
MATRIX: MAny-Task computing execution fabRIc at eXascale

Anupam Rajendran
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

arajend5@hawk.iit.edu

Ke Wang
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

kwang22@hawk.iit.edu

Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

iraicu@cs.iit.edu

ABSTRACT

Efficiently scheduling large number of jobs over large-scale

distributed systems is critical in achieving high system utilization

and throughput. Most of current job management systems (JMS)

have centralized Master/Slaves architecture that has inherent

limitations, such as scalability issues at extreme scales (e.g.

petascales and beyond), and single point of failure. In designing

the next generation distributed JMS, we must address new

challenges such as load balancing. This paper presents MATRIX,

a many-task computing execution fabric at exascale. MATRIX

utilizes adaptive work stealing algorithm for distributed load

balancing, and distributed hash tables for managing task metadata.

MATRIX supports many-task computing (MTC) workloads with

or without task dependencies in the execution of complex large-

scale workflows. MATRIX has shown throughput as high as

54.4K tasks/sec at 4K-core scales running on an IBM Blue

Gene/P supercomputer with sub-second sleep tasks (64ms).

Keywords

job scheduling, many-task computing, load balance

1. INTRODUCTION
With the dramatically increase of the scales of distributed systems

and the finer granularity of jobs in both size and duration, it is

urgent to develop distributed job schedulers that can deliver jobs

several magnitudes faster than current centralized ones (e.g. Slurm

[1], Condor [2]), where a server is managing the resource

provisioning and job execution. However, with distributed

architecture, issues can arise in balancing loads across all servers.

Load balancing refers to distribute workloads evenly across nodes

of a supercomputer, so that no one is overloaded. We believe that

distributed load balancing techniques are potential approaches to

extreme scale. This work adopts work stealing [3] to achieve

distributed load balancing, where the idle processors steal tasks

from the heavily-loaded ones. We explore the performance of

work stealing in the MATRIX task execution framework.

This work is motivated by the Many-Task Computing (MTC) [4]

paradigm which tries to bridges the gap between High

Performance Computing (HPC) and High Throughput Computing

(HTC). Many MTC applications are structured as graphs of

discrete tasks, with explicit input and output dependencies

forming the graph edges. MTC applications often demand a short

time to solution, may be communication intensive or data

intensive [5]. For many applications, a graph of distinct tasks is a

natural way to conceptualize the computation. Examples of MTC

systems are various workflow systems, such as Swift [6],

MapReduce systems, such as MapReduce [7], distributed run-

time systems such as Charm++ [8], and light-weight task

execution frameworks , such as Falkon [9], Sparrow [10]).

2. RELATED WORK
The earliest batch job schedulers are Condor [2], Slurm [1]. All

these systems target as the HPC or HTC applications, and lack the

granularity of scheduling jobs at node/core level, making them

hard to be applied to the MTC applications. What’s more, the

centralized dispatcher in these systems suffers scalability and

reliability issues. Falkon [9] is a light-weight task execution

framework with both centralized and hierarchical architectures for

MTC workload, and although it scaled and performed several

orders magnitude better than the traditional batch schedulers, it

even cannot scale to petascale systems [11]. Sparrow [10] is

another hierarchical task execution framework targeting at sub-

second tasks. However the Java-based framework is very hard to

be deployed on supercomputers.

3. MATRIX
MATRIX is a distributed MTC execution framework that

implements work stealing technique. MATRIX uses ZHT [12], a

distributed zero hop key-value store, to manage job metadata, to

submit tasks, and to monitor the task execution progress. We have

a functional prototype implemented in C/C++, and have scaled it

on a BG/P machine up to 4K-cores with good results.

3.1 MATRIX Architecture
The components of MATRIX and the communication signals

among them are shown in Figure 1. The client is a benchmarking

tool that issues request to generate a set of tasks to be executed.

The client has a task dispatcher that helps submit workload to the

compute nodes. A compute node can also be referred as worker

node that has a task execution unit along with a ZHT server for

managing the metadata of every task. MATRIX supports single-

core, single-node and multi-node tasks. It also supports task

dependency, which means the orders of execution among a

workload’s tasks can be specified as a part of task description and

MATRIX would guarantee the execution order. The workload

would be represented as a Directed Acyclic Graph (DAG) where

each vertex is a task and the edges specify the dependency. Upon

request from the client, with the help of ZHT, the task dispatcher

initializes the workload of given type and submits tasks to one

arbitrary node, or to all the nodes in a balanced distribution. All

compute nodes execute tasks, and distribute the workload among

them adaptively to achieve load balancing via the work stealing

algorithm (parameter space has been explored through SimMatrix

simulator [13]). The client periodically monitors the status of

workload until all the tasks are executed.

