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1. Introduction 

Background 
Ken Batcher made a half-serious, half-humorous definition that “A supercomputer is a device for 

turning compute-bound problems into I/O bound problems”, which reveals the essence of 

modern high performance computing and implies its greatest bottleneck.  As the advance of 

HPC techniques, the peak performances of supercomputers keep soaring, while the I/O 

bandwidth, especially storage system performance increases much slower. The gap between 

computing performance and I/O bandwidth is becoming wider.  

For next generation supercomputer, namely exscale computers, the challenges are even more 

radical: almost all of these super computers adopt commodity components and cluster-based 

design (except for those rare vector machines like the Earth Simulator made by NEC),  which 

means that numerous smaller computer nodes will be used and each of them consumes part of 

entire I/O.  

In the current decades-old architecture of HPC systems, storage is completely segregated from 

the compute resources and are connected via a network interconnect (e.g. parallel file systems 

running on network attached storage, such as GPFS [5], PVFS [6], and Lustre [7]). This approach 

is not able to scale several orders of magnitude in terms of concurrency and throughput, and 

will thus prevent the move from petascales to exascale.  Before new storage architecture and 

parallel/distributed file system implementations are available, we could not build exascale 

systems.  

As the new Top500 list shows, some of the fastest supercomputers use up to half million 

processors. The need for building efficient and scalable distributed storage for HEC systems that 

will scale four orders of magnitude is on the horizon. 

Metadata operations on parallel file systems can be inefficient at large scale. Early experiments 

on the BlueGene/P system at 16K-core scales shows the various costs (wall-clock time measured 

at remote processor) for file/directory create on GPFS. Ideal performance would be constant. If 

care is not taken to avoid lock contention, performance degrades rapidly, with operations (e.g. 

create directory) that took milliseconds on a single core, taking over 1000 seconds at 16K-core 

scales. [10, 11] 

Proposed work 
We believe that emerging distributed file systems could co-exist with existing parallel file 

systems, and could be optimized to support a subset of workloads critical for high-performance 

computing and many-task computing workloads at exascale. There have been other distributed 

file systems proposed in the past, such as Google's GFS [13] and Yahoo's HDFS [14]; however 

these have not been widely adopted in high-end computing due to the workloads, data access 

patterns, and supported interfaces (POSIX [15]) being quite different. Current file systems lack 

scalable distributed metadata management, and well defined interfaces to expose data locality 



for general computing frameworks that are not constrained by the map-reduce model to allow 

data-aware job scheduling with batch schedulers (e.g. PBS [16], SGE [17], Condor [18], Falkon 

[19]).  

Future storage systems for high-end computing should support distributed metadata 

management, leveraging distributed data-structure tailored for this environment. The 

distributed data-structures share some characteristics with structured distributed hash tables 

[24], having resilience in face of failures with high availability; however, they should support 

constant time inserts/lookups/removes delivering low latencies typically found in centralized 

metadata management. Replication is used to ensure both metadata and data availability.  

We are working on delivering exactly such a distributed file system, name FusionFS [30]. 

FusionFS is a user-level filesystem with a POSIX-like interface through FUSE [27] that runs on the 

compute resource infrastructure, and enables every compute node to actively participate in the 

metadata and data management. Distributed metadata management is implemented using ZHT 

[31], a zero-hop distributed hashtable. ZHT has been tuned for the specific requirements of 

high-end computing. 

Since the limit of report length, this report only focuses on ZHT, my latest work. The previous 

work I did in last fall is another crucial component of the proposed distributed file system, a 

FUSE based virtual file system, which will be used as base file system for each node.  

We developed ZHT, a zero-hop distributed hash-table, which has been tuned for the specific 

requirements of high-end computing (e.g. trustworthy/reliable hardware, fast networks, non-

existent "churn", low latencies, and scientific computing data-access patterns). The primary goal 

of ZHT is excellent availability, fault tolerance, high throughput, and low latencies. The report 

also discusses the use of ZHT as the distributed metadata management in the FusionFS 

distributed filesystem.   

2. Related works 
There have been many distributed hash table (DHT) algorithms and implementations proposed 

over years. In this part I will introduce several existing implementations of DHT. 

Chord 

The Chord project aims to build scalable, robust distributed systems using peer-to-peer ideas. 

