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ABSTRACT 

One critical component of future file systems for high-end 
computing is meta-data management. This work presents ZHT, a 
zero-hop distributed hash table, which has been tuned for the 
requirements of HEC systems. ZHT aims to be a building block 
for future distributed file systems to implement distributed 
metadata management. The goals are delivering availability, fault 
tolerance, high throughput, and low latencies. ZHT has some 
important properties, such as being light-weight, fault tolerant 
using replication and persistence. We have evaluated ZHT's 
performance under a variety of systems, ranging from a Linux 
cluster to an IBM BlueGene/P supercomputer. We scaled ZHT up 
to 16K processes and achieved 4M operations/sec throughput. 
Latencies have scaled similarly well, with sub-milliseconds 
latencies at 4K-core scales. We compared ZHT against other 
systems and found it offers superior performance for the features 
and portability it supports.  
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1. Introduction 
This work presents a zero-hop distributed hash table (ZHT), 
which has been tuned for the specific requirements of high-end 
computing (e.g. trustworthy/reliable hardware, fast networks, non-
existent ”churn”, low latencies, and scientific computing data-
access patterns). ZHT aims to be a building block for future 
distributed file systems, with the goal of delivering excellent 
availability, fault tolerance, high throughput, and low latencies. 
ZHT has several important features making it a better candidate 
than other distributed hash tables, such as being light-weight, fault 
tolerant by handling failures gracefully and efficiently propagating 
events throughout the system, a customizable consistent hashing 
function, supporting replication to guard against data loss, and 
supporting persistence for better recoverability in case of faults. 
We have evaluated ZHT's performance under a variety of systems, 
ranging from a modest 64-node Linux cluster to a 1024-node IBM 
BlueGene/P supercomputer with up 16K ZHT instances. We 
compared ZHT against two other systems, Cassandra [37] and 
Memcached [20]  and  found it to offer superior performance for 
the features and portability it supports at modest scales of 
thousands of nodes. 
The contributions of this work are as follows:   

• Design and implementation of  ZHT, a light-weight, 
high performance, fault tolerant, persistent, and highly 
scalable  distributed key-value store, optimized for high-
end computing.  

• Zero-hop routing with constant time properties, 
achieving latencies between 0.5ms~0.7ms at up to 1K 
nodes  scales.Low cost asynchronous replication for low 
overhead fault tolerance. 

• Performance evaluation  at up to 4K-cores  and 16K 
instances  comparing ZHT to Memcached  and 
Cassandra, on many test beds, including clusters and 
supercomputers, up to 16K-processes, and achieving 4 
millions of operations/sec throughput. 

2. Design and Implementation 
The primary goal of ZHT is to get all the benefits of distributed 
hash tables, namely excellent availability and fault tolerance, but 
concurrently achieve the benefits of a centralized index where 
latencies are minimal. The data-structure is kept as simple as 
possible for ease of analysis and efficient implementation. In a 
static membership, every node at bootstrap time has all 
information about how to contact every other node in ZHT, which 
is a valid assumption because of the batch-scheduled HEC 
environment. ID Space and Membership Table Figure 2: ZHT 
architecture design, in the ring-shaped key name space, replicas 
are set to each nodes’ neighbors. The node ids in ZHT can be 
randomly distributed throughout the network, or they can be 
closely correlated with the network distance between nodes. The 
correlation can generally be computed from information such as 
MPI rank and IP address. Take BlueGene/P as an example, each 
node in BGP has a coordinate (x,y,z) within the allocation 
range(X, Y, Z), the rank of the node is computed as 
z*X*Y+y*X+x, the ip address is 12.x.y.z+1. Given the range(X, 
Y, Z) and any one of the coordinates, ip or rank, we could 
compute the other two. In the case of the network correlated node 
ID space, nodes can make decisions based on some distance 
metrics to determine the closest node to communicate with. This 
network topology aware approach is critical to making ZHT 
scalable by ensuring that communication is kept localized when 
performing 1-to-1 communication. For efficient 1-many 
communication, we have adopted a minimum spanning tree 
approach which spreads the communication load across all nodes 
with minimal latencies (expected to be logarithmic in the number 
of nodes). 
The hash function maps an arbitrarily long string directly to an 
index value, which can then be used to efficiently retrieve the 
communication address (e.g. host name, IP address, MPIrank) 
from a membership table (a local in-memory vector). Depending 
on the level of information that is stored (e.g. IP - 4 bytes, name - 
<100 bytes, socket - depends on buffer size), storing the entire 
membership table should consume only a small (less than 1%) 
portion of available memory of each node. On 1024 nodes scale, 
ZHT has a memory foot print of only 15MB. By tuning the 
number of Key-Value pairs that are allowed stay in memory, user 
can achieve the balance between performance and memory 
consumption. 



ZHT uses event-driven model server architecture. The current 
version ZHT has an epoll-based single thread server, but works 3 
times faster than the previous version which used multithreading. 
We’ll discuss the performance difference between these two 
architectures in evaluation section. 
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Figure 1: ZHT architecture design 

3. Performance Evaluation 
3.1 Latency 
We extensively tested ZHT on BlueGene/P supercomputer. On 
1024-node scale, ZHT shows great scalability. As shown in the 
Figure 7, on one node, the latency of both TCP with connection 
caching and UDP are extremely low. When scaling up, ZHT 
shows nearly constant latency, almost all within 0.75 ms, even at 
scale of 1024 nodes, the average latency is still 0.79 ms.  By this 
observation, we conclude that the major cost of TCP is to create 
and close connections. With all the connections keep open, TCP 
can work as fast as UDP. The implementation with standard TCP, 
on the other hand, takes 2x more time to finish the same 
operations. An old version of ZHT which implemented with 
multiple thread and standard TCP shows the same performