
Distributed Key-Value Store on HPC and Cloud Systems
Tonglin Li1, Xiaobing Zhou1, Kevin Brandstatter1, Ioan Raicu1,2

Department of Computer Science, Illinois Institute of Technology1
Mathematics and Computer Science Division, Argonne National Laboratory2

ABSTRACT
ZHT is a zero-hop distributed hash table, which has been tuned
for the requirements of high-end computing systems. ZHT aims to
be a building block for future distributed systems. The goals of
ZHT are delivering high availability, good fault tolerance, high
throughput, and low latencies, at extreme scales of millions of
nodes. ZHT has some important properties, such as being light-
weight, dynamically allowing nodes to join and leave, fault
tolerant through replications, persistent, scalable, and supporting
unconventional operations such as append. ZHT scaled up to
32K-cores with latencies of 1.1ms and 18M operations/sec
throughput on IBM Blue Gene/P supercomputer, and 96 nodes on
Amazon EC2 cloud with 800ns latency and 1.2M ops/s
throughput. In previous work we proved ZHT’s excellent
performance and scalability on supercomputers, and in this work
we show that it also works great on cloud environment from both
performance and cost perspective.

General Terms
Management, Measurement, Performance, Design, Reliability,
Experimentation.

Keywords
Distributed Key-Value store, Distributed Gash Table, High-End
Computing, Cloud Computing.

1. INTRODUCTION
This work presents a zero-hop distributed hash table (ZHT),

which has been tuned for the specific requirements of high-end
computing (e.g. trustworthy/reliable hardware, fast networks, non-
existent “churn”, low latencies, and scientific computing data-
access patterns). ZHT aims to be a building block for future
distributed systems, with the goal of delivering excellent
availability, fault tolerance, high throughput, scalability,
persistence, and low latencies. ZHT has several important features
making it a better candidate than other distributed hash tables and
key-value stores, such as being light-weight, dynamically allowing
nodes join and leave, fault tolerant through replication and by
handling failures gracefully and efficiently propagating events
throughout the system, a customizable consistent hashing
function, supporting persistence for better recoverability in case of
faults, scalable, and supporting unconventional operations such as
append (providing lock-free concurrent key/value modifications)
in addition to insert/lookup/remove. To provide ZHT a persistent
back end, we also created a fast persistent key-value store that
could be easily integrated and operated in lightweight Linux OS
typically found on today’s supercomputers.

We have evaluated ZHT's performance under a variety of
systems, ranging from a Linux cluster with 512-cores, to an IBM
Blue Gene/P supercomputer with 160K-cores. Using micro-
benchmarks, we scaled ZHT up to 32K-cores with latencies of
only 1.1ms and 18M operations/sec throughput. We compared
ZHT against two other systems, Cassandra and Memcached and

found it to offer superior performance for the features and
portability it supports, at large scales up to 16K-nodes. We also
conducted experiments on Amazon EC2 cloud to compare ZHT
against Amazon DynamoDB on up to 96-nodes scale, in both
performance and economical perspective.

2. Design and Implementation
The primary goal of ZHT is to get all the benefits of DHTs,
namely excellent availability and fault tolerance, but concurrently
achieve the benefits minimal latencies normally associated with
idle centralized indexes. The data-structure is kept as simple as
possible for ease of analysis and efficient implementation.
The application programming interface (API) of ZHT is kept
simple and follows similar interfaces for hash tables. The four
operations ZHT supports are 1. int insert(key, value); 2. value
lookup(key); 3. int remove(key), and 4. int append(key, value).
Keys are typically a variable length ASCII text string. Values can
be complex objects, with varying size, number of elements, and
types of elements. Integer return values return 0 for a successful
operation, or a non-zero return code that includes information
about the error that occurred.
In static membership, every node at bootstrap time has all
information about how to contact every other node in ZHT. In a
dynamic environment, nodes may join (for system performance
enhancement) and leave (node failure or scheduled maintenance)
any time, although in HEC systems this “churn” occurs much less
frequently than in traditional DHTs. ID Space and Membership
Table are put in a ring-shaped key name space. The node ids in
ZHT can be randomly distributed throughout the network, or they
can be closely correlated with the network distance between
nodes. The correlation can generally be computed from
information such as MPI rank or IP address. The random
distribution of the ID space has worked well up to 32K-cores, but
we will explore a network aware topology in future work.

ZHT
instance

ZHT
Manager

Update

Response
to request

NoVoHT

ZHT
instance

NoVoHT

Response
to request

Broadcast

Physical node

Membership
table

UUID(ZHT)
IP
Port
Capacity
workload

The hash function maps an arbitrarily long string to an index
value, which can then be used to efficiently retrieve the
communication address (e.g. host name, IP address, MPI-rank)
from a membership table (a local in-memory vector). Depending

on the level of information that is stored (e.g. IP - 4 bytes, name -
<100 bytes, socket - depends on buffer size), storing the entire
membership table should consume only a small (less than 1%)
portion of available memory of each node. On 1K-nodes scale,
one ZHT instance has a memory footprint of only 10MB (from an
available 2GB memory), achieving our desired sub 1% memory
footprint. The memory footprint consists of ZHT server binary in
memory, entries in hash table, membership table and ZHT server
side socket connection buffers. Among them, only membership
table and socket buffers will increase with the scale of nodes.
Entries in hash table will be flushed to disk finally. But
membership is very small, it takes 32 bytes per entry (for each
node), 1million nodes only need 32MB memory. By tuning the
number of KeyValue pairs that are allowed stay in memory, users
can achieve the balance between performance and memory
consumption.

