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ABSTRACT 

Most of HPC services are still designed around a centralized 

paradigm and hence are susceptible to scaling issues. P2P services 

have proved themselves at scale for wide-area internet workloads. 

Distributed key-value stores (KVS) are widely used as a building 

block for these services, but are not prevalent in HPC services. In 

this paper, we simulate KVS for various service architectures and 

examine the design trade-offs as applied to HPC workloads to 

support exascale systems. Via simulation, we demonstrate how 

failure, replication, and consistency models affect performance at 

scale. Finally, we emphasize the general use of KVS to HPC 

services by feeding real workloads to the simulator.   

1. Introduction 
Leadership-class systems have been managed using manual 

approaches under a single management domain. Many HPC 

services are designed around a centralized server hence suffer 

from scalability problems. Such concerns suggest a move toward 

scalable distributed system designs. The specific goal is to 

evaluate the different distributed key-value store (KVS) designs 

for exascale system services, such as job launch, I/O forwarding, 

and monitoring. These services all need to operate on large 

volumes of data in a consistent, resilient and efficient manner at 

extreme scales. These requirements are consistent with those of 

large-scale distributed data centers, such as Amazon, Facebook 

and LinkedIn, in which, NoSQL data stores – Distributed Key-

Value Stores (KVS), in particular – have been used successfully. 

We assert that by taking the particular needs of HPC into account, 

we can use KVS for HPC services to help resolve many of our 

consistency, scalability and robustness concerns. We have used 

KVS to implement several real systems, such as a many task 

computing execution fabric, MATRIX [1][2][3] where KVS is 

used for task submission, dependency, and progress information; 

and the fusion distributed file system, FusionFS [4], where the 

KVS is used in tracking metadata. 

2. A Taxonomy for KVS 
We developed a four-dimensional taxonomy to classify and 

specify these requirements. By combing these four dimensions, 

we can define service architectures. The four components are: 

Data Model defines how a service distributes and manages its 

data, such as centralized and distributed manners with partitions;    

Network Model dictates the interconnection topology of a 

service’s components, such as structured and unstructured overlay; 

Recovery Model specifies how a service deals with component 

failures (fail-over, checkpoint-restart and roll-forward); 

Consistency Model pertains to how rapidly data modifications 

propagate across the servers. Depending on the data model, a 

service can implement strong or eventual consistency. 

Architectures from the taxonomy are depicted in Figure 1 and 

Figure 2. ctree is a service architecture with centralized data model 

and tree-based overlay network. dfc has distributed data model 

with fully-connected overlay network whereas dchord is distributed 

data model and has a Chord overlay network [5]. 

                       

(a)   csingle                               (b)   csingle with failover 

 

(c)   ctree 

 

3. Simulating Key-Value Stores 
We simulate KVS with major components identified by the 

taxonomy. Each simulation consists of millions of clients that 

connect to thousands of shared servers. The workload for the 

KVS simulation is a stream of PUTs and GETs. At this point, 

each client connects to a server and sends synchronous blocking 

requests as specified by a workload file. Servers are modeled by 

two queues: a communication queue for sending and receiving 

messages and a processing queue for handling incoming requests 

that can be satisfied locally. Requests not handled locally are 

forwarded to another server. The two queues are processed 

concurrently, and the requests within one queue are processed 

sequentially.

Figure 1: Centralized service architectures 



 

Figure 4: dfc and dchord with different workloads 

 

(a) dfc 

            

(b) dfc                                    (c)   dchord 

Figure 2: Distributed service architectures 

The cost parameters of KVS simulation design are shown in 

Figure 3. The time to resolve a query locally (tLR) and the time to 

resolve a remote query (tRR) is given by tLR = CS + SR + LP + SS 

+ CR. For dfc: tRR = tLR +2 (SS + SR); for dchord: tRR = tLR + 2k (SS 

+ SR), where k is the number of hops to find the predecessor. 

4. Performance Evaluation 
We evaluate our simulation with various workloads from real 

HPC services, such as monitoring, job launch, and I/O forwarding. 

Each client submits 10 requests, the number of replicas is 3, the 

failure/recover rate is 5 events/min, and we explore both strong 

consistency (sc) and eventual consistency (ec) models. The results 

for both dfc and dchord are shown in Figure 4. We see that for job 

launch and I/O forwarding workloads, eventual consistency 

performs worse than strong consistency. This is because these two 

workloads have almost uniform random distribution for both 

request type and the key. For the monitoring workload, eventual 

consistency outperforms strong consistency because all the 

requests are Put type. Another fact is that the efficiency of the 

monitoring workload is the lowest because the key space is not 

uniformly generated, which leads to poor load balancing.  

5. CONCLUSION AND FUTURE WORK 
The conclusions we draw are as follows: when the client requests 

dominate the communication, dfc actually scales very well under 

moderate failures (MTTF) with different replication and 

consistency models, while dchord scales moderately with less 

expensive overhead under failure events. Strong consistency is 

more suitable for running read-intensive applications, while 

eventual consistency is preferable for applications that require 

high availability and fast response times. Future work includes 

extending the simulator to cover more of the taxonomy. 

Additionally, we will use the simulator to model other system 

services and validate these at small scale, and then simulate at 

much larger scales. 
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Figure 3: Cost parameters of KVS simulation design 


