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Abstract—GeMTC allows for Many Task Computing (MTC)
workloads to run on hardware accelerators allowing for ad-
vantages that come from the many-core architecture. However,
presently GeMTC is only written to take advantage of NVIDIA
GPUs. Another such hardware accelerator, the Intel Xeon Phi, is
also an excellent candidate for MTC workloads. Therefore, the
first goal of this project will be to add support to GeMTC to allow
it to run on Xeon Phi. While there has been plenty of research on
power consumption of hardware accelerators, MTC workloads
are a significantly understudied research area. MonEQ, a power
profiling library, was primarily developed to measure power
consumption of the IBM Blue Gene/Q supercomputer, but has
lately evolved to also include profiling of both NVIDIA GPUs as
well as the Intel Xeon Phi. As a second goal, this project seeks
to profile real MTC workloads running on both NVIDIA GPUs
as well as on the Xeon Phi.

I. BACKGROUND INFORMATION

GeMTC [1], [2] enables Many Task Computing (MTC)
workloads to run efficiently on NVIDIA GPUs. The standard
CUDA framework can only support 16 kernels, one kernel for
each streaming multiprocessor (SM). The biggest downside
to this is that each kernel must be started and stopped at
the same time, which leads to incredible inefficiencies in
heterogeneous workloads which are commonplace for MTC.
By working at the warp level, a trade can be made for local
memory and concurrency which allows the execution of up to
200 concurrent kernels. Preliminary results show that GeMTC
framework is able to achieve a higher level of efficiency for
various MTC workloads.

MonEQ [3], [4] is a power monitoring library initially
designed to measure the power consumption of scientific
applications running on the IBM Blue Gene/Q supercomputer.
Results show that extremely accurate, precise, and sub-second
power data can be obtained with marginal overhead added. The
Blue Gene series of supercomputers is homogeneous, however,
so the recent evolution of MonEQ has enabled the profiling of
applications running on both NVIDIA GPUs and Intel Xeon
Phi accelerators (potentially at the same time) using the vendor
supplied low-level APIs for data gathering again at sub-second
intervals.

II. PROBLEM STATEMENT

This project would seek to solve two problems:
1) Expand GeMTC to also support the Intel Xeon Phi.
2) Integrate MonEQ into GeMTC to allow for the collec-

tion of power data of MTC workloads on both NVIDIA
GPUs as well as the Intel Xeon Phi.

Towards the first, a “first version” framework has been
actively developed for GeMTC supporting the Xeon Phi. This
project seeks to improve upon this framework adding, most
importantly, support for multi-node clusters/supercomputers.

Towards the second, at the start of this project MonEQ had
very little support for hardware accelerators. The first step
in profiling MTC workloads on hardware accelerators is to
develop, test, and profile applications running on accelerators
with MonEQ. The second would be to integrate this finished
framework into GeMTC at the “super kernel” level allowing
for profiling of any kernels which can be plugged into GeMTC
on either a GPU or a Xeon Phi.

III. PROPOSED SOLUTION

As discussed in Section II, there are two parts to this project.
The GeMTC framework has already very mature support for
GPUs and as such no further improvement was necessary
there. The Xeon Phi implementation of GeMTC however,
while functional, needed further improvement to support more
diverse workloads. As an example, the previous version of the
Xeon Phi GeMTC didn’t have support for how many threads
the chosen kernel should run with.

Both the CUDA optimized and the Xeon Phi optimized
versions of GeMTC have a similar structure. The basic idea is
that workloads are implemented into what are referred to as
kernels. These kernels are launched by what’s called the “super
kernel”. The super kernel has direct control over which tasks
run, when they run, etc. A typical kernel should be thought
of a what one task will need to compute. For example, in
the case of a vector add, the kernel would execute the code
necessary to compute say one row of the target matrix. Of
course, there are a number of ways kernels can be designed
and there are performance as well as power considerations that
go into this, however these topics are left for future exploration
and are not discussed in this work. In this work, for all kernels
developed, the idea is to assign one unit of work to one task–
the finest level of granularity possible. In this way, going back
to the vector add example, one task is responsible for adding
the applicable index of one of the source arrays to the result
vector. Thus, if you had two arrays each with 10 values, there
would be a total of 20 tasks.

