
HyCache: A Hybrid User-Level File System with
SSD Caching

Student Name: Dongfang Zhao
Advisor: Dr. Ioan Raicu

Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

Abstract—For many decades, a huge performance gap has
existed between volatile memory and mechanical hard disk
drives. This will be a critical issue with extreme scale computing
systems. Although non-volatile memory has been around since
the 1990’s, mechanical hard disk drives are still dominant due to
large capacity and relatively low cost. We have designed and
implemented HyCache, a user-level file system that leverages
both mechanical hard disk drive cost-effectiveness and solid-
state drive performance. We adopted FUSE to deliver a user-
level POSIX-compliant file system that does not require any OS
or application modifications. HyCache allows multiple devices to
be used together to achieve better performance while keeping
costs low. An extensive evaluation is performed using synthetic
benchmarks as well as real world applications, which shows that
HyCache can achieve up to 7X higher throughput and 76X higher
IOPS over traditional Ext4 file systems on mechanical hard disk
drives.

I. INTRODUCTION

The mechanical spinning hard disk drive (HDD) has been
the performance bottleneck of computer systems for decades.
Their slow increase in bandwidth, slow decrease in latency,
and exponential increase in capacity, have made modern stor-
age devices quite unbalanced. Even though Solid State Drive
(SSD) has been introduced for over a decade, HDDs are still
dominant storage media in most systems because of their large
capacities and low costs. Some high-end HDDs have up to
200 MB/s peak bandwidth, which is significantly smaller than
main memory (RAM) bandwidths that range in the GB/s to
tens of GB/s. Making matters worse is that the trends of HDD
bandwidth and latency improvements are much smaller than
the comparable speedup of other electronic counterparts [32]
e.g. CPU still follows Moore’s Law [8]. This phenomenon can
be best explained by the fact that HDD has limitations imposed
by physics with respect to its moving magnetic components,
as opposed to other electronic components e.g. processors,
memory, etc.

SSD can alleviate the bottleneck issue of HDD to some
degree by offering a bandwidth up to several GB/s [26], but
their high cost (e.g. 44X higher costs per GB as shown in Table
I: $3.28 vs. $0.075) makes them impractical for many cost
sensitive applications. Because of the high cost, SSD capacity
is significantly smaller than HDD. At the point of this writing
the largest HDD has 4 TB space from Hitachi [9] whereas
mainstream SSD tops out at 960 GB from OCZ [26].

Recently a hybrid storage structure was proposed to com-
bine SSD and HDD to take advantages of both types of drives.
Seagate has just released a product Momentus XT [21] which

encapsulates both SSD and HDD into a single physical drive
a.k.a. hybrid hard disk (HHD). However the major drawback of
this commercial product is its proprietary nature, and closed
algorithms and architecture. For example, it is not possible
to explicitly address the SSD and HDD portion within the
device. In other words, it is not programmable to explicitly
indicate which data to put on which partition i.e. SSD or HDD.
Furthermore, the SSD is often small (e.g. 4GB) in relation to
a large HDD (e.g. 500 GB to 1 TB). The small SSD portion
typically have inexpensive and relatively slow controllers in
order to keep the costs low. And these drives often limit the I/O
operations that use the SSD cache (e.g. just read operations).
These drawbacks limit the applicability to fully leverage the
SSD advantages for superior performance at a low cost, for
a large variety of workloads. More recently OCZ released
Synapse [27] for a hybrid solution which has more limitations
since it is only supported by Windows systems.

To get a more concrete impression of the aforementioned
types of hard drives in the real world we list some key spec-
ifications of some mainstream commercial products in Table
I. All pricing information are obtained from Newegg [22].
The first one is a high end SSD OCZ RevoDrive RVD3X2-
FHPX4-960G with a price tag of $3,150. The second one is
a mainstream SSD OCZ Octane OCT1-25SAT3-512G which
costs $800. The third one was the first hybrid drive in the
market released in 2011 from Seagate: Momentus XT, which
consists of 4 GB SSD and 500 GB HDD for sale at $110. The
last device is currently the largest HDD in the market: Hitachi
Deskstar 7K4000 with a price tag of $350.

Even though SSD technology is not a perfect replacement
for HDD, it could potentially serve as a cache buffer between
RAM and HDD. First of all, its bandwidth lands just between
the RAM and HDD, offering approximately one order of
magnitude higher bandwidth than HDD and one order of
magnitude lower than memory. Furthermore, SSDs can offer
up to three orders of magnitude better latencies than HDD. If
price is not a concern, SSDs are a great storage technology.
However, if price does influence the storage technology, a
hybrid architecture that uses both SSDs and HDDs could
achieve a large percentage of the SSDs performance while
at a cost that is only slightly more expensive than the HDD.

Adding a new level of SSD cache is not trivial because
the caching scheme of the operating system will need to
be modified. For most of applications and setups, it is not
appropriate to modify the kernel of the operating system.

TABLE I
KEY SPECIFICATIONS OF SOME HARD DRIVES ON THE MARKET

Hard Drive Unit Price (per GB) Capacity (GB) Read (MB/s) Write (MB/s) IOPS
OCZ RevoDrive $3.28 960 1,500 1,300 230,000

OCZ Octane $1.56 512 480 330 26,000
Seagate Momentus XT $0.22 504 131 101 238

Hitachi Deskstar $0.075 4,096 144 142 360

Moreover, modifying kernel will introduce other issues like
portability, maintenance, security, cost, etc.

