechanism to keep the 
disk space utilized to a minimum. It is a basic building block 
towards ZHT project, as well as the FusionFS filesystem [9]. 

A. Design Goals 

Our goals for the design of NoVoHT were to make a very 
lightweight key value store. For avoiding reliance on outside 
dependencies and to maximize support on larger systems with 
limited storage and libraries, we started with the basic building 
blocks from scratch. 

Secondly, we aimed to increase speed by holding the entire 
table in memory so there wouldn’t be noticeable performance 
degradation with large data sets. To do this, we relied on the 
traditional style of a hash map and worked to make the 
persistence layer as simple as possible. We aimed for 
simplicity to reduce the overhead of the persistence, thus 
keeping operation latency low. 

Finally, we set out to solve the issue of garbage collection 
to reclaim unused disk space. As a persistent storage system, 
we expect the life of the data to be quite long, and varied in 
amount over time. This variance would bloat normal NoSQL 
systems as their database needs to expand to encapsulate the 
data. However, should this data be reduced significantly, the 
disk space is never reclaimed and continues to take up space 
on the system. The way these systems usually handle 

shrinking the storage, is to create a new instance and reinsert 
the data. For many systems this is a poor option. NoVoHT 
fixes this by implementing a system to transparently rebuild 
the persistent storage. This way, disk utilization can remain 
constrained to the size of the data. We have made this tunable.  

B. Core Hash Table 

NoVoHT is simply a custom built light-weight hash table 

at the core, with added features built on top. The general 

design of the map structure is an array of linked lists. This 

structure makes collision handling more efficient. Rather than 

searching for an open bucket, it simply adds it to the list 

structure. Also, this helps lookup time, because it eliminates 

the worst case of iterating the entire array in the case of it 

being very full. Finally, this gives the application the ability to 

overfill the map, with more keys than buckets. While this 

would impact time of insert and remove, it keeps the space 

used for the array lower. It also allows the key/value store to 

allow lock-free read operations. 

C. Resizability 

In order for NoVoHT to scale to meet its dynamic 

demands, the ability to expand its storage size is necessary. 

Without resizing, over time inserts and removes would be 

progressively slower as the number of collisions would 

continue to increase. To resolve this, the constructor offers 

parameterization of a value that corresponds to a percentage of 

the size of the storage array. When the number of elements in 

the map is equal to the size of the map times the percentage, 

the map calls the re-size routine. The re-size routine creates a 

new array of twice the size of the old one, then places the 

address of each pair into the corresponding bucket of the new 

array. Then it sets the new array as the maps array and frees 

the old one. Since the base array simply holds the sentinel 

head of each buckets linked list, this operation is 

approximately as fast as rehashing each key, and adding the 

address of the pair to the appropriate list. Of course, if the 

number of elements to be inserted is known, the user could 

turn off resizing to ensure this overhead isn’t incurred. 

D. Persistence 

NoVoHT’s major feature is its ability to save its state to a 

POSIX file system, and allow it to recover its state in case of 

an application crash. NoVoHT employs a log-based approach 

to achieve persistence. When a key/value pair is inserted, it 

writes the key-value pair to the file specified, and records 

where it was written with the key-value pair in the map. By 

recording the location in the file, removal is extremely 

efficient. When an element is removed it removes the pair 

from the map, and marks the spot in the file. By marking the 

file, if the application crashes, that pair will not be inserted 

into the map when the file state is recovered.  

E. Garbage Collection 

Through the constant adding and removal of key-value 

pairs, the file grows and shrinks. In order to handle file 

shrinking, NoVoHT allows the parameterization of a 

threshold, which determines how many removes to do before 

the file is rewritten with the pairs in the map (effectively 



eliminating the pairs that were marked for removal from the 

file). NoVoHT also supports periodic garbage collection to 

reclaim free space at timed intervals.  

Garbage collection occurs by rewriting the entire state of 

NoVoHT. We chose this method because it allowed us to 

simplify the file format to optimize inserts as one does not 

have to keep track of available space or search for a fit -- 

insertions are then as simple as a write append. As a tradeoff, 

the garbage collection requires a rewrite to clean out the 

deleted records.  