The basis for much of our work is the Chord distributed hash lookup primitive. Chord is 

completely decentralized and symmetric, and can find data using only log(N) messages, where N 

is the number of nodes in the system. Chord's lookup mechanism is provably robust in the face 

of frequent node failures and re-joins. 

On top of Chord's routing layer, a DHash block storage system was built. DHash provides a 

simple put and get interface to store and retrieve objects. Recent research has focused on 



developing algorithms to efficiently maintain replicas of these objects over long periods to 

provide availability and durability. 

The Chord protocol is one solution for connecting the peers of a P2P network. Chord 

consistently maps a key onto a node. Both keys and nodes are assigned an m-bit identifier. For 

nodes, this identifier is a hash of the node's IP address. For keys, this identifier is a hash of a 

keyword, such as a file name. It is not uncommon to use the words "nodes" and "keys" to refer 

to these identifiers, rather than actual nodes or keys. There are many other algorithms in use by 

P2P, but this is a simple and common approach. 

A logical ring with positions numbered 0 to 2m − 1 is formed among nodes. Key k is assigned to 

node successor(k), which is the node whose identifier is equal to or follows the identifier of k. If 

there are N nodes and K keys, then each node is responsible for roughly K / N keys. When a new 

node joins or leaves the network, responsibility for O(K / N) keys changes hands. 

If each node knows only the location of its successor, a linear search over the network could 

locate a particular key. This is a naive method for searching the network, since any given 

message could potentially have to be relayed through most of the network. Chord implements a 

faster search method. Chord requires each node to keep a "finger table" containing up 

to m entries. The ith entry of node n will contain the address of successor ((n + 2i − 1) mod 2m). 

With such a finger table, the number of nodes that must be contacted to find a successor in 

an N-node network is O(logN). 

CAN 

Like other distributed hash tables, CAN is designed to be scalable, fault tolerant, and self-

organizing. The architectural design is a virtual multi-dimensional Cartesian coordinate space, a 

type of overlay network, on a multi-torus. This d-dimensional coordinate space is a virtual logical 

address, completely independent of the physical location and physical connectivity of the 

nodes. Points within the space are identified with coordinates. The entire coordinate space is 

dynamically partitioned among all the nodes in the system such that every node possesses at 

least one distinct zone within the overall space. 

A CAN node maintains a routing table that holds the IP address and virtual coordinate zone of 

each of its neighbors. A node routes a message towards a destination point in the coordinate 

space. The node first determines which neighboring zone is closest to the destination point, and 

then looks up that zone's node's IP address via the routing table. 

Pastry 

Although the distributed hash table functionality of Pastry is almost identical to other DHTs, 

what sets it apart is the routing overlay network built on top of the DHT concept. This allows 

Pastry to realize the scalability and fault tolerance of other networks, while reducing the overall 

cost of routing a packet from one node to another by avoiding the need to flood packets. 



Because the routing metric is supplied by an external program based on the IP address of the 

target node, the metric can be easily switched to shortest hop count, lowest latency, highest 

bandwidth, or even a general combination of metrics. 

The hash table's keyspace is taken to be circular, like the keyspace in the Chord system, and 

node IDs are 128-bit unsigned integers representing position in the circular keyspace. Node IDs 

are chosen randomly and uniformly so peers who are adjacent in node ID are geographically 

diverse. The routing overlay network is formed on top of the hash table by each peer 

discovering and exchanging state information consisting of a list of leaf nodes, a neighborhood 

list, and a routing table. The leaf node list consists of the L/2 closest peers by node ID in each 

direction around the circle. 

In addition to the leaf nodes there is also the neighborhood list. This represents the M closest 

peers in terms of the routing metric. Although it is not used directly in the routing algorithm, the 

neighborhood list is used for maintaining locality principals in the routing table. 

Tapestry 

Tapestry is an extensible infrastructure that provides decentralized object location and routing 

focusing on efficiency and minimizing message latency. This is achieved since Tapestry 

constructs locally optimal routing tables from initialization and maintains them in order to 

reduce routing stretch. Furthermore, Tapestry allows object distribution determination 

according to the needs of a given application. Similarly Tapestry allows applications to 

implement multicasting in the overlay network. 

Each node is assigned a unique nodeID uniformly distributed in a large identifier space. Tapestry 

uses SHA-1 to produce a 160-bit identifier space represented by a 40 digit hex key. Application 

specific endpoints GUIDs are similarly assigned unique identifiers. NodeIDs and GUIDs are 

roughly evenly distributed in the overlay network with each node storing several different IDs. 

