
ZHT: a Zero-hop DHT for High-End Computing Environment
Tonglin Li1, Antonio Perez de Tejada1, Kevin Brandstatter1, Zhao Zhang3, Ioan Raicu1,2

Department of Computer Science, Illinois Institute of Technology1
Mathematics and Computer Science Division, Argonne National Laboratory2

Department of Computer Science, University of Chicago3

ABSTRACT

One critical component of future file systems for high-end
computing is meta-data management. This work presents ZHT, a
zero-hop distributed hash table, which has been tuned for the
requirements of HEC systems. ZHT aims to be a building block
for future distributed file systems to implement distributed
metadata management. The goals are delivering availability, fault
tolerance, high throughput, and low latencies. ZHT has some
important properties, such as being light-weight, fault tolerant
using replication and persistence. We have evaluated ZHT's
performance under a variety of systems, ranging from a Linux
cluster to an IBM BlueGene/P supercomputer. We scaled ZHT up
to 16K processes and achieved 4M operations/sec throughput.
Latencies have scaled similarly well, with sub-milliseconds
latencies at 4K-core scales. We compared ZHT against other
systems and found it offers superior performance for the features
and portability it supports.
General Terms
Management, Measurement, Performance, Design, Reliability,
Experimentation.

Keywords
Distributed Key-Value store, Distributed Gash Table, High-End
Computing, Cloud Computing.

1. Introduction
This work presents a zero-hop distributed hash table (ZHT),
which has been tuned for the specific requirements of high-end
computing (e.g. trustworthy/reliable hardware, fast networks, non-
existent ”churn”, low latencies, and scientific computing data-
access patterns). ZHT aims to be a building block for future
distributed file systems, with the goal of delivering excellent
availability, fault tolerance, high throughput, and low latencies.
ZHT has several important features making it a better candidate
than other distributed hash tables, such as being light-weight, fault
tolerant by handling failures gracefully and efficiently propagating
events throughout the system, a customizable consistent hashing
function, supporting replication to guard against data loss, and
supporting persistence for better recoverability in case of faults.
We have evaluated ZHT's performance under a variety of systems,
ranging from a modest 64-node Linux cluster to a 1024-node IBM
BlueGene/P supercomputer with up 16K ZHT instances. We
compared ZHT against two other systems, Cassandra [37] and
Memcached [20] and found it to offer superior performance for
the features and portability it supports at modest scales of
thousands of nodes.
The contributions of this work are as follows:

• Design and implementation of ZHT, a light-weight,
high performance, fault tolerant, persistent, and highly
scalable distributed key-value store, optimized for high-
end computing.

• Zero-hop routing with constant time properties,
achieving latencies between 0.5ms~0.7ms at up to 1K
nodes scales.Low cost asynchronous replication for low
overhead fault tolerance.

• Performance evaluation at up to 4K-cores and 16K
instances comparing ZHT to Memcached and
Cassandra, on many test beds, including clusters and
supercomputers, up to 16K-processes, and achieving 4
millions of operations/sec throughput.

2. Design and Implementation
The primary goal of ZHT is to get all the benefits of distributed
hash tables, namely excellent availability and fault tolerance, but
concurrently achieve the benefits of a centralized index where
latencies are minimal. The data-structure is kept as simple as
possible for ease of analysis and efficient implementation. In a
static membership, every node at bootstrap time has all
information about how to contact every other node in ZHT, which
is a valid assumption because of the batch-scheduled HEC
environment. ID Space and Membership Table Figure 2: ZHT
architecture design, in the ring-shaped key name space, replicas
are set to each nodes’ neighbors. The node ids in ZHT can be
randomly distributed throughout the network, or they can be
closely correlated with the network distance between nodes. The
correlation can generally be computed from information such as
MPI rank and IP address. Take BlueGene/P as an example, each
node in BGP has a coordinate (x,y,z) within the allocation
range(X, Y, Z), the rank of the node is computed as
z*X*Y+y*X+x, the ip address is 12.x.y.z+1. Given the range(X,
Y, Z) and any one of the coordinates, ip or rank, we could
compute the other two. In the case of the network correlated node
ID space, nodes can make decisions based on some distance
metrics to determine the closest node to communicate with. This
network topology aware approach is critical to making ZHT
scalable by ensuring that communication is kept localized when
performing 1-to-1 communication. For efficient 1-many
communication, we have adopted a minimum spanning tree
approach which spreads the communication load across all nodes
with minimal latencies (expected to be logarithmic in the number
of nodes).
The hash function maps an arbitrarily long string directly to an
index value, which can then be used to efficiently retrieve the
communication address (e.g. host name, IP address, MPIrank)
from a membership table (a local in-memory vector). Depending
on the level of information that is stored (e.g. IP - 4 bytes, name -
<100 bytes, socket - depends on buffer size), storing the entire
membership table should consume only a small (less than 1%)
portion of available memory of each node. On 1024 nodes scale,
ZHT has a memory foot print of only 15MB. By tuning the
number of Key-Value pairs that are allowed stay in memory, user
can achieve the balance between performance and memory
consumption.