Normally the garbage collection would require a global 

lock of the map to prevent changes to the map during the 

rewrite. We designed a way to handle the majority of the file 

rewrite without locking access to the table. First, we spawn a 

background helper thread to manage the actual writing of the 

file so that it doesn’t stall the application waiting for 

completion. This is especially important for large maps where 

the rewrite time can be potentially many seconds to minutes. 

During this time, the hash table writes its activity to a merge 

file by recording the pairs added, and the keys it deleted. Then, 

when the write is complete, the map locks insert and remove 

operations and performs the merge operation by implementing 

the changes from the merge file ensuring consistency with 

memory. The get operation needs not be locked because it 

does not rely on access to the file since it gets the data from 

memory. We chose this merge approach because we are under 

the assumption that under our use case in a distributed file 

system, inserts and removes will be less frequent while gets 

are common and need to be always accessible. Also, we could 

have tried to implement a queuing system for operations 

during the merge phase, however we decided that a more 

transactional operation model was appropriate and would like 

to only return when the record is persisted. 

F. Append Function 

Since NoVoHT was designed with the initial intent for file 

system metadata storage, we found it necessary to add a 

nonstandard fourth operation, append. This may seem to be a 

trivial addition; however it was complicated by the persistence 

layer. In memory it is as simple as appending the new value to 

the old value. For the persistence layer to do this it would 

require us to remove the old record and write the entire key 

and combined value at the end. This yielded degraded 

performance as subsequent appends would take progressively 

longer.  

We achieved a constant time operation by fragmenting the 

appended segments on disk. Thus, when a value is appended, 

the appended value and the key are entered as a new record. 

This location is also recorded by NoVoHT for removal 

purposes. Also, these fragments will be merged on the next 

garbage collection when the entire pair will be rewritten as a 

single record.  

G. Implementation 

 NoVoHT has been under development for 1.5 years, and 

it is an open source project accessible at [20]. It is 

implemented in C++, and has very few dependencies. 

Currently, NoVoHT only relies on a standard C++ compiler 

such as the one provided by the GNU Compiler Collection, the 

C++ standard libraries, and posix thread support. These very 

basic requirements assure that NoVoHT is very light and can 

be easily deployed in almost any Linux friendly environment. 

NoVoHT also is tested to work well with strings generated by 

the Google Protocol Buffers [3] (on the BG/P) to support the 

storage and retrieval of complex objects, but the Google 

Protocol Buffer is not necessary if key/value pairs are 

constrained to string types.  

III. PERFORMANCE EVALUATION 

All NoVoHT experiments were performed on Fusion.  

 Fusion: a 48-core x64 server: quad AMD Opteron 12-

core processors, 256GB RAM. This machine was used 

to compare NoVoHT, BerkeleyDB and KyotoCabinet. 

A. Hashing Functions 

In this section we discuss the hash functions that can be 

used to map keys to nodes. We investigate some of the usual 

hash functions for figuring out the performance and load 

balancing abilities. As shown in Figure 1 that some hash 

functions are faster than others, but a more important concern 

rather than performance is the evenness (see Figure 2).  

 

Figure 1: Time per hash for a variety of hashing functions 

An ideal hash function should be able to spread keys 

evenly. Additionally it should not increment the time too 

rapidly as the length of key increased. We need the hash 

function to be even to provide a natural load balancing 

mechanism. But obviously sometimes we can’t obtain both 

performance and evenness, as can be seen by the SuperFast 

hash unevenness (see Figure 2). We adopted the FNVHash 

hash function in NoVoHT. As observed in the charts below, 

FNVHash offers a good performance while providing 

evenness as well. We measure 1 million keys distribution over 

1000 buckets, then find that the standard deviation is only 138 

keys (or 1. 38%). This is on par with most of the other hash 

functions’ standard deviation (see Figure 2). 

 

Figure 2: Load balancing across different hashing functions 
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B. NoVoHT Persistence 

We compared NoVoHT with persistence to KyotoCabinet 

and BerkeleyDB with identical workloads up to 100 million 

inserts, gets, and removes, with fixed length key value pairs. 