Each identifier is mapped to a live node called the root. If a node's nodeID is G then it is the root 

else use the routing table's nodeIDs and IP addresses to find the nodes neighbors. At each hop a 

message is progressively routed closer to G by incremental suffix routing. Each neighbor map 

has multiple levels where each level contains links to nodes matching up to a certain digit 

position in the ID. The primary ith entry in the jth level is the ID and location of the closest node 

that begins with prefix (N, j-1)+i. This means that level 1 has links to nodes that have nothing in 

common, level 2 has the first digit in common, etc. Because of this, routing takes 

approximately logBN hops in a network of size N and IDs of base B (hex: B=16). If an exact ID can 

not be found, the routing table will route to the closest matching node. For fault tolerance, 

nodes keep c secondary links such that the routing table has size c * B * logBN. 

 

 



Dynamo 

Dynamo is a highly available key-value storage system that some of Amazon’s core services use 

to provide an “always-on” experience. Dynamo calls itself as a zero-hop DHT, where each node 

maintains enough routing information locally to route a request to the appropriate node directly. 

Dynamo is targeted mainly at applications that need an “always writeable” data store where no 

updates are rejected due to failures or concurrent writes. This is a crucial requirement for many 

Amazon applications. Dynamo is built for an infrastructure within a single administrative domain 

where all nodes are assumed to be trusted.  Applications that use Dynamo do not require 

support for hierarchical namespaces or complex relational schema. Dynamo is built for latency 

sensitive applications that require at least 99.9% of read and write operations to be performed 

within a few hundred milliseconds. 

For different problems it faces, Dynamo uses various solutions and achieves very high 

availability. Some core distributed systems techniques are used in Dynamo: partitioning, 

replication, versioning, membership, failure handling and scaling. For partitioning, it uses 

consistent hashing, gets Incremental Scalability; for high availability for writes, it uses vector 

clocks with reconciliation during reads, Version size is decoupled from update rates; for handling 

temporary failures, it uses Sloppy Quorum and hinted handoff, provides high availability and 

durability guarantee when some of the replicas are not available; for recovering from 

permanent failures, it uses anti-entropy with Merkle trees synchronizes, divergent replicas in 

the background; for membership and failure detection, Dynamo uses Gossip-based membership 

protocol and failure detection, it preserves symmetry and avoids having a centralized registry 

for storing membership and node liveness information. 

Kademlia 

Kademlia is a DHT-liked peer-to-peer storage system. Kademlia has several features differ from 

other P2P system.  

The configuration information of system doesn’t cost an exclusive message to exchange 

between nodes. They are shown as a part of key queries instead. This makes system-related 

messages being minimal in Kademlia. Distances between nodes of Kademlia are measured with 

a new XOR-based metric. Each node has a 160-bit id, the logical distance between any two 

nodes is decided by a value d(x, y) = x   y. (Here   present XOR operation.) XOR is symmetric, 

allowing Kademlia participants to receive lookup queries from precisely the same distribution of 

nodes contained in their routing tables. 

For keeping nodes’ state, Kademlia nodes store contact information about each other to route 

query messages. For each i between 0 and 160, every node keeps a list of (IP address, UDP port, 

Node ID) triples for nodes of distance between 2i and 2i+1 from itself. The lists are called k-

buckets. Each k-bucket is kept sorted by time last seen—least-recently seen node at the head, 

most-recently seen at the tail.  When a Kademlia node receives any message from another node, 



it updates the appropriate k-bucket for the sender’s node ID. K-buckets effectively implement a 

least-recently seen eviction policy.  

Memcached 

Memcached provides a giant hash table distributed across multiple machines. When the table is 

full, subsequent inserts cause older data to be purged in least recently used (LRU) order. 

Applications using Memcached typically layer requests and additions into core before falling 

back on a slower backing store, such as a database. 

The system uses a client–server architecture. The servers maintain a key–value associative array; 

the clients populate this array and query it. Keys are up to 250 bytes long and values can be at 

most 1 megabyte in size. Clients use client side libraries to contact the servers which, by default, 

expose their service at port 11211. Each client knows all servers; the servers do not 

communicate with each other. If a client wishes to set or read the value corresponding to a 

certain key, the client's library first computes a hash of the key to determine the server that will 

be used. Then it contacts that server. The server will compute a second hash of the key to 

determine where to store or read the corresponding value. 