An alternative to avoid modifying the kernel is to only
leverage SSD in the user space. For example, File System
in User Space (FUSE) [6] is a framework to help develop
customized file system in most of modern operating systems
e.g. UNIX, Mac OS and Windows, etc. Over the years many
user-level file systems ([1], [11], [13], [20], [23], [28], [31],
[38]) have all adopted FUSE. FUSE module has been officially
merged into the Linux kernel tree since kernel version 2.6.14
[18].

Deploying FUSE-based file systems on hybrid SSD+HDD
offers two technical benefits. First, users can simply take
advantages of SSD performance without privilege permissions.
There would be no development or administration efforts
needed to deploy the file system. It also circumvents pos-
sible security issues related to user authentications. Second,
the file systems can be maintained effectively with failure
transparency. This transparency is achieved by the fact that
end users can only see the file system in the user space and the
underlying physical storage is invisible. Therefore the failed
physical storage devices can be replaced without affecting the
end users.

In this paper we present the design and implementation of
a file system in user space under FUSE framework to leverage
the performance advantage of SSD in hybrid hard drives. In
particular, the SSD is treated as a persistent cache between
RAM and HDD. Our implementation is called HyCache, and it
stands for Hybrid User-Level File System with SSD Caching.
The purpose of HyCache is to allow users have a cost effective
and faster file system without modifying the operating system
kernel. The contribution of this work is twofold as summarized
in the following:

1) Design and implement a user-level POSIX-compliant file
system with high throughput, low latency, single name
space, and strong consistency.

2) Extensive performance evaluation showing that user-
level file systems can be competitive with kernel-level
file systems as well as embedded hybrid hard drive
technologies.

The structure of this paper is as follows. A brief introduction
to FUSE framework is given in Section II. Section III describes
the architecture of HyCache. Section IV details the imple-
mentation of HyCache. The experimental results of HyCache
performance are presented in Section V. Section VI reviews
some previous work on hybrid storage systems. Section VII

concludes the paper and discusses our future plan.

II. FUSE
FUSE is a loadable kernel module for UNIX-like computer

operating systems that lets non-privileged users create their
own file systems without editing kernel code. As an example,
Figure 1 (from Wikipedia [39]) shows the flow chart of a
typical FUSE-based program. End users try to list all the files
under directory /tmp/fuse. This request is sent to the kernel
and caught by the FUSE kernel module because /tmp/fuse is
a FUSE mount point. The kernel module then makes another
context switch to call the user-defined executable ./hello in
the user space. The executable, linked with the libfuse library,
enters the kernel mode again to make the system call. Finally
the result is returned to the caller (i.e. ls -l /tmp/fuse) in the
user space to complete the request.

Fig. 1. A flow chart of ls command in FUSE framework

There are extra context switches involved in FUSE frame-
work which result in some overheads compared to the native
file system. In native UNIX file systems (e.g. Ext4) there
are only two context switches between the caller in user
space and the system call in kernel spaces. On the other
hand, as shown in Figure 1 there are four context switches:
two switches between the caller and VFS; and another two
between libfuse and FUSE. Therefore, theoretically FUSE-
based file systems have degraded performance when compared
to native ones. A detailed comparison between FUSE-enabled
and native file systems was reported in [30], which shows
that a Java implementation of FUSE has about 60% overhead
compared to the native file system.

The overhead can be potentially reduced to get a comparable
performance of native file systems because FUSE provides a

few tuning parameters that can significantly adjust its perfor-
mance. We will show that our implementation of FUSE on
HDD has almost the same read and write bandwidth as Ext4.
As reported in [30] it is even possible for FUSE-based file
system to outperform the native file system because a finely
tuned FUSE might have a better read-ahead mechanism than
what the kernel uses. We treat Ext4 as the baseline because it
is the most widely used Linux file system.

The FUSE framework consists of two major components
to facilitate the development of file systems in user space: the
FUSE kernel module and the libfuse library. Both components
are described in Figure 1. The FUSE kernel module provides
the low-level API that interacts with VFS interface closely.
This is useful for file systems that are developed from scratch
like ZFS-FUSE [31]. In contrast, the libfuse library can in-
terpret the customized implementations of the FUSE standard
interfaces and take over the file operations. In other words,
libfuse offers a high level API to develop the file system in user
space. Although it has less flexibility than the first option, in
most cases it provides sufficient functionality that a file system
needs. Like the vast majority of FUSE-based file systems,
HyCache also adopts the second means i.e. implementing the
high level APIs provided by FUSE.

III. DESIGN

Figure 2 shows a bird’s view of HyCache. At the highest
level there are three logical components: request handler, file
dispatcher and persistent storage. Request handler interacts
with end users and passes the user requests to the file dis-
patcher. File dispatcher takes file requests from request handler
and conducts the operations on the persistent storage. The
persistent storage is just a mix of high- and slow-speed storage
block devices, in our case the SSD and HDD drives.

A. Request Handler

The request handler is the first component of the whole
system that interacts with end users. It allows end users to
input POSIX file commands. The HyCache mount point can
be any directory in a UNIX-like system as long as end users
have sufficient permissions on that directory. This mount point
is monitored by the FUSE kernel module, so any POSIX file
operations on this mount point is passed to the FUSE kernel
module. Then the FUSE kernel module will import the FUSE
library and try to transfer the request to FUSE API in the file
dispatcher.

The HyCache mount point itself is not only a single local
directory but a virtual entry point of two mount points for
SSD partition and HDD partition, respectively. Figure 3 shows
how to mount HyCache in a UNIX-like system. Assuming
HyCache would be mounted on a local directory called hy-
cache mount, and another local directory (e.g. hycache root)
has been created and has at least two subdirectories: the
mount point of the SSD partition and the mount point of the
HDD partition, users can simply execute ./hycache <root>
<mount> where hycache is the executable for HyCache, root
is the physical directory and mount is the virtual directory.