Setting up GeMTC is a simple process with a single call
to the library for both the CUDA and Xeon Phi versions.
gemtcSetup() is the method responsible for this. It takes
two arguments; in the CUDA version the first is the queue
size, and the second is an overfill flag. Put simply, the queue



size determines the size of both of the queues in the GPU
memory that hold pointers to task description structures as
well as finished jobs. The overfill flag has two values:

• 0 - Launches enough warps to have a one-to-one mapping
with 16 CUDA core groupings. This is high efficiency.

• 1 - Launches the maximum number of warps per SM
giving the highest throughput.

In the Xeon Phi version however, the overfill flag is replaced
for a number of workers flag. This number determines how
many pthreads are dispatched onto the super kernel. This
idea is similar to the CUDA implementation but since Xeon
Phi’s don’t have SM’s, the implementation is fundamentally
different.

The CUDA and Xeon Phi components have a similar
lower level structures. The basic idea is each task has some
attributes/parameters/data/etc. that it must have in order to
perform its computation. For both NVIDIA and Intel devices,
there are explicit calls that can be used to allocate memory
for device programs as well as copy the necessary data to
the device. To allocate the memory on the device, a call to
gemtcMalloc() will set aside the requested amount of
memory and return a pointer to this memory in the device.
Copying data to the device is is abstracted in GeMTC in the
form of a call to gemtcMemcpyHostToDevice() where
the arguments are the host’s pointer to the data, the device’s
pointer to the allocated area of memory in the previous step,
as well as how much data is to be copied.

After the necessary data has been copied to the device, the
driver program begins to call gemtcPush(). This call takes
as argument a pointer/reference to the kernel to be launched,
the number of threads which should be used for each kernel
launch, as well as the parameters to the program. Inside the
library, GeMTC takes these pushes and adds them to the
master queue where these jobs are subsequently launched
when the necessary resources are available. The completion
of jobs is checked with a call to gemtcPoll() which is a
non-blocking call which will return the unique identifier for
the launched kernel as well as it’s return state. In this way,
one can push some number of tasks and then poll for that
same number of jobs. For example, one could push every task
and subsequently poll for all the jobs. Or, one could push half
the total tasks, poll for those tasks, then push and poll for the
latter half of jobs. This idea of a collection of tasks is what is
referred to as a task group, which will come up later in this
report.

All of these features at the time of starting this project
were only implemented for a single node. To add multi-node
support, the principal remains the same, however a master
process will coordinate which groups of task groups get sent
to which node by using MPI. For example, if one had 100 tasks
and 2 nodes, 50 tasks would be sent to the first node and 50
to the second. The task groups again could be whatever size
desired.

As far as MonEQ was concerned, as previously discussed it
did not have the necessary functionality to profile applications
running on hardware accelerators. The way MonEQ works

on all platforms is to utilize vendor supplied low-level APIs
which poll data from sensors located in hardware. This data
is maintained in a data structure which can either be output to
flat file or the running application can ask for direct access.

Once accelerator support was added to MonEQ, the process
was simple. The MonEQ library is activated by a single
call, MonEQ_Initialize(). This call sets up the data
structure and registers for a signal which it intercepts at
predetermined times. After initialization, one need not do
anything else, but if desired MonEQ allows for tagging
of specific ares of code. To accomplish this, the block of
code that is to be separated from the rest of the program
is surrounded by two calls, MonEQ_StartPowerTag()
and MonEQ_EndPowerTag(). These calls result in special
markers being added to the data structure so eventually when
MonEQ_Finalize() is called, separate files are created
which contain the data for these tagged ares of code. The
remainder of the program is still profiled and output.

IV. EVALUATION

Experiments were run both on GPUs as well as the Xeon
Phi. For both, sleep workloads (both with and without GeMTC
integration) and vector add workloads (again, both with and
without GeMTC) were profiled.

