
Understanding the Costs of Many-Task Computing
Workloads on Intel Xeon Phi Coprocessors

Jeffrey Johnson∗, Scott J. Krieder∗, Benjamin Grimmer∗

Justin M. Wozniak†, Michael Wilde†‡, Ioan Raicu∗†
∗Department of Computer Science, Illinois Institute of Technology

†MCS Division, Argonne National Laboratory
‡Computation Institute, University of Chicago

Abstract—Many-Task Computing (MTC) aims to bridge the
gap between HPC and HTC. MTC emphasizes running many
computational tasks over a short period of time, where tasks can
be either dependent or independent of one another. MTC has
been well supported on Clouds, Grids, and Supercomputers on
traditional computing architectures, but the abundance of hybrid
large-scale systems using accelerators has motivated us to explore
the support of MTC on the new Intel Xeon Phi accelerators. The
Xeon Phi is a PCI-Express based expansion card comprised of
60 cores supporting 240 hardware threads to produce up to 1
teraflop of double- precision performance in a single accelerator.
These cards are already being integrated into super-computing
clusters such as Stampede, which hosts over 6,400 Xeon Phi
Accelerators totaling in over 7 petaflops of double- precision
performance. This work provides an in depth understanding of
MTC on the Intel Xeon Phi and presents our preliminary results
of running several different workloads on pre-production Intel
Xeon Phi hardware. By utilizing Intel’s provided SCIF protocol
for communicating across the PCI-Express bus we have achieved
over 90% efficiency near or outperforming OpenMP offloading
tasks over 300 uS with our batch framework. This performance
opens the opportunity for the development of a framework
for executing heterogeneous tasks on the Xeon Phi alongside
other potential accelerators including graphics cards for MTC
applications. Our framework will provide fine granularity for
executing MTC applications across large scale compute clusters.
It will be integrated with our existing graphics card framework,
GeMTC, to provide transparent access to GPUs, Xeon Phis, and
future generations of accelerators to help bridge the gap into
Exascale computing
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I. INTRODUCTION

In this work we provide preliminary results evaluating MTC
workloads running on Intel Xeon Phi Coprocessors. The Intel
Xeon Phi Coprocessor is physically similar to other hardware
accelerators such as GPGPUs but contains many significant
underlying differences.

The High Performance Computing (HPC) community is
seeing a large adaptation of general-purpose accelerator cards.
In the past years, graphics cards have become a significant part
of newly built computing clusters providing unprecedented
parallelism with a low power footprint. Accelerators often
require the use of reworking a program in order to use or
fully utilize the device and as a result increase development
time.

The pre-production Xeon Phi is a 61-core accelerator featur-
ing 8 GB of GDDR5 connected to the host via a PCI Express
bus. The Phi runs an instance of the Linux operating system,
which occupies a single core of the accelerator to provide
the developer with a familiar programming interface. As of
the pre- production Xeon Phi, it is possible to use OpenMP,
POSIX threads, OpenCL, Intel Math Kernel Library, MPI, or
other popular libraries to develop and offload applications to
the accelerator. Intel also provides a socket protocol, SCIF, to
aid in data transfer between the host and the Phi to transfer data
across the PCI Express bus. Intel also provides the application
micnativeloadex to launch an application compiled for the Phi
on the accelerator. This application ensures the correct libraries
and program code are copied and executed on the accelerator.

II. ARCHITECTURE

In order to provide a seamless and easy to use interface,
our framework sets out to provides identical functionality to
GeMTC. [1] GeMTC has three types off operations: Push/Poll
for sending and receiving jobs, Malloc/Free for preparing
device memory, and a memory copy operation to copy data
to or from the accelerator. [2] By providing this interface we
can easily tie in with Swift/T [3] to open up our solution to
multi-node configurations.

A. SCIF Implementation

Our SCIF framework employs a client server architecture,
which communicates via the Symmetric Communications In-
terface (SCIF). This interface abstracts communication across
the PCI- Express bus to a UNIX socket semantics. The
server application uses a single process launched on the Intel
Xeon Phi, which then launches a single processing thread
per hardware core to handle incoming work from the host.
The client starts from a single process and launches no more
threads than the server. Each server thread listens via SCIF
on a discrete port, which is used to accept and return work to
the client. Each client thread produces a batch of work to the
accelerator, which can contain a heterogeneous list of tasks
with varying lengths and data payload sizes. The client blocks
until the entire batch is completed. This architecture allows
the overhead of launching threads as well as offloading the
code to be executed to be ignored and performance becomes
only dependent on data transfer rate and processing rate of the



processor. This framework does not provide the feature set of
GeMTC due to the complexity of data transfer between the
device and host over SCIF. Each party in the communication
is forced to manually parse out received streams of data which
is a highly error prone operation when dealing with complex
lists of tasks.

III. PRELIMINARY RESULTS

In this section we present preliminary results for running
several synthetic benchmarks on pre-production Intel Xeon Phi
hardware.

A. Synthetic Sleep Workloads

To compare the overhead of our architecture with OpenMP
three sleep programs are analyzed. The first uses our SCIF
framework to launch a batch of sleep jobs to the Xeon Phi
and block until completion then separately tests launching
individual jobs to the device and waiting for the result before
pushing the next job. The second uses OpenMP to offload a
single block, which calls a sleep job 128 times by repetitively
placing the function call in the block. This method was chosen
to more accurately mimic the loop-unrolling style of our SCIF
framework. The final program uses OpenMP to offload a single
sleep task and is repeatedly called. Figure 1demonstrates the
results of comparing all four different configurations in varying
sleep lengths. By testing varying lengths of sleeps, we find
that jobs over 320 uS benefit from the SCIF framework when
sent in this length of a batch. At this point the performance
is slightly above OpenMP but can enjoy the potential benefits
of the framework.

IV. RELATED WORK

The Xeon Phi is a very new technology and research is just
beginning to show the usefulness of the technology. IRWTH
Aachen University and Intel have collaborated on a paper
outlining the initial performance of the preproduction Xeon
Phi demonstrating the power of its dense processing using
OpenMP related to a traditional 128-core system. It was shown
that a single Phi had a lower overall performance but the power
per core and power efficiency significantly outweighs the latter
solution towards many-core. Intel also advocates the offloading
capabilities of its compiler and OpenMP with use of the Phi
showing that many OpenMP programs can be launched on the
Phi without code change.

V. CONCLUSIONS AND FUTURE WORK

It has been demonstrated that is it possible to achieve
minimum overhead with the Xeon Phi by directly commu-
nicating between the host and accelerator via SCIF across
the PCI Express bus. Using our proposed framework, it will
be possible to share the resources of a Xeon Phi across
multiple processes and users in a large scale computing
environment while maintaining high performance through the
use of specialized microkernels. Enabling the Xeon Phi to run
heterogeneous workloads can enable the device to be used in
a Many-Task Computing [4] environment where resources are

shared between users and latency is important. The findings
of this paper shows no significant performance tradeoff to the
framework opening the way for a promising use of the Xeon
Phi in new environments. In addition we plan to evaluate ad-
ditional scientific applications including Molecular Dynamics
applications, Protein Simulators [5] and many more. Future
work will also enable the Swift Parallel Scripting Language
to make use of Xeon Phi hardware accelerators. [6]

Fig. 1. Efficiency of Offloading 128 Tasks to Xeon Phi Comparison between
OpenMP and SCIF with individual offloads and batch offloads.
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