ZHT uses event-driven model server architecture. The current
version ZHT has an epoll-based single thread server, but works 3
times faster than the previous version which used multithreading.
We’ll discuss the performance difference between these two
architectures in evaluation section.

Node
1 Node

2
...

Node
nNode

n-1

Client 1 … n

hash

Key
j

Value j
Replica

1

hash

Key
k

Value j
Replica

2
Value j
Replica

3

Value k
Replica

1 Value k
Replica

2

Value k
Replica

3

Figure 1: ZHT architecture design

3. Performance Evaluation
3.1 Latency
We extensively tested ZHT on BlueGene/P supercomputer. On
1024-node scale, ZHT shows great scalability. As shown in the
Figure 7, on one node, the latency of both TCP with connection
caching and UDP are extremely low. When scaling up, ZHT
shows nearly constant latency, almost all within 0.75 ms, even at
scale of 1024 nodes, the average latency is still 0.79 ms. By this
observation, we conclude that the major cost of TCP is to create
and close connections. With all the connections keep open, TCP
can work as fast as UDP. The implementation with standard TCP,
on the other hand, takes 2x more time to finish the same
operations. An old version of ZHT which implemented with
multiple thread and standard TCP shows the same performance as
event-driven version. As a comparison, Memcached also shows
low latency within 1.2 ms until 1024 nodes. It drastically
increases the insert latency to 47ms. After several run of
experiments, we’re sure it’s not an exception.

3.2 Throughput
We conducted several experiments to measure the throughput of
ZHT as well as Memcached and Cassandra. The throughputs of
ZHT(TCP with connection caching and UDP) in operations per
second increases near-linearly with scale, reaching 1.3M ops/sec
at 1024 nodes while Memcached can reach 900K ops/sec; Figure
9 shows the comparison between different implementation of
ZHT and Memcached throughput.

Because of the importance of fault tolerance, ZHT ses replication
mechanism. It will certainly introduce some overhead. As shown
in Figure 13, replication does increase the operation latency, but it
is not a significant increase. 1 replica adds around 20% and 2
replica adds around 30% overhead compare with no replica
latency. It is worth noting that the choice of doing the replicas
asynchronously likely helped keep the overheads low.

4. Conclusion
ZHT optimized for high-end computing systems is architected and
implemented as a foundation in the development of fault-tolerant,
high-performance, and scalable storage systems. We performed an
extensive performance evaluation of ZHT on a modest scale up to
1K nodes and 16K instances on an IBM BlueGene/P.
We achieved more than 4M operations/sec throughput. The
latency is as low as 0.78ms at 1K node scale. We hope to extend
the performance evaluation to significantly larger scales, as the
machine we tested on has 40K nodes. We believe that ZHT could
transform the architecture of future storage systems in HEC, and
open the door to a much broader class of applications that would
have normally not been tractable. Furthermore, the concepts, data-
structures, algorithms, and implementations that underpin these
ideas in resource management at the largest scales can be applied
to new emerging paradigms, such as Cloud Computing. The work
presented in this paper addresses the fundamental technical
challenges that will become increasingly harder to address with
existing solutions due to a declining MTTF of future HEC
systems. Our work will benefit the “Many-Task Computing”
paradigm that bridges the gap between highthroughput computing
and high-performance computing, generally producing both
compute-intensive and data-intensive workloads, and has been
shown to contain a large set of scientific computing applications
from many domains.
ZHT has shown excellent performance and scalability. It’s been
used as building blocks of several distributed systems. Beside
being highly effective on HPC environment, it also shows
versatility on commercial cloud. ZHT is more than 20 times faster
than Amazon DynamoDB while costing less than 1/10 of the
premium (spent on running VMs), which make it a great
candidate for both a building block of distributed HPC systems
and a general-purpose key-value store on cloud.

5. REFERENCES
[1] Tonglin Li, Raman Verma, Xi Duan, Hui Jin, Ioan Raicu.

“Exploring Distributed Hash Tables in High-End Computing”,
ACM Performance Evaluation Review (PER), 2011

[2] Cassandra http://cassandra.apache.org/, 2012

[3] B. Fitzpatrick. “Distributed caching with Memcached.” Linux
Journal, 2004(124):5, 2004

http://datasys.cs.iit.edu/publications/2011_PER_ZHT-short.pdf
http://cassandra.apache.org/

	1. Introduction
	2. Design and Implementation
	3. Performance Evaluation
	3.1 Latency
	3.2 Throughput

	4. Conclusion
	5. REFERENCES