3. Evaluation
3.1 Performance and running cost
We conduct micro benchmark on Amazon EC2 cloud as well to
compare against Amazon DynamoDB. The EC2 instance type we
used are m1.medium and cc2.8xlarge, the details are below.
Since the interference between m1.medium instances, ZHT shows
mild fluctuation in throughput. On 2cc.8xlarge instances, the
fluctuation closes to disappear and the throughput close to be
linear. Although DynamoDB seems to stay with a linear growth,
the absolute throughput is quite low. Comparing with ZHT,
DynamoDB was more than 20 times slower at all scales.
For different EC2 instance types, we tried with various numbers
of ZHT servers and clients on each instance so as to explore the
aggregated throughput. In our experiments, on larger instance
type such 2cc.8xlarge, running multiple ZHT server/client won’t
influence latency. Thus the aggregated throughput may have a
linear growth as long as there is still CPU and network bandwidth
resource. On 96 nodes scale with 2cc.8xlarge instance type, ZHT
offers 1215.0 K ops/s while DynamoDB failed the test since it
saturated the capacity. The measured maximum throughput of
DynamoDB is 11.5K ops/s which is found at 64 node scale. For a
fair comparison, both DynamoDB and ZHT have 8 clients per
node.

It’s worth noting that DynamoDB has a maximum throughput
which is provisioned (namely capacity) by the users. When the
throughput is beyond provisioned capacity, DyndmoDB will
saturate and give errors, requests start to fail.

When discussing cloud, the cost is always a big concern. We
calculated hourly cost for both ZHT and DynamoDB on different
scales. Since DynamoDB has a fixed cost, the average cost

reduces with the client increasing. On 2-node scale DynamoDB
cost 423 times more than ZHT; on largest scale that DynamoDB
can support, it still cost 9 times more than ZHT for a same
throughput. Note the cost for DynamoDB doesn’t include the EC2
instances for running clients, it will cost even more if include the
client cost.

3.2 Latency distribution
As expected, DynamoDB has much longer latency on all scales.
On 4-node (32 clients) scale it is 22 times slower than ZHT. In the
CDF comparison DynamoDB shows that its 90% latencies fall
into a 20x wider time window than ZHT. When we ran 8 clients
on 64 nodes, DynamoDB started to give errors which complain
that we used too much throughput so we can’t continue to run the
benchmarks on larger scales. The slowest 5% requests latency
increased by 3 times.
It is worth noting that DynamoDB latencies don’t vary much with
the system scales. It seems to show an excellent scalability and a
better aggregated throughput. However considering that Amazon
only guarantees the maximum throughput, instead of latency,
users won’t get faster response when they only use low
throughput. In other words, DynamoDB with more clients doesn’t
work as fast as it with fewer clients; instead, with fewer clients it
works as slow as with many clients. This characteristic prevents
the users from reaching the provisioned capacity by lowering
down the latency when they only have fewer clients.

4. Conclusion
ZHT has shown excellent performance and scalability. It’s been
used as building blocks of several distributed systems. Beside
being highly effective on HPC environment, it also shows
versatility on commercial cloud. ZHT is more than 20 times faster
than Amazon DynamoDB while costing less than 1/10 of the
premium (spent on running VMs), which make it a great
candidate for both a building block of distributed HPC systems
and a general-purpose key-value store on cloud.

5. REFERENCES
[1] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke

Wang, Anupam Rajendran, Zhao Zhang, Ioan Raicu. “ZHT: A
Light-weight Reliable Persistent Dynamic Scalable Zero-hop
Distributed Hash Table”, IEEE IPDPS, 2013

[2] Tonglin Li, Raman Verma, Xi Duan, Hui Jin, Ioan Raicu.
“Exploring Distributed Hash Tables in High-End Computing”,
ACM Performance Evaluation Review (PER), 2011

http://datasys.cs.iit.edu/publications/2013_IPDPS13_ZHT.pdf
http://datasys.cs.iit.edu/publications/2013_IPDPS13_ZHT.pdf
http://datasys.cs.iit.edu/publications/2013_IPDPS13_ZHT.pdf
http://www.ipdps.org/
http://datasys.cs.iit.edu/publications/2011_PER_ZHT-short.pdf

	1. INTRODUCTION
	2. Design and Implementation
	3. Evaluation
	3.1 Performance and running cost
	3.2 Latency distribution

	4. Conclusion
	5. REFERENCES