A. GPU Evaluation

Sleep workloads are an ideal starting point because they
perform no useful computation and have no memory access,
so the power consumption should be as near to idle as possible.
Therefore, any increase in power consumption as a result of
using GeMTC will be evident.
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Fig. 1. Shows sleep MTC workload using GeMTC. After GeMTC is fully
setup, the power consumption continues to slowly increase over the course of
a few seconds leveling off near the 75 Watt mark.

Figure 1 shows the result of a sleep(0) (sleep for 0 seconds)
workload using GeMTC with the point at which the GeMTC
framework finished initializing marked. The workload was
setup such that 100,000 tasks were dispatched to the GPU
in blocks of 1,000 at a time. The figure shows that setup takes



very little time and power consumption steadily increases over
a period of about 6 seconds until finally leveling off. This
result shows a run of only 12 seconds, but this power curve is
the same no matter if the run is significantly longer. That is to
say that once the GPU gets “warmed” up, power consumption
for this workload remains constant.

The very fact that the power consumption follows this
increasing curve is interesting. While I can’t say for certain
exactly why this is, it’s likely due to the fact that tasks
in the GeMTC framework are launched incredibly quickly
(this experiment showed that GeMTC on GPUs is capable of
10,000+ tasks/second), but also sequentially. Said another way,
tasks are pushed onto the device one at a time. Once the entire
GPU is occupied, the power consumption levels off because
tasks which are completing are being replaced immediately by
tasks which have not yet run.
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Fig. 2. Standard sleep (without using GeMTC) on GPU. Shows similar power
curve as the GeMTC version but maximum power consumption is about 20
Watts less.

The next logical question is whether this increasing power
curve phenomenon is also exhibited in a sleep workload which
does not use GeMTC. Figure 2 shows just such a workload
and interestingly also shows the same power curve. It’s worth
noting that once the power consumption did level off it did
so at a level which was about 20 Watts less than the GeMTC
sleep workload. Therefore, it’s safe to say that the overhead of
GeMTC is about 20 Watts with even the simplest of workloads.

Having evaluated a sleep workload which doesn’t perform
any interesting computation, the next step was to look at what
an application that does perform real work looks like. Figure
3 shows the power consumption of a vector add workload
with input array size of 134,217,728 (227) and 10 arrays of
double precision floating point values. As can be seen from the
graphic, the same power ramp up over the first 6 seconds or
so is still visible. From there once the data has been generated
we again see a steep increase in power consumption to about
the 140 Watt level where it stays until the program eventually
completes. The last little tail drop down is the point when the
result data is copied from the device to the host.
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Fig. 3. Vector add implemented with vanilla CUDA. At beginning shows
power ramp up present in both sleep tests. After data generation power rapidly
increases to a level of about 140 Watts and stays there for the remainder of
the computation.
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Fig. 4. Vector add implemented with GeMTC. Shows power consumption
for two different workloads. For both we see that the power consumption
follows a wave pattern increasing when the tasks are actually pushed to the
device and decreasing as GeMTC waits for tasks to complete. 1000 tasks per
group ultimately has a higher peak power consumption, but completes about
20 seconds quicker than 500 tasks per group.

The next experiment was to then to convert the vector add
workload into a GeMTC kernel. In this case, each kernel
call was responsible for computing one unit with the input
sizes and number of input arrays remaining the same as in
the previous experiment. As can be seen from Figure 4, this
produces a much more interesting power consumption graph.
As with all experiments, the initial ramp up of power is still,
however, once the data had been generated and tasks were then
pushed to the GPU, a much different power trend emerges.

This experiment was run with two task group sizes: 500
tasks per group and 1000 tasks per group. As can be seen from
the figure, in both cases a sin wave type power consumption



trend is visible. This is likely due to the fact that as the
tasks were pushed to the device power consumption greatly
increased because the device was fully populated and working
at full capacity. However, as tasks begin to complete the power
consumption starts to drop off because more of the device is
idle. Finally, once all of the tasks in a group have completed
and the results gathered, the power consumption spikes again.
This pattern continues until all of the tasks have executed.