Fig. 3. HyCache Mount Point

B. File Dispatcher

File dispatcher is the core component of HyCache, as it redi-
rects user-provided POSIX requests into customized handlers
of file manipulations. FUSE only provides POSIX interfaces
and file dispatcher is exactly the place where these interfaces
are implemented, e.g. some of the most important file op-
erations like open(), read() and write(), etc. File dispatcher
manages the file locations and determines with which hard
drive a particular file should be dealing. Some replacement
policies, i.e. cache algorithms, need to be provided to guide
the File Dispatcher.

Cache algorithms are optimizing instructions that a com-
puter program can follow to manage a cache of information
stored on the computer. When the cache is full, the algorithm
must choose which items to discard to make room for the new
ones. In case of HyCache, cache algorithm determines which
file(s) in SSD are swapped to HDD when the SSD space is
intensive. Different cache algorithms have been extensively
studied in the past decades. There is no one single algorithm
that suppresses others in all scenarios. We have implemented
LRU (Least Recently Used) and LFU (Least Frequently Used)
[36] in HyCache and the users are free to plug in their own
algorithms for swapping files.

C. Persistent Storage

Persistent storage is like the traditional hard disk that is used
to store files persistently. In HyCache it consists of at least
two types of disks: the slower one (i.e. HDD) works like a
permanent storage medium and the faster one (i.e. SSD) acts
like a cache between the RAM and HDD. The SSD is not
exactly the same as the conventional cache which is volatile:
the data are only transient copies of the data in the persistent
disk and will be lost when the system is restarted. Unlike
traditional volatile cache where we have to write back the
cache data to disks at some point, HyCache only needs to write
data to SSD cache once and it becomes persistent (even after
reboots). There is also nothing architecturally that prohibits us
from leveraging more than two levels of storage with different
characteristics.

D. Characteristics

This subsection describes some of the important charac-
teristics of HyCache such as multithreading, naming and
consistency.

Fig. 2. HyCache Architecture

HyCache fully supports multithreading, although users have
the option to disable it to run applications in the single-thread
mode. Even though there are cases where multithreading does
not help and only introducing overheads by switching contexts,
by default multithreading is enabled in HyCache because in
most cases this would improve the overall performance by
keeping the CPU busy. We will see in the evaluation section
how the aggregate throughput is significantly elevated with the
help of concurrency.

Naming in HyCache follows the tree structure similarly
to UNIX-like systems. In fact, one of the key features of
HyCache is to provide an identical POSIX interface to end
users. Therefore the name space is pretty much the same as
a standard UNIX file system from the perspective of end
users. However the infrastructure of HyCache has a more
complicated mechanism because it needs to manage multiple
name spaces and convert them to a single view to end users.

One common issue with cache is how to handle the con-
sistency between the cached data and the persistent copy.
HyCache does not have this problem because the SSD cache
itself is persistent, and there is only one copy of the data
at any moment. Certainly at some point the SSD cache data
needs to swapped to HDD when the SSD usage is too high. In
this case HyCache simply moves the cached file from SSD to
HDD and creates a symbolic link in SSD to the physical file in
HDD. Similarly, when removing a file which has been moved
to HDD, HyCache deletes both the physical file in HDD and
the symbolic link in SSD. In short, HyCache offers a strong
consistency between the SSD cache and the HDD persistent
storage.

IV. IMPLEMENTATION

HyCache has about 2,500 lines of C code, together with
some scripts and configuration files. It was compiled with
GCC version 4.6.3. and is published as an open source project
[10]. The implementation language was chosen to be C due
to several reasons. One major reason was that the FUSE
framework is natively written in C, and we thought it would be
most efficient and simple to keep the HyCache implementation
in the same language. Second, it is hard to argue against
C from a performance point of view, which was one of the
primary goals of this work. And finally, we are planning to
run the HyCache file system in many HPC systems, which

many only support Fortran, C, and C++, making higher level
languages such as Java, C#, and Python [6] not viable options.

A. Achieving POSIX through FUSE

FUSE provides 35 interfaces to fully comply with POSIX
file operations and we implemented all of these 35 interfaces
to ensure HyCache supports all POSIX operations. Some
of these are called more frequently e.g. some essential file
operations like open(), read(), write() and unlink() whereas
others might be less popular or even remain optional in some
Linux distributions like getxattr() and setxattr() which are to
get and set extra file attributes, respectively.

Other than implementing FUSE interfaces some supple-
mentary functionalities are needed to make HyCache a fully
functional POSIX-like file system. For example a replacement
policy should be available to swap stale SSD files to HDD
when the SSD usage breaks some threshold. This actually
indicates that another function is in need to continuously
check the SSD usage as well as other system states. For
the same reason mentioned before all these modules are also
written in C. The implementations of cache algorithms are
loosely coupled to the FUSE interfaces thus end users can
easily plug in their own cache algorithms to satisfy their
application-specific needs. This kind of flexibility is unheard
of in commercial hybrid drives, such as those from Seagate
[21] and OCZ [25].

There are two top level mount points in HyCache: hy-
cache mount and hycache root. hycache mount is the layer
that connects the user and the underlying physical storages.
From the user’s perspective it provides end users the POSIX
file operations and returns the results. From the perspective
of hycache root, it works like a soft link or mount point
of the underlying physical files. hycache root is the physical
directory where HyCache manages files and is further divided
into two subdirectories: a SSD partition and a HDD partition.