The servers keep the values in RAM; if a server runs out of RAM, it discards the oldest values. 

Therefore, clients must treat Memcached as a transitory cache; they cannot assume that data 

stored in Memcached is still there when they need it. A Memcached-protocol compatible 

product known as MemcacheDB provides persistent storage. 

Cycloid 

Cycloid is a constant-degree DHT. It achieves a lookup path length of O(d) with O(1) neighbors, 

where d is the network dimension and n = d · 2d. It combines Chord and Pastry and emulates a 

cube-connected-cycles (CCC) graph in the routing of lookup requests between the nodes. 

Cycloid specifies each node by a pair of cyclic and cubic indices. Like Pastry, it employs 

consistent hashing to map keys to nodes. A node and a key have identifiers that are uniformly 

distributed in a d · 2d identifier space.  

C-MPI 

The objective of C-MPI is to ease the development of survivable systems and applications 

through the implementation of a reliable key/value data store based on DHT. Borrowing from 

techniques developed for unreliable wide-area systems, Content-MPI (C-MPI) is with the 

Message Passing Interface (MPI) that enables user data structures to survive partial system 

failure. C-MPI is based on a new implementations of the Kademlia distributed hash table, and 

other hashing techniques. 

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Cache_algorithms


The following table compares some of the DHT implementations. 

 Architecture Topology Routing Technique Routing 
Time(hops) 

Chord Ring Consistent hashing, finger 
table 

Log(N) 

CAN Virtual multidimensional 
Cartesian coordinate space, on 

a multi-torus 

Closest destination matching O(dn
l/d

) 

Pastry Hypercube Closest ID matching O(logN) 

Tapestry Hypercube decentralized object location 
and routing 

O(logBN) 

Cycloid Cube-connected-cycle graph  O(d) 

Kademlia Ring Dynamic routing table Log(N) 

Memcached Ring 2-phase hashing client/server 2 

C-MPI  Ring Dynamic routing table Log(N) 

Dynamo Ring Consistent hashing 0 

3. ZHT system design and implementation 
System Assumptions  

It is important to point out that several key features of traditional DHTs are not necessary in HEC, 

and that if some simplifying assumptions could potentially reduce the number of operations 

needed per insert/lookup down to a small constant (1 on average). Some of the emphasized key 

features of HEC are: trustworthy/reliable hardware, fast network interconnects, non-existent 

node "churn", the requirement for low latencies, and scientific computing data-access patterns. 

Most HEC environments are batch oriented, which implies that a system that is configured at 

run time, generally has information about the compute and storage resources that will be 

available. This means that the amount of resources (e.g. number of nodes) would not increase 

or decrease dynamically, and the only reason to decrease the allocation is either to handle failed 

nodes, or to terminate the allocation. By making dynamic membership optional, the complexity 

of the system can be reduced and a low average number of hops per operation can be achieved. 

Furthermore, nodes in HEC are generally reliable and have predicable uptime (nodes start on 

allocation, and nodes shut down on de-allocation). This implies that node "churn" in HEC is 

virtually non-existent, a property of HEC that should be leveraged to create a more optimized 

distributed data structure. It is also important to point out that nodes in a HEC system are 

generally trust-worthy, and that stringent requirements to encrypt communication and/or data 

would simply be adding overheads. HEC systems are generally locked down from the outside 

world, behind login nodes and firewalls, and although authentication and authorization is still 

needed, full communication encryption is wasteful for a large class of scientific computing 

applications that run on many HEC systems. Most parallel file systems used in HEC communicate 

between the client nodes and storage servers without any encryption. 

Design consideration 



The primary goal of ZHT is to get all the benefits of distributed hash tables, namely excellent 

availability and fault tolerance, but concurrently achieve the benefits of a centralized index 

where latencies are minimal. The data-structure is kept as simple as possible for ease of analysis 

and efficient implementation. The membership function ZHT is static, in which every node at 

bootstrap time has all information about how to contact every other node in ZHT; this 

assumption is valid because of the batch-scheduled HEC environment. The node id in ZHT will be 

closely correlated with the network distance between nodes, which can often be inferred from 

information such as MPI rank or IP address. This will ensure that nodes can easily determine the 

closest node to communicate with. This network topology aware approach is critical to making 

ZHT scalable by ensuring that communication is kept localized when performing 1-to-1 

communication. The fixed network topology and membership allows the creation of a minimum 

spanning tree to allow efficient 1-to-all communication. 