Interestingly, two things are different between the 500 and
1000 tasks per group runs. First, in the 1000 tasks per group
run, the peak power consumption is actually higher. This is
likely because as there are more tasks the device is kept at
peak for longer (having more to do for a given task group)
resulting in an increase in power consumption. Second, the
1000 tasks per group run completes about 20 seconds sooner
than the 500 tasks per group run. This makes intuitive sense as
there is going to be more overhead associated with dispatching
and then polling more times. However, this trend of shorter
run times does not continue on all the way to dispatching all of
the tasks simultaneously. At about the 1200 tasks per group
level the run time stops decreasing and above that actually
starts to increase again.

B. Xeon Phi Evaluation

Time Since Start

121086420

In
st

a
n

t 
P

o
w

e
r 

R
e

a
d

in
g

130

125

120

115

110

1

0

Card 
Number

Fig. 5. Sleep workload on Xeon Phi without GeMTC. Shows chaotic power
consumption for both cards installed in machine. Range is about 10 Watts
between highest and lowest power consumption.

Beginning again with sleep workloads, Figure 5 shows a
standard sleep(0) workload without GeMTC. As can be seen
from that figure, the power consumption here is much more
chaotic bouncing between about 115 Watts and 125 Watts.
This experiment was run on a system with two Xeon Phi cards
installed. Also evident is that both cards exhibit this trend for
the entirety of the execution.

When the sleep workload is converted into a GeMTC
kernel as shown in Figure 6, while the power consumption
is in fact less chaotic, it still bounces up and down from
about the same levels as the previous experiment. There is
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Fig. 6. Sleep workload on Xeon Phi utilizing GeMTC. Shows less chaotic
pattern as opposed to directly offloading sleep instruction to Mic, however
the power consumption still has a range of about 15 Watts.

however one interesting fact that can be taken from this. In the
GPU sleep workloads, the GeMTC kernel version exhibited
a greater power consumption than did the standard CUDA
implementation. Moving over to the Xeon Phi however, while
tough to say conclusively due to the range of consumption
during the experiment, the average over the whole run isn’t
any higher than the standard offloaded code.

It’s tough to say exactly why this is, but one theory is that
the Xeon Phi actually has a Linux operating system running on
it. As in a traditional computer, it’s responsible for scheduling,
swapping out processes, etc. This overhead very well might
contribute both to the chaotic power consumption as well as
the GeMTC workload not consuming more power.
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Fig. 7. Vector add workload on Xeon Phi without GeMTC. Shows power
consumption of two cards. The workload was only offloaded to card number
0, the other card’s data was left just to show that the up-down power curve
exhibited in the sleep workloads is still present. After data generation is
completed near the 10 second mark, power consumption quickly increases to
the 140-150 Watt range staying there for the remainder of the computation.



Again keeping with the vector add workload, Figure 7 shows
what a standard OpenMP optimized vector add workload looks
like in terms of power consumption on the Xeon Phi. First
thing worth noting is that the up/down power consumption
seen in the sleep workloads is still present. However, after data
generation completes at about the 10 second mark, there is a
clear jump in power consumption to about the 140-150 Watt
range where it remains for the remainder of the computation.
The second card, while not used for useful computation, was
left in to show that in fact even when the Xeon Phi isn’t
tasked with anything at all this up/down power consumption
trend continues.
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Fig. 8. Vector add workload on Xeon Phi utilizing GeMTC. Shows similar
pattern to directly offloading the workload and still exhibits up-down power
consumption pattern. Total power consumption is about 10 Watts higher than
with traditional offloading and the total runtime is about 10 seconds longer.

In the next experiment shown in Figure 8, the vector add
kernel was written for the Xeon Phi version of GeMTC.
Again we see the up/down power consumption for both cards
throughout the entire execution and again we see a sharp
increase in power consumption once data generation has
completed and computation has begun.

The first thing worth noting from this result is that the
range of power consumption during which time the device
was occupied with tasks is about 10 Watts higher than the
standard offloaded version. Perhaps consequently, this also
resulted in about 10 seconds less of total computation time.
Most interesting though is that the number of tasks per group
(which in this experiment was tested exactly the same as in
the GPU version) doesn’t show a sin wave type of power
consumption curve. There are a number of factors which might
play into this, but it’s entirely possible this trend is still there,
but impossible to discern from the data because the power
consumption is already jumping up and down.