For manipulating files across multiple storage devices we
use symbolic links to track file locations. Another possibility
is to adopt hash tables. In this initial release we preferred
symbolic links to hash tables for two reasons. First, symbolic
link itself is persistent, which means that we do not need to
worry about the cost of swapping data between memory and
hard disk. It also offers a stronger consistency because there
is only one copy of metadata at any given time, as opposed
to multiple copies if hash tables were used. Second, symbolic

link is natively supported by UNIX-like systems and FUSE
framework. Ideally, if we can make hash table persistent then
it would be the best choice for managing metadata. We have
been working on a persistent hash table project called NoVoHT
[24] and will incorporate it in the next release.

Figure 4 shows a typical scenario of file mappings when
the space of SSD cache is intensive so some file(s) needs to
be swapped into the HDD. End users only see virtual files in
HyCache mount point (i.e. hycache mount) and every single
file in the virtual directory is mapped to the underlying SSD
physical directory. SSD only has a limited space so when the
usage is beyond some threshold then HyCache will move some
file(s) from SSD to HDD and only keep symbolic link(s) to
the swapped files. The replacement policy, e.g. LRU or LFU,
determines when and how to do the swapping.

Fig. 4. File movement in HyCache. When free space of SSD cache is below
some threshold, based on some caching algorithm file2 is evicted out of the
SSD. The SSD cache still keeps a symbolic link of file2 which has been
moved to the HDD drive.

Formally, Algorithm 1 describes how HyCache updates SSD
cache when end users open files. The first thing is to check
if the requested file is physically in HDD in Line 1. If so the
system needs to reserve enough space in SSD for the requested
file. This is done in a loop from Line 2 to Line 5 where the
stale files are moved from SSD to HDD and the cache queue
is updated. Then the symbolic link of the requested file is
removed and the physical one is moved from HDD to SSD in
Line 6 and Line 7. We also need to update the cache queue in
in Line 8 and Line 10 for two scenarios, respectively. Finally
the file is opened in Line 12.

Algorithm 1 Open a file in HyCache
Require: F is the file requested by the end user; Q is the

cache queue used for the replacement policy; SSD is the
mount point of SSD drive; HDD is the mount point of
HDD drive

Ensure: F is appropriately opened
1: if F is a symbolic link in SSD then
2: while SSD space is intensive and Q is not empty do
3: move some file(s) from SSD to HDD
4: remove these files from the Q
5: end while
6: remove symbolic link of F in SSD
7: move F from HDD to SSD
8: insert F to Q
9: else

10: adjust the position of F in Q
11: end if
12: open F in SSD

Another important file operation in HyCache that is worth
mentioning is file removal. We explain how HyCache removes
a file in Algorithm 2. Line 4 and Line 5 are standard instruc-
tions used in file removal: update the cache queue and remove
the file. Lines 1-3 check if the file to be removed is actually
stored in HDD. If so, this regular file needs to be removed as
well.

Algorithm 2 Remove a file in HyCache
Require: F is the file requested by the end user for removal;

Q is the cache queue used for the replacement policy; SSD
is the mount point of SSD drive; HDD is the mount point
of HDD drive

Ensure: F is appropriately removed
1: if F is a symbolic link in SSD then
2: remove F from HDD
3: end if
4: remove F from Q
5: remove F from SSD

We will not show the algorithm of each every POSIX
file operation supported by HyCache. The idea is similar to
Algorithm 1 and Algorithm 2: manipulate files in SSD and
HDD back and forth to make users feel they are working on
a single file system. We show one more example - rename(),
which is to rename a file in Algorithm 3. If the file to be
renamed is a symbolic in SSD, the corresponding file in HDD
needs to be renamed as shown in Line 2. Then the symbolic
link in SSD is outdated and needs to be updated in Lines 3-
4. On the other hand if the file to be renamed is only stored
in SSD then the renaming occurs only in SSD and the cache
queue, as shown in Lines 6-7. In either case the position of the
newly accessed file F’ in the cache queue needs to be updated
in Line 9.

Algorithm 3 Rename a file in HyCache
Require: F is the file requested by the end user to rename;

F’ is the new file name; Q is the queue used for the
replacement policy; SSD is the mount point of SSD drive;
HDD is the mount point of HDD drive

Ensure: F is renamed to F’
1: if F is a symbolic link in SSD then
2: rename F to F’ in HDD
3: remove F in SSD
4: create the symbolic link F’ in SSD
5: else
6: rename F to F’ in SSD
7: rename F to F’ in Q
8: end if
9: update F’ position in Q

B. Caching Algorithms

HyCache provides two built-in cache algorithms: LRU and
LFU. End users are free to plug in other cache algorithms
depending on their data patterns and/or application character-
istics. As shown in Algorithms 1 - 3, all the implementations
are independent of specific cache algorithms. LRU is one of
the most widely used cache algorithms in computer systems. It
is also the default cache algorithm used in HyCache. LFU is an
alternative to facilitate the SSD cache if the access frequency
is of more interests. In case all files are only accessed once
(or for equal times), LFU is essentially the same as LRU, i.e.
the file that is least recently used would be swapped to HDD
if SSD space becomes intensive.

We implement LRU and LFU with the standard C library
<search.h> instead of importing any third-party libraries
for queue-handling utilities. This header supports doubly-
linked list with only two operation: insque() for insertion and
remque() for removal. We implement all other utilities from
scratch e.g. check the queue length, search for a particular
element in the queue, etc. Each element of LRU and LFU
queues stores some metadata of a particular file like filename,
access time, number of access (only useful for LFU though),
etc.