 

Hash Functions: There are a many good hashing functions in practice. Each hashing function has 

a set of properties and designed goals, such as: 1) minimize the number of collisions, 2) 

distribute signatures uniformly, 3) have an avalanche effect ensuring output varies widely from 

small input change, and 4) detect permutations on data order. Hash functions such as the Bob 

Jenkins’ hash function, FNV hash functions, the SHA hash family, or the MD hash family all 

exhibit the above properties. The PI will explore Bob Jenkins’ and FNV hash functions, due to 

their relatively simple implementation, consistency across different data types (especially 

strings), and the promise of efficient performance.  

Membership Table: The proposed hash functions map an arbitrary long string directly to an 

index value, which can then be used to efficiently retrieve the communication address (e.g. 

network name, IP address, MPI-rank) from a membership table (e.g. local in-memory array). 

Depending on the level of information that is stored (e.g. IP - 4 bytes, name - <100 bytes, socket 

- depends on buffer size), storing the entire membership table should consume only a small (less 

than 1%) portion of available memory of each node.  

Failure Handling: ZHT will gracefully handle failures, by lazily tagging nodes that do not respond 

to requests repeatedly as failed (using exponential backoff). Once nodes are marked as down, 



they are assumed never to return until ZHT is restarted. ZHT will also employ a pro-active node 

failure detection mechanism by having each nodei pass heartbeat messages with neighboring 

nodei-1 and nodei+1. Upon failure detection, the failed node information would be propagated to 

all ZHT members through a spanning tree helping all nodes to update the failed node 

information. The lazy approach is ideal for frequent failures, while the pro-active approach is 

ideal for rare failures.  

Replication: ZHT uses replication to ensure data stored will persist even in face of failures. 

Newly created data will be pro-actively replicated to nodes in close proximity of the original 

hashed location. By communicating only with neighbors in close proximity, this approach will 

ensure that replicas consume the least amount of shared network resources when we succeed 

to correlate nodes’ id with network distance. In order to avoid correlated failures that might 

cause multiple nodes in close proximity to fail (e.g. a network switch or an I/O node fails), ZHT 

will also be able to store replicas as far as possible from the source; for example, a replica on 

nodei could be placed on node(i+n/2)%n. Existing data in ZHT will maintain the minimum replica 

count by detecting node failures (through periodic neighbor heartbeats), and upon a failure 

initiate a scan through all the data stored at neighboring nodes to ensure that the minimum 

replica threshold has not been reached. Furthermore, every node failure would trigger the 

regeneration of the minimum spanning tree to avoid the failed node (a local operation). 

Determining the optimal number of replicas is a function of multiple variables, such as number 

of disks, mean time to failure (MTTF) of each disk, and the mean time to repair (MTTR) of each 

disk. These variables will determine the value of the mean time to data loss (MTTDL). Several 

papers have looked at defining ways to compute MTTDL, and they all confirm that at least these 

variables are critical to computing MTTDL, and some discuss even more complex models that 

take into account even soft failures (e.g. reading 1 bit with the wrong value). 

ZHT is completely distributed, and the failure of a single node does not affect ZHT as a whole. 

The (key, value) pairs that were stored on the failed node will be replicated on other nodes in 

response to the failure, and queries asking for data that was on the failed node will be answered 

by the replicas. In the event that ZHT is shut down (e.g. maintenance of hardware, system 

reboot, etc), the entire state of ZHT could be loaded from local persistent storage (e.g. the SSDs 

on each node); note that every change to the in-memory DHT is in fact persisted to a change log 

to persistent local storage, allowing the entire state of the DHT to be reconstructed if needed. 

Given the size of memory and SSDs of today, as well as I/O performance improvements in the 

future, it is expected that this state could be retrieved in seconds to tens of seconds. Once ZHT 

is bootstrapped, the verification of its nearest neighbors should not be related to the size of the 

system. In the event that a fresh new ZHT instance is to be bootstrapped, the process is quite 

efficient in its current static membership form, as there is no global communication required 

between nodes. For example, in our current prototype which we have tested up to 5832-cores 

on a SiCortex system, the prototype required only several seconds to completely start and be 

ready for processing insert or look-up requests. We expect the time to bootstrap ZHT to be 

insignificant in relation to the cost to batch schedule a large job on a high-end computing system, 



which includes node provisioning, OS booting, starting of network services, and perhaps the 

mounting of some parallel file system. 