Client

Compute node
Compute node

Compute node

submit tasks (1)

lookup task status (2)

send task status (3)

request load (4)

request load (4)

se
nd

 lo
ad

 (
5)

send load (5)

request tasks (6)

send tasks (7)

Figure 1: MATRIX components and communication signals

The worker node maintains three queues: wait queue, ready queue

and complete queue, in the execution unit. The wait queue holds

the incoming tasks that have dependency conditions to be

satisfied. Once satisfied, the tasks are moved to the ready queue

being executed in FIFO way. After a task is executed, it would be

moved to the complete queue. Also, the execution unit is sending

dependency satisfaction messages to ZHT server to notify all

children tasks.

Figure 2: Running MATRIX for fine granular tasks

4. Performance Evaluation
We evaluate the performance of MATRIX with 4 different

workloads (sleep tasks) on a BG/P machine up to 1K nodes (4K

cores). The workloads are: Bag of Tasks (no dependency), Fan-

Out DAG (tree-shaped dependency), Fan-In DAG (reverse tree-

based dependency), and Pipeline DAG (multiple pipelines). The

metrics are system efficiency (system utilization) and coefficient

variance of number of tasks executed by each compute node. We

show the evaluation of MATRIX with Bag of Tasks workloads.

In Figure 2, each node has 4 cores, and the number of tasks is

1000 times of the number of cores.We see that for very fine

granular sub-second tasks, MATRIX acutally performs very well

with 80%+ efficiency even at 1K-node scale. At 1K-node scale,

for 64ms tasks, MATRIX achieves 85% efficency, meaning

throughput of 54.4K tasks/sec (1024 * 1000 * 4 / 64 * 0.85). This

throughput is several orders of magnitude larger than today’s

batch schedulers.

5. Conclusion and Future Work
Large scale distributed systems require efficient job scheduling

system to achieve high throughput and system utilization for small

and shorter jobs. Distributed load balancing is critical for

designing job schedulers. Work stealing is a potential technique to

achieve distributed load balancing across many concurrent threads

of execution. The work stealing algorithm was implemented in a

MATRIX, and a preliminary evaluation up to 4K-core scales was

performed for different types of workloads with great results.

We will continue to develop the MATRIX system, and plan to test

it on the newly built IBM Blue Gene/Q supercomputer at a full

768K-core (3M hardware threads) scale. MATRIX will also be

integrated with other projects, such as MapReduce and FusionFS

file system to support data-aware scheduling, and large scale

programming runtime systems, such as Charm++ [8] to explore

different load balancing techniques.

6. REFERENCES
[1] M. A. Jette et. al, Slurm: Simple linux utility for resource

management. Proceedings of Job Scheduling Strategies for Prarallel

Procesing (JSSPP) 2003 (2002), Springer-Verlag, pp. 44-60.

[2] J. Frey et. al. “Condor-G: A Computation Management Agent for

Multi-Institutional Grids,” Cluster Computing, 2002.

[3] R. D. Blumofe et. al. “Scheduling multithreaded computations by

work stealing,” In Proc. 35th FOCS, pages 356–368, Nov. 1994.

[4] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and

Supercomputers,” 1st IEEE Workshop on Many-Task Computing on

Grids and Supercomputers (MTAGS) 2008.

[5] I. Raicu et. al. “Towards Data Intensive Many-Task Computing”,

book chapter in Data Intensive Distributed Computing: Challenges

and Solutions for Large-Scale Information Management, IGI Global

Publishers, 2011.

[6] Y. Zhao et. al. “Swift: Fast, Reliable, Loosely Coupled Parallel

Computation,” IEEE Workshop on Scientific Workflows 2007.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” Comm. ACM, Jan. 2008, pp. 107-113.

[8] G. Zhang, et. al, “Hierarchical Load Balancing for Charm++

Applications on Large Supercomputers,” In Proceedings of the 2010

39th International Conference on Parallel Processing Workshops,

ICPPW 10, pages 436-444, Washington, DC, USA, 2010.

[9] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON

Framework,” IEEE/ACM SC 2007.

[10] K. Ousterhout et. al. “Batch Sampling: Low Overhead Scheduling

for Sub-Second Prallel Jobs.” University of California, Berkeley,

2012.

[11] I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale

Systems,” IEEE SC 2008.

[12] T. Li, et. al. “ZHT: A Light-weight Reliable Persistent Dynamic

Scalable Zero-hop Distributed Hash Table”, 27th IEEE International

Parallel & Distributed Processing Symposium (IPDPS), 2013.

[13] K. Wang, K. Brandstatter, I. Raicu. “SimMatrix: Simulator for

MAny-Task computing execution fabRIc at eXascales”, ACM HPC

2013.