We show how LRU is implemented in Figure 5. A new file
is always created on SSD. This is possible because HyCache
ensures the SSD partition has enough space for next file
operation after current file operation. For example after editing
a file, the system checks if the usage of SSD has hit the
threshold of being considered as “SSD space is intensive”.
Users can define this value by their own, for example 90% of
the entire SSD. When the new file has been created on SSD it
is also inserted in to the tail of LRU queue. On the other hand,
if the SSD space is intensive we need to keep swapping the
heads of LRU queue into HDD until the SSD usage is below
the threshold. Both cases are pretty standard queue operations
as shown in the top part of Figure 5. If a file already in the
LRU queue gets accessed then we need to update its position
in the LRU queue to reflect the new time stamp of this file.

In particular, as shown in the bottom part of Figure 5, the
newly accessed file needs to be removed from the queue and
re-inserted into the tail.

Fig. 5. LRU in HyCache

LFU is implemented in a similar way as LRU with a little
more work. In LFU, the position of a file in the queue is de-
termined by two criteria: frequency and timestamp. LFU first
checks the access frequency of the file. The more frequently
this file has been touched, the closer it will be positioned to the
queue tail. If there are multiple files with the same frequency,
for this particular set of files LRU will be applied, i.e. based
on timestamp.

V. EVALUATION

The experiments are carried out on a system comprised of an
AMD Phenom II X6 1100T Processor (6 cores at 3.3 GHz)
and 16 GB RAM. The spinning disk is Seagate Barracuda
1 TB. The SSD is OCZ RevoDrive×2 100 GB. The HHD
is Seagate Momentus XT 500 GB (with 4 GB built-in SSD
cache). The operating system is 64-bit Fedora 16 with Linux
kernel version 3.3.1. The native file system is Ext4 with default
configurations (i.e. mkfs.ext4 /dev/device).

We have tested the functionality and performance of Hy-
Cache in three experiments. The first two are benchmarks
with synthetic data to test the raw bandwidth of HyCache.
In particular, these benchmarks can be further categorized into
micro-benchmarks and macro-benchmarks. Micro-benchmarks
are used to measure the performance of some particular file
operations and their raw bandwidths. Macro-benchmarks, on
the other hand, are focused on application-level performance
of a set of mixed operations simulated on a production server.
For both types of benchmarks we pick two of most popular
ones to demonstrate HyCache performance: IOzone [4] and
PostMark [14]. The third experiment is to test the functionality
of HyCache with a real application. We achieve this by
successfully installing MySQL on HyCache and deployed a
couple of TPC-H databases [37] with different scales and time
the execution for loading tables and making queries.

In the remaining of this paper we will use terms throughput
and bandwidth interchangeably, which basically means the rate
of data transferring. Unless otherwise specified all bandwidths
are with respect to sequential read and write operations.

A. FUSE overhead

To understand the overhead introduced by FUSE, we com-
pare the I/O performance between raw RAMDISK (i.e. tmpfs
[34]) and a simple FUSE file system mounted on RAMDISK.
By experimenting on RAMDISK we completely eliminate all

factors affecting performance particularly from the spinning
disk, disk controllers, etc. Since all the I/O tests are essentially
done on the memory, any noticeable performance differences
between the two setups are solely from FUSE itself.

We mount FUSE on /dev/shm, which is a built-in
RAMDISK in UNIX-like systems. The read and write band-
width on both raw RAMDISK and FUSE-based virtual file
system are reported in Figure 6. Moreover, the performance
of concurrent FUSE processes are also plotted which shows
that FUSE has a good performance scalability with respect to
the number of concurrent jobs. In the case of single-process
I/O, there is a significant performance gap between Ext4 and
FUSE on RAMDISK. The read and write bandwidths of Ext4
on RAMDISK are in the order of gigabytes, whereas when
mounting FUSE we could only get a bandwidth in the range of
500 MB/s. These results suggest that FUSE could not compete
with the kernel-level file systems in raw bandwidth, primarily
due to the overheads incurred by having the file system
in user-space, the extra memory copies, and the additional
context switching. However, we will see in the following
subsections that even with FUSE overhead on SSD, HyCache
still outperforms traditional spinning disks significantly, and
that concurrency can be used to scale up FUSE performance
close to the theoretical hardware performance (see Figure 9
and Figure 10).

(a) Read Bandwidth

(b) Write Bandwidth

Fig. 6. Bandwidth of raw RAMDISK and a FUSE file system mounted
on RAMDISK. Px means x number of concurrent processes, e.g. FUSE
RAMDISK P2 stands for 2 concurrent FUSE processes on RAMDISK.

B. Micro-benchmark

IOzone is a general file system benchmark utility. It creates
a temporary file with arbitrary size provided by the end user
and then conducts a bunch of file operations like re-write, read,
re-read, etc. In this paper we use IOzone to test the read and
write bandwidths as well as IOPS (input/output per second)
on the different file systems.

We show the throughput with a variety of block sizes
ranging from 4 KB to 16 MB. For each block size we show
five bandwidths from the left to the right: 1) the theoretical
bandwidth upper bound (obtained from RAMDISK), 2) Hy-
Cache, 3) a simple FUSE file system accessing a HDD, 4)
HDD Ext4 and 5) HHD Ext4.

Figure 7(a) shows HyCache read speed is about doubled
compared to the native Ext4 file system for most block sizes.
In particular when block size is 16 MB the peak read speed for
HyCache is over 300 MB/s. It is 2.2X speedup with respect
to the underlying Ext4 for HDD as shown in Figure 8(a).
As for the overhead of FUSE framework compared to the
native Ext4 file system on spinning disks we see FUSE only
adds little overhead to read files at all block sizes as shown
in Figure 8(a): for most block sizes FUSE achieves nearly
100% performance of the native Ext4. Similar results are also
reported in a review of FUSE performance in [30]. This fact
indicates that even when the SSD cache is intensive and some
files need to be swapped between SSD and HDD, HyCache
can still outperform Ext4 since the slower media of HyCache
(HDD FUSE in Figure 7), are comparable to Ext4. We will
present the application-level experimental results in the macro-
benchmark subsection where we discuss the performance
when files are frequently swapped between SSD and HDD.
We can also see that the commercial HHD product performs
at about the same level of the HDD, likely primarily due to a
small and inexpensive SSD.