Persistence: ZHT is a distributed in-memory data-structure. In order to withstand failures and 

restarts, it utilizes a log-based persistence mechanism, with periodic checkpointing. Any time 

ZHT is modified, the modification is appended to a file on local persistent storage, and at fixed 

time intervals the entire state of ZHT is written to the local persistent storage. Upon a restart, 

the latest checkpoint would be loaded into memory. 

Implementation 
Application Programming Interface: The application programming interface (API) of ZHT is kept 

simple and follows similar interfaces for hash tables. The four operations ZHT will support are 1. 

bool insert(key, value); 2. value retrieve(key); 3. bool remove(key), and 4. bool broadcast(key, 

value). The insert operation will first hash the key to obtain the location of the node where the 

value will be inserted; existing values will be overwritten; replication occurs asynchronously 

between the hashed destination and its neighbors. The retrieve operation would return the 

value from ZHT if it existed. The remove operation would remove the value with the associated 

key. The broadcast operation would transmit the key/value pair over the edges of the spanning 

tree with the goal to distribute the key/value pair to all the caches. 

Implementation Details: This work is aimed at HEC systems, so it was critical to identify a 

programming language supported unanimously across all current HEC systems; C/C++ was the 

best candidate from both a portability and performance perspective. FUSE and GridFTP is 

implemented in C, while the ZHT is in C++. GridFTP supports a variety of communication 

protocols, such as UDT and TCP; it supports GSS-API authentication of the control channel and 

data channel, and supports user-controlled levels of data integrity and/or confidentiality. ZHT 

used a proprietary binary UDP-based protocol; we are also investigating alternative 

communication protocols such as TCP, MPI, and BMI.  

4. Performance Evaluation 
In this section, we evaluate the performance matrices of ZHT, including hashing functions, 

persistent hash map, different communication methods, throughput, and compare ZHT with 

other related work to illustrate and prove the scalability and high performance of ZHT. 

Hashing Functions  
The time spent on hashing keys to nodes is not major of the total cost, but with the time passed, 

the accumulation could be observed. We investigate some of the usual hash functions for figure 

out the performance and evenness difference.  

As shown below that some hash functions are faster than others, but a more important concern 

rather than performance is the evenness. Since the worst hash function we investigated has 



performance of 0.02ms/hash, and thus negligible compare to other overhead. Meanwhile the 

evenness is essential to the entire performance.   

 

An ideal hash function should be able to spread keys evenly. Additionally it should not 

increment the time too rapidly as the length of key increased. We need the hash function to be 

even to provide a natural load balancing mechanism. But obviously sometimes we can’t obtain 

both performance and evenness. SuperFastHash, for example, as it’s named, is very fast, but its 

evenness is poor. We adopt SDBM hash function mapping keys to destination nodes. As 

observed in the charts below, SDBM offers a reasonably good performance while gives very 

good evenness. We measure 1 million keys distribution over 1000 nodes, then find that the 

standard deviation is only 32.7. This is almost half of most of other hash functions’ standard 

deviation.  

 

Persistent Hash Map 
We adopt Kyotocabinet as local and persistent key-value store. Kyoto Cabinet is a library of 

routines for managing a database. The database is a simple data file containing records, each is 

a pair of a key and a value. Every key and value is serial bytes with variable length. Both binary 

data and character string can be used as a key and a value. In a file based hash table (HashDB) 

mode on one node, it takes 2955.94 ms to insert, 1940.06 ms to lookup and 2511.77 ms to 

remove 1 million key-value pairs. Thus less than 3micro sec is taken by per operation. This 

overhead is negligible compare to the communication time. 
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Networking 
Generally it is considered that TCP offers reliable communication while UDP provides better 

performance. We implemented ZHT with both TCP (with server returned result state) and UDP 

(acknowledge message based, which means every time a message is sent, the sender is waiting 

for an acknowledge message) protocols. As shown that UDP does give a better performance, 

although the difference between them is not significant. TCP implementation keeps the latency 

within 11 ms while UDP does it with 9ms. Additionally we note that when the network becomes 

to saturate, TCP shows a better scalability and reliability. The performance differences among 

three basic operations (insert, lookup and remove) are very small and tend to be negligible. The 

time per operation in milliseconds starts at about 6ms at the smallest scales of 2 nodes (1 node 

scales is artificially fast because it has no network communication), and increases to 11ms to 

12ms at the largest scale of 972 nodes. Since ZHT uses a direct 0-hop algorithm and that the 

majority of the overhead comes from network communication, it is not expected that the time 

per operation to increase significantly with larger scales. 