V. RELATED WORK

Given the relatively new nature of hardware accelerators,
only a handful of research studies have been conducted to

date which have studied the power consumption of HPC
applications running on them. Wang et al. have published
heavily on the subject of power aware software solutions on
heterogeneous systems with GPUs [5], [6], [7], [8], [9]. Others
have looked at accurately predicting power consumption of
a GPU based on the type of workload [10], [11], [12]. The
Xeon Phi however (likely because it’s only just become a
commonly available piece of hardware) has had very little
publicized on its power consumption. To my knowledge, there
exists no research studies which have also investigated power
consumption of MTC workloads run on hardware accelerators.

Chen at al. [13] provided a high-level GPU power con-
sumption model using sophisticated tree-based random forest
methods which could correlate the power consumption with
a set of independent performance variables. This model was
able to predict the GPU runtime power consumption as well
as provide insight for understanding the dependence between
the GPU runtime power consumption and the individual per-
formance metrics. This evaluation was done on a GTX 280
GPU, but the authors note that the approach can be applied to
any other CUDA based GPU.

Kaceli et al. [14] compared the power and performance of
two designs in the many-core processor domain. In this study,
the authors compared the XMT general-purpose processor to
a NVIDIA GPU. The XMT provides runtime advantage on
irregular parallel programs (such as graph algorithms) while
the NVIDIA GPU excelled at regular parallel program which
required high processing capability. In general they found that
the power consumption for both models is similar for many
of the workloads they studied.

Richardson et al. [15] looked at the computation, I/O, power,
and memory interfacing of various accelerator devices. In this
study, they compared both RMC and FMC devices measuring
the performance per watt. While they did not look at the Intel
Xeon Phi, they did perform experiments on several NVIDIA
GPUs for both integers and floating point data structures.
The authors note that while GPUs tend to perform well in
most categories, but they really stand out in floating-point
calculations due to their high clock rates and the sheer number
of cores.

Totoni et al. [16] came the closest to part of the proposed
project. They compared power consumption of various Intel
Single-Chip Cloud Computer chips as well as various NVIDIA
GPUs. The authors note that the Intel SCC offer a decent
balance between power and performance as they consume
lower power than heavy-weight multi-cores but are faster than
low-power processors and do not have the portability issues
of GPGPUs. They also note that GPGPUs are exceptionally
powerful for many applications in speed, power and energy,
however their lack of sophisticated architecture prevents them
from executing complex and irregular applications efficiently.

VI. CONCLUSION

In this project I have evaluated the power consumption of
the GeMTC library for enabling MTC workloads on hardware
accelerators. The GPU component of GeMTC was already



well written and tested and did not require any further work on
my behalf. The Xeon Phi component on the other hand, while
an excellent start, did require tweaking to enable running tens
of thousands of tasks on multiple devices.

As has been shown in the results, GeMTC doesn’t come
for free in terms of power consumption. In fact, for all of the
experiments I ran it showed an increase in power consumption.
However, in certain instances, this increase in power consump-
tion was negated by the fact the total time to completion was
actually lower than the standard method of simply offloading
the whole task as one big chunk. I have also shown that on
GPUs at least, the number of tasks per group makes a big
impact. While this might have also been the case on the Xeon
Phi, it is impossible to tell because of the already chaotic
power consumption data that is obtained when no computation
is being performed. Finally, regardless of workload or the use
of GeMTC, GPUs when used for computation seem to have
a slowly increasing power consumption curve which lasts for
several seconds before leveling off and staying constant for
the remainder of the computation.

In terms of the project on the whole, I have to say that it
was a success. MonEQ has now been updated to support the
two most common hardware accelerators, NVIDIA GPUs as
well as the Xeon Phi. What’s more, useful data was obtained
showing that power consumption of GeMTC workloads do
differ from their standard offloaded counterparts.

Looking forward, the next most obvious step is to profile
more applications, both using GeMTC kernels and not, on
these two platforms. Additionally, further investigation into
the implications these results have at scale would be prudent.
What’s more, the results obtained from this work are to
be view as initial and not final products. My kernel imple-
mentations were naive and simple, and there is likely much
optimization possible in them.
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