We see a similar result of file writes in Figure 7(b) as file
reads. Again HyCache is about twice as fast when compared
to Ext4 on spinning disks for most block sizes. The peak write
bandwidth which is almost 250 MB/s is also obtained when
block size is 16 MB, and it achieves 2.18x speedup for this
block size compared to Ext4 as shown in Figure 8(b). Also in
this figure, just like the case of file reads we see little overhead
of FUSE framework for the write operation on HDD except
for 4KB block.

Figure 8 shows that for small block size (i.e. 4 KB)
HyCache only achieves about 50% throughput of the native
file system. This is due to the extra context switches of FUSE
between user level and kernel level, in which the context
switches of FUSE dominate the performance. Fortunately in
most cases this small block size (i.e. 4 KB) is more generally
used for randomly read/write of small pieces of data (i.e.
IOPS) rather than high-throughput applications. Table II shows
HyCache has a far higher IOPS than other Ext4. In particular,
HyCache has about 76X IOPS as traditional HDD. The SSD
portion of the HHD device (i.e. Seagate Momentus XT) is a
read-only cache, which means the SSD cache does not take

(a) Read Bandwidth

(b) Write Bandwidth

Fig. 7. IOzone bandwidth of 5 file systems.

effect in this experiment because IOPS only involves random
writes. This is why the IOPS of the HHD lands in the same
level of HDD rather than SSD.

TABLE II
IOPS OF DIFFERENT FILE SYSTEMS

HyCache HDD Ext4 HHD Ext4
14,878 195 61

HyCache also takes advantages of the multicore’s con-
current tasking which results in a much higher aggregate
throughput. The point is that HyCache avoids reading/writing
directly on the HDD so it handles multiple I/O requests
concurrently. In contrast, traditional HDD only has a limited
number of heads for read and write operations. Figure 9 shows
that HyCache has almost linear scalability with the number
of processes before hitting the physical limit (i.e. 306 MB/s
for 4 KB block and 578 MB/s for 64 KB block) whereas
the traditional Ext4 has degraded performance when handling
concurrent I/O requests. The largest gap is when there are 12
concurrent processes for 64KB block (578 MB/s for HyCache
and 86 MB/s for HDD): HyCache has 7X higher throughput
than Ext4 on HDD.

The upper bound of aggregate throughput is limited by the
SSD device rather than HyCache. This can be demonstrated in
Figure 10 which shows how HyCache performs in RAMDISK.
The performance of raw RAMDISK were also plotted. We

(a) Read Speedup

(b) Write Speedup

Fig. 8. HyCache and FUSE speedup over HDD Ext4.

can see that the bandwidth of 64KB block can be achieved
at about 4 GB/s by concurrent processes. This indicates that
FUSE itself is not a bottle neck in the last experiment: it will
not limit the I/O speed unless the device is slow. This implies
that HyCache can be applied to any faster storage devices
in future as long as the workloads have enough concurrency
to allow FUSE to harness multiple computing cores. Another
observation is that HyCache can consume as much as 35%
of raw memory bandwidth as shown in Figure 10 for 64KB
block and 24 processes: 3.78 GB/s for HyCache and 10.80
GB/s for RAMDISK.

What FUSE overhead hurts HyCache most severely is the
metadata management. Because of the aforementioned extra
context switches between kernel and user spaces, the metadata
operations in HyCache are slower than Ext4, as shown in Table
III. The workaround of this is to plug-in an in-memory meta-
data management system for acceleration. We implemented
an emulation feature in HyCache that allows us to study the
effects of different metadata management techniques. When
we tried incorporating NoVoHT (Non-Volatile Hash Table),
which is essentially an in-memory hash table and uses a log-
based persistence mechanism with periodic checkpointing, we
observed a comparable performance of metadata operations to
those of native kernel-level file systems such as Ext4. We will
integrate NoVoHT into HyCache in the next release, together
with some other optional choices.

(a) 4KB Block

(b) 64KB Block

Fig. 9. Aggregate bandwidth of concurrent processes.

Fig. 10. Aggregate bandwidth of the FUSE implementation on RAMDISK.

TABLE III
NUMBER OF METADATA OPERATIONS PER SECOND

HyCache HyCache w/ NoVoHT HDD HHD
68 322 362 367

C. Macro-benchmark

PostMark is a one of the most popular benchmarks to
simulate different workloads in file systems. It was originally
developed to measure the performance of ephemeral small-
file regime used by Internet software like Emails, netnews
and web-based commerce, etc. A single PostMark instance
carries out a number of file operations like read, write, append
and delete, etc. In this paper we use PostMark to simulate a

synthetic application that performs different number of file
I/Os on HyCache with two cache algorithms LRU and LFU,
and compare their performances to Ext4.

We show PostMark results of four file systems: HyCache
with LRU, HyCache with LFU, Ext4 on HDD and Ext4 on
HHD. And for each of them we carried out four different
workloads: 2 GB, 4 GB, 6 GB and 8 GB. To make a
fair comparison between HyCache and the HHD device (i.e.
Momentous XT: 4 GB SSD and 500 GB HDD), we set the
SSD cache of HyCache to 4 GB. Figure 11 shows the speedup
of HyCache with LRU and LFU compared to Ext4 on HDD
and HHD. The difference between LRU and LFU is almost
negligible. The ratio starts to go down at 6 GB because
HyCache only has 4 GB allocated SSD. Another reason is that
PostMark only creates temporary files randomly without any
repeated pattern. In other words it is a data stream making the
SSD cache thrashes (this could be considered to be the worst
case scenario).