The results (see Figure 3) show NoVoHT scales near perfect in 

terms of time per operation; experiments not shown in this 

figure also show that memory overheads follow the same near 

perfect trends. It is interesting to note that persistency of 

writing key/value pairs to disk only adds about 3us of latency 

on top of the in-memory implementation. 

 

Figure 3: Comparison between NoVoHT, KyotoCabinet, and 

BerkeleyDB 

When comparing NoVoHT with KyotoCabinet or 

BerkeleyDB, we see much better scalability properties, as they 

both show a significant increase in the cost per operation as 

the size increases from 1M to 100M key/value pairs. Also, it’s 

worth pointing out that although BerkeleyDB has some 

advantages such as memory usage, it clearly does this at a big 

performance cost. When comparing NoVoHT persistence to 

non-persistence (see Figure 4, we noticed that most of the 

overhead of the operations is held in the disk I/O portion.  

 

Figure 4: NoVoHT persistence vs. non persistent 

Figure 5 shows the performance of NoVoHT with 
persistence disabled, and compared to unordered_map. It’s 
interesting that NoVoHT was able to outperform the C++ 
native unordered_map by over 20%. 

 
Figure 5: NoVoHT non persistant vs. unordered_map 

C. NoVoHT Append 

Since most hash tables do not implement and append 

function, we could not compare our implementation to others. 

However, we did run several tests to verify that the append 

function would scale properly and was a constant time 

operation as intended. To do this we first implemented a naïve 

implementation that rewrote the new record and removed the 

old. As expected, this did not scale very well but it provided us 

with a baseline measurement to judge our optimized version. 

The results as shown in Figure 6 show that our optimized 

append operation scales very well and has latency comparable 

to the other hash table functions.  

 
Figure 6 Append method latency comparisons 

Comparing the range of operations on each hash table we 

can confirm that NoVoHT is able to exceed or match its 

competitors. Thus we have achieved the goal of providing a 

lightweight replacement without a performance degradation. 

Also, we can see that this performance is more scalable than 

the previous use of Kyoto Cabinet. For future tests we would 

like to try more varied workloads to avoid discrepancies due to 

specific optimization advancements. 

IV. APPLICATIONS  

This section presents a real systems that has adopted 

NoVoHT as a building block to build a large-scale distributed 

systems. ZHT [9] is a zero-hop distributed hash table, which 

uses NoVoHT as backend. ZHT aims to be a building block 

for future distributed systems, such as parallel and distributed 

file systems, distributed job management systems, and parallel 

programming systems. The goals of ZHT are delivering high 

availability, good fault tolerance, high throughput, and low 

latencies, at extreme scales of millions of nodes. Using micro-

benchmarks, we scaled ZHT up to 32K-cores with latencies of 

only 1.1ms and 18M operations/sec throughput (see Figure 9).  

 
Figure 7: Performance evaluation of ZHT with different numbers of 

instances per node plotting throughput vs. scale (1 to 8K-nodes on BG/P) 

1

10

100

1000

100000 1000000 10000000 100000000

La
te

n
cy

 (
u

s)
 

 
Operations 

Kyoto Cabinet

BerkeleyDB

NoVoHT

0

5

10

15

100000 1000000 10000000 100000000

La
te

n
cy

 (
u

s)
 

Operations 

Persistence

Nonpersistent

0

0.5

1

1.5

2

100000 1000000 10000000 100000000

La
te

n
cy

 (
u

s)
 

Operations 

unordered_map
"NoVoHT (nonpersistent)"

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7

3

0 200000 400000 600000 800000 1000000

La
te

n
cy

 (
u

s)
 

Number operations 

Append Lists

Rewrite Record

0
2,000,000
4,000,000
6,000,000
8,000,000

10,000,000
12,000,000
14,000,000
16,000,000
18,000,000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

Th
ro

u
gh

p
u

t 
(o

p
s/

s)
 

Scale (# of Nodes) 

1 instances/node

2 instances/node

4 instances/node



V. RELATED WORK 

NoSQL Key/Value stores have been around for some time, 

some dating back to the early 1990s (e.g. BerkeleyDB [13]). 