 

Throughput and Latency 
In our implementation we completed an early prototype of ZHT, which supports three of the 

four proposed operations, namely insert/retrieve/remove. Prior to engaging in implementing 

ZHT, we explored the feasibility of using existing DHT implementations (Tapestry [36], Chord 

[34], Maidsafe-dht [42], and C-MPI [43]), but came to the conclusion that they are all too heavy 

weight for HEC, were not feature complete, or had significant dependencies to resolve. The 

preliminary ZHT implementation was implemented in C++, and uses a proprietary binary TCP-

based and UDP-based communication protocol. We performed experiments (on the SiCortex 

SC5832 at ANL, 972 nodes with 5832 cores) to measure the overheads of insert/remove/retrieve. 

Overheads were significantly lower than the DHTs that were investigated, with about 10ms per 

operation at modest scales of 5832-cores (as opposed to 30 ms for Chord and 1000 ms for 

Maidsafe-DHT at 16-core scales). Figure 1 shows the throughput for ZHT for a range of scales 

from 1 node (6 cores) to 972 nodes (5832 cores). Each client (1 client per node) performs 100K 

random 132-byte key inserts, 100K retrieves, and 100K removes. The throughputs in operations 

per second increases near-linearly with scale, reaching 85K ops/sec at 972 nodes; the ideal 

throughput would have been 156K ops/sec. Also, as shown in the figure, the UDP protocol has 

0

2

4

6

8

10

12

0 200 400 600 800 1000

Ti
m

e 
p

er
 o

p
er

at
io

n

Number of nodes

Operation viaTCP/UDP

Insert-TCP

Lookup-TCP

Remove-TCP

Insert-UDP

Lookup-UDP

Remove-UDP



better performance than TCP, which is near 100k ops/sec, and would might scale better in even 

large scale, nevertheless, based on the volatile propriety of UDP and bottleneck of network, UDP 

protocol in our implementation will lose performance when the network is saturated, after all, it 

does not hold a reliable way.  

 

Figure 1: ZHT performance on SiCortex SC5832 on up to 972 nodes (5832-cores) 

TCP vs. UDP vs. MPI 
We also conduct Content-MPI (C-MPI)[43] experiment. C-MPI is a DHT implementation based on 

Kademlia DHT algorithm by Argonne National Laboratory with MPI communication mechanism: 

clients send and route requests to servers, the servers operate (insert, find or remove) on hash 

table, except each server maintains a neighbor table which does not contain all the server 

members. The experiment is deployed across 1 to 950 nodes on Sicortex SC5832 with one client 

and on server process on one node. At the largest scale test, C-MPI has the average insert 

operation time at 15.8 ms compared with 11 ms and 9.5 ms in ZHT-TCP and ZHT-UDP 

respectively. At this time, the performance of ZHT overweighs C-MPI’s, the conjectured 

explanation is that the communication latency in MPI costs more than simple TCP or UDP. 

Additional explanation is that MPI code doesn’t scale well when the number of nodes is going on, 

as shown in the graph, the operation time cost goes nearly linearly from 1 to 200 nodes, 

however, ZHT with TCP or UDP has a gentle growth, which also reveal that ZHT has good 

scalability, even in larger scale compared to MPI implementations.  
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5. Future work 
We have many ideas on improving ZHT and on possible use cases where ZHT could make a 

significant difference in performance or scalability. This section discusses such improvements 

(e.g. spanning trees), increased scalability studies at hundreds of thousands of core scales (e.g. 

IBM BlueGene/P, IBM BlueWaters, Cray XT5), and some concrete use cases that we are 

considering (e.g. FusionFS [cite], MosaStore [cite], Swift [cite], dFalkon [cite]).  

ZHT Enhancements 
Enhanced proactive failure detection: Existing data in ZHT will maintain the minimum replica 

count by detecting node failures (through periodic neighbor heartbeats), and upon a failure 

initiate a scan through all the data stored at neighboring nodes to ensure that the minimum 

replica threshold has not been reached. 