(a) HyCache vs. HDD (b) HyCache vs. HHD

Fig. 11. PostMark: speedup of HyCache over Ext4 with 4 GB SSD cache.

A big advantage of HyCache is that users can freely allocate
the size of the SSD cache. In the last experiment HyCache did
not work well as HHD mainly because the data is too large to
fit in the 4 GB cache. Here we show how increasing the cache
size impacts the performance. Figure 12 shows that if a larger
SSD cache (i.e. 1GB - 8GB) is offered then the performance is
indeed better than others with as much as a 18% performance
improvement: LRU HyCache with 8GB SSD cache vs. HHD.

(a) HyCache vs. HDD (b) HyCache vs. HHD

Fig. 12. PostMark: speedup of HyCache with varying sizes of cache.

D. Application

To further test HyCache with real applications, on HyCache
we install MySQL 5.5.21 with database engine MySIAM, and
deploy TPC-H 2.14.3 databases.

MySQL is open source and one of the most popular
databases nowadays. Unlike other commercial databases like
Oracle or Microsoft SQL Server which has a proprietary archi-
tecture, MySQL has a simple yet sufficient design: database
is just a directory and tables within a database are the files
under that directory. This feature makes MySQL a good fit
for HyCache, as all we need is to mount the database as a
directory in HyCache and manipulate files (i.e. tables, from
the perspective of MySQL) within that directory. In essence,
when loading data to the database we are performing file writes
whereas executing a query is actually reading the files.

TPC-H is an industry standard benchmark for databases. By
default it provides a variety size of databases (e.g. scale 1 for 1
GB, scale 10 for 10 GB, scale 100 for 100GB) each of which
has eight tables. Further, TPC-H provides 22 complicated
queries (i.e. Query #1 to Query #22) that are comparable to
business applications in the real world. Figure 13 shows Query
#1 which will be used in our experiments.

Fig. 13. TPC-H: Query #1.

To test file writes in HyCache, we loaded table lineitem at
scale 1 (which is about 600 MB) and scale 100 (which is
about 6 GB) in these three file systems: LRU HyCache, HDD
Ext4 and HHD Ext4. As for file reads we ran Query #1 at
scale 1 and scale 100. HyCache has an overall of 9% and 4%
improvement over Ext4 on HDD and HHD, respectively. The
result details of these experiments are reported in Figure 14.

Fig. 14. TPC-H: speedup of HyCache over Ext4 on MySQL.

VI. RELATED WORK

To the best of our knowledge HyCache is the first user-
level POSIX-compliant file system for coordinating SSDs and
HDDs. Some existing work requires modifying OS kernel,
or lacks of a systematic caching mechanism for manipulating
files across multiple storage devices, or does not support the
POSIX interface. Any of the these concerns would limit the
system’s applicability to end users. We will give a brief review
of previous studies on hybrid storage systems.

Some recent work reported the performance comparison
between SSD and HDD in more perspectives ([33], [35]).
SSD was also proposed to be integrated to the RAM level
which makes SSD as the primary holder of virtual memory
[2]. Hystor [5] aims to optimize of the hybrid storage of SSDs
and HDDs. However it requires to modify the kernel which
might cause some issues. HPDA [19] offers a mechanism to
plug SSDs into RAID in order to improve the reliability of the
disk array. ComboDrive [29] requires extra hardware support
to statically allocate files between SSD and HDD based on file
types. Jo et al [12] proposed another SSD+HDD architecture
which supports a read-only image on SSD and isolates write
operations only on HDD. A similar architecture was proposed
in [40] which only considers SSD as a read-only buffer and
migrate those random-writes to HDD. In database community,
Khessib [15] proposed a similar architecture which leverages
SSD as an intermediate persistent cache that sits between
conventional HDD and memory. HeteroDrive [16] translates
random writes via SSDs to sequential writes on HDD. Another
hybrid architecture was proposed in [17] by combining two
kinds of NAND flash - MLC flash and SLC flash. CacheFS
[3] is an ongoing project from the open source community and
still in an initial stage, e.g. statically allocating files based on
file sizes.

VII. CONCLUSION AND FUTURE WORK

In this paper we address one of the major challenges in
computing systems and propose a cost-effective solution to
alleviate the storage bottleneck. We believe that this work
can be a solid building block for future distributed storage
systems, aimed at delivering comparable performance of an
all SSD solution at a fraction of the cost. We designed and
implemented a user-level POSIX-compliant file system with
high throughput, low latency, single name space, and strong
consistency. Our extensive performance evaluation showed that
user-level file systems can be competitive with kernel-level file
systems as well as embedded hybrid hard drive technologies.

HyCache will adopt NoVoHT to improve the performance
of metadata operations as the default metadata management.
HyCache will be eventually integrated into FusionFS [7] which
is a high-performance distributed file system aimed at exascale
computing, currently being developed by the authors of this
work.

ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion (NSF) under grant OCI-1054974.

REFERENCES

[1] Alexander Galanin, Fuse-zip project, http://code.google.com/p/fuse-zip/.
[2] Anirudh Badam and Vivek S. Pai, SSDAlloc: hybrid SSD/RAM memory

management made easy, Proceedings of the 8th USENIX conference on
Networked systems design and implementation, 2011.