Instead of listing dozens of key/value stores, we focus this 

section on several systems that are most similar, namely 

BerkelyDB [13], KyotoCabinet [4], and LevelDB [14].  

KyotoCabinet is a file based hash database that is 

optimized for speed. KyotoCabinet is a project by FAL Labs 

that provides various persistent database APIs and libraries [4].  

We particularly explored their HashDB, which implements a 

hash database backed with file persistence. HashDB works by 

allocating a file as a database and managing it as it would an 

in memory hash map with use of mmap to map portions of the 

file directly to memory[10]. This allows them to have capped 

memory usage that is independent of the database size. 

However, since all key/value pairs are mapped directly to a 

file, garbage collection (the reclaiming of unused space in 

files) is not trivial; our experience with HashDB was that 

garbage collection was non-functional. Furthermore, since 

HashDB is file-based, it has to map the file to memory in 

order to perform retrieval functions. This is a significantly 

slower system call. At small scales, it is not very noticeable as 

it doesn’t always have to remap the file, but as the database 

increases in size, the odds of successive queries being in the 

same region becomes very small, and the file must be 

constantly remapped. The constant remapping causes 

KyotoCabinet to scale significantly worse than NoVoHT.   

BerkeleyDB is also a file based database that can either be 

managed as a hash database or a binary tree database. It is 

often very popular for storing file system metadata and as such 

was a good second model of performance we aimed to 

surpass. BerkeleyDB [13] is a persistent NoSQL database 

maintained by Oracle. It was designed to be very robust and 

able to recover from most failures using features such as write 

ahead logging to ensure data consistency [12]. It has four main 

methods of access, B-tree, Hash, recno, and queue, though we 

are mainly concerned with the B-tree and hash methods. While 

B-tree provides faster access due to locality of reference, for 

large data sets the index does not fit in memory and thus data 

access is not optimal [12]. BerkeleyDB, like KyotoCabinet, 

uses a memory buffer to store pages of the file in memory. 

This renders it vulnerable to the same scaling issues. The 

strong point of BerkeleyDB is its recovery functions and 

emphasis on fault tolerance for data integrity. However, this 

makes it slower and heavier than other option. 

LevelDB [14] is a lightweight key value storage system 

written at Google. It features sorted data and data 

compression.  

None of these other systems support the wide range of 

unique features of NoVoHT, such as support for 

unconventional operation (e.g. append) allowing the 

efficiently support of lock-free concurrent modification 

operations, support for live migration across physical nodes, 

support for both memory mapped and disk mapped approaches 

to deliver both fast data access and high data resilience at the 

same time, up to 32X better performance than existing 

systems.    

VI. CONCLUSIONS 

. This paper presented the design and implementation of a 

non-volatile hash table (NoVoHT). NoVoHT was designed 

from the ground up to be lightweight, fast, and dependency-

free. Our goal was to create a fast persistent key/value store 

that could be easily integrated and operated in lightweight 

Linux OS typically found on today’s supercomputers. We also 

aimed to develop a system that performed as close as possible 

to an in-memory hash map, but with the added benefit of being 

persistent. We also extended the traditional key/value store 

interface (e.g. insert, lookup, remove) to include a novel 

operation (e.g. append) that has allowed NoVoHT to efficiently 

support lock-free concurrent write operations. NoVoHT is also 

dynamic, supporting live migration across node boundaries. 

We have run comparisons at significant scales against some of 

the more commonly used key value stores and have shown that 

NoVoHT can perform similarly or better than other systems 

such as Kyoto Cabinet, and BerkeleyDB. We observed up to 

165K+ operations per second, up to 32X better performance 

than competing systems. We have evaluated NoVoHT with 

solid state disks (SSD) and have deployed NoVoHT as the 

persistent back-end of a distributed hash table (ZHT) on an 

IBM BlueGene/P supercomputer at up to 32K-cores.    
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