Spanning tree for 1-many communication: An important data dissemination pattern is the 1-

many communication pattern (e.g. broadcast). Spanning trees are a great abstraction to 

implement this 1-many pattern in order to improve performance and reduce hot-spots. A 

spanning tree of a connected graph G can also be defined as a maximal set of edges of G that 

contains no cycle. [Error! Reference source not found.] Minimum spanning trees are spanning 

trees that have minimum total weight. Many graph minimum spanning tree algorithms have 

been published, with the best taking linear time in either a randomized expected case model 

[Error! Reference source not found.] or with the assumption of integer edge weights [Error! 

Reference source not found.]. Since ZHT would have integer edge weights (the approximate 

distance between nodes in the linear node id space), the spanning tree form an approximate 

minimum spanning tree closely matching the network topology. Also, due to the membership 

being static and well defined, all nodes can compute their local independent minimum spanning 

trees, and all nodes will inherently obtain the same minimum spanning tree. This makes re-

computing the spanning tree efficient. 

FusionFS 
We proposes to the Fusion Distributed File System (FusionFS) optimized for a subset of HPC and 

MTC workloads. Every compute node will have all three roles, client, metadata server, and 

storage server. The metadata servers will use ZHT, which will allows the metadata information 

to be disperse throughout the system, and allow metadata lookups to occur in constant time.  

FusionFS will be accessible through library calls, and through a standard POSIX interface enabled 

by FUSE. As many current large-scale supercomputers do not have any persistent local storage 

on the compute nodes, the initial work will run on in-memory ram-disks that will be used 

primarily for fast scratch space; once persistent local storage on each node exists, FusionFS 

could be a persistent distributed file system. The userspace FusionFS implementation interacts 

with ZHT for metadata information, and then uses GridFTP to transfer files/chunks from remote 

resources. Note that every compute node has all three functions, client (FUSE), metadata server 

(ZHT), and data server (GridFTP).  



Distributed Metadata Management: FusionFS will use ZHT to implement the distributed 

metadata management. Every file will have metadata regarding the file (e.g. size, creation date, 

modification date, permissions, etc) as well as specific metadata about the data locality (e.g. 

chunk location on remote resources). Directories will be special files containing only metadata 

about the files in the directory.  

Data Indexing: When dealing with massive data collections, one challenge is indexing the 

material to support re-use and analysis.  All of the storage levels will need to support descriptive, 

provenance [Error! Reference source not found.], and system metadata on each file. The 

proposed solution encompasses metadata management at the same level as data management. 

We will explore the possibility of using ZHT to index data (not just metadata) based on its 

content. For this indexing to be successful, some domain specific knowledge regarding the data 

to be indexed will be necessary. A general solution to data indexing is hard, and certainly not the 

focus of this proposal. However, data indexing is an important issue as datasets continues to 

grow and efficient mechanisms to deal with large data collections is growing in importance. 

6. Conclusion 
The ideas in this report are transformative due to their departure from traditional HEC 

architectures and approaches, while proposing radical storage architecture changes based on 

distributed file systems to make exascale computing a reality. ZHT optimized for high-end 

computing systems is architected and implemented as a foundation in the development of fault-

tolerant, high-performance, and scalable storage systems. We performed an extensive 

performance evaluation of ZHT. We measured the performance of ZHT over TCP and UDP at 

scales up to 5400-cores on a SiCortex SC5832 supercomputer. 

The controversial viewpoints of this work can make exascale computing more tractable, 

touching every branch of computing in HEC. They will extend the knowledgebase beyond 

exascale systems into commodity systems as the fastest supercomputers generally become the 

mainstream computing system in less than a decade; the solutions proposed here will be 

relevant to the data centers and cloud infrastructures of tomorrow. These advancements will 

impact scientific discovery and global economic development. They will also strengthen a wide 

range of research activities enabling efficient access, processing, storage, and sharing of 

valuable scientific data from many disciplines (e.g. medicine, astronomy, bioinformatics, 

chemistry, aeronautics, analytics, economics, and new emerging computational areas in 

humanities, arts, and education). If these ideas materialize, they will transform the storage 

systems for future HEC systems, and open the door to a much broader class of applications that 

would have normally not been tractable. Furthermore, the concepts, data-structures, algorithms, 

and implementations that underpin these ideas in resource management at the largest scales 

can be applied to new emerging paradigms, such as Cloud Computing.  
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