[3] CacheFS, CacheFS project, http://code.google.com/p/cachefs/.
[4] D. Capps, IOzone Filesystem Benchmark, www.iozone.org (2008).
[5] Feng Chen, David Koufaty, and Xiaodong Zhang, Hystor: Making the

best use of solid state drives in high performance storage systems,
Proceedings of the international conference on Supercomputing (ICS),
2011.

[6] FUSE Project, http://fuse.sourceforge.net.
[7] FusionFS: Fusion distributed File System,

http://datasys.cs.iit.edu/projects/FusionFS/.
[8] Gordon Moore, Moore’s Law, Intel Cooperation (1965).
[9] Hitachi Deskstar 7K4000, http://www.hitachigst.com/deskstar-7k4000.

[10] HyCache: a hybrid user-level file system with SSD caching,
http://datasys.cs.iit.edu/projects/HyCache/index.html.

[11] Jan Kratochvil, Captive project,
http://www.jankratochvil.net/project/captive/.

[12] Heeseung Jo, Youngjin Kwon, Hwanju Kim, Euiseong Seo, Joonwon
Lee, and Seungryoul Maeng, SSD-HDD-Hybrid Virtual Disk in Consol-
idated Environments, Euro-Par 2009 – Parallel Processing Workshops,
2009.

[13] John Madden, Svnfs project, http://www.jmadden.eu/index.php/svnfs/.
[14] Jeffrey Katcher, Postmark: A new file system benchmark, Network

Appliance, Inc., vol. 3022, 1997.
[15] Badriddine M. Khessib, Kushagra Vaid, Sriram Sankar, and Chengliang

Zhang, Using solid state drives as a mid-tier cache in enterprise
database OLTP applications, Proceedings of the second TPC technology
conference on performance evaluation, measurement and characteriza-
tion of complex systems, 2010.

[16] Sang-Hoon Kim, Dawoon Jung, Jin-Soo Kim, and Seungryoul Maeng,
HPDA: A hybrid parity-based disk array for enhanced performance
and reliability, International Workshop on Software Support for Portable
Storage, 2009.

[17] Li-Pin Chang, Hybrid solid-state disks: combining heterogeneous NAND
flash in large SSDs, Proceedings of the 2008 Asia and South Pacific
Design Automation Conference, 2008.

[18] Linux.com, http://archive09.linux.com/feature/49757.
[19] Bo Mao, Hong Jiang, Dan Feng, Suzhen Wu, Jianxi Chen, Lingfang

Zeng, and Lei Tian, HeteroDrive: Reshaping the Storage Access Pattern
of OLTP Workload Using SSD, IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), 2010.

[20] Mathieu Blondel, Wikipediafs project, http://wikipediafs.sourceforge.net.
[21] Mementus XT, http://www.seagate.com/www/en-us/products/internal-

storage/momentus-xt-kit.

[22] Newegg, http://www.newegg.com.
[23] Nikolaus Rath, S3ql project, http://code.google.com/p/s3ql/.
[24] NoVoHT: Non-Volatile Hash Table,

http://datasys.cs.iit.edu/projects/index.html.
[25] OCZ RevoDrive 1TB Hybrid Solid State Drive,

http://www.ocztechnology.com/ocz-revodrive-hybrid-pci-express-solid-
state-drive.html.

[26] OCZ RevoDrive 3 X2 PCI-Express SSD,
http://www.ocztechnology.com/ocz-revodrive-3-x2-pci-express-ssd.html.

[27] OCZ Synapse, http://www.ocztechnology.com/ocz-synapse-cache-sata-
iii-2-5-ssd.html.

[28] Patrick Frank, Cvsfs project, http://sourceforge.net/projects/cvsfs.
[29] Hannes Payer, Marco A.A. Sanvido, Zvonimir Z. Bandic, and

Christoph M. Kirsch, Combo Drive: Optimizing cost and performance
in a heterogeneous storage device, Proceedings of the 1st Workshop on
integrating solid-state memory into the storage hierarchy (WISH’09),
2009.

[30] Aditya Rajgarhia and Ashish Gehani, Performance and extension of
user space file systems, Proceedings of the 2010 ACM Symposium on
Applied Computing (Sierre, Switzerland), March 2010.

[31] Ricardo Correia, Zfs-fuse project, http://zfs-fuse.net/.
[32] Steven W. Schlosser, John Linwood Griffin, , David F. Nagle, and

Gregory R. Ganger, Filling the Memory Access Gap: A Case for On-Chip
Magnetic Storage, Tech. report, School of Computer Science, Carnegie
Mellon University, 1999.

[33] Shan Li and H.H. Huang, Black-Box Performance Modeling for Solid-
State Drive, IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
2010.

[34] Peter Snyder, tmpfs: A virtual memory file system, Proceedings of the
Autumn 1990 European UNIX Users’ Group Conference, 1990.

[35] S.S. Rizvi and Tae-Sun Chung, Flash SSD vs HDD: High perfor-
mance oriented modern embedded and multimedia storage systems,
2nd International Conference on Computer Engineering and Technology
(ICCET), 2010.

[36] Stefan Podlipnig and Laszlo Boszormenyi, A survey of Web cache
replacement strategies, ACM Computing Surveys (CSUR), Volume 35
Issue 4 (2003).

[37] Transaction Processing Performance Council, TPC Benchmark H,
http://www.tpc.org/tpch, 2008.

[38] Tsukasa Hamano, Mysqlfs project,
http://sourceforge.net/projects/mysqlfs/.

[39] Wikipedia, Filesystem in Userspace,
http://en.wikipedia.org/wiki/Filesystem in Userspace.

[40] Qing Yang and Jin Ren, I-CASH: Intelligently Coupled Array of SSD
and HDD, IEEE 17th International Symposium on High Performance
Computer Architecture (HPCA), 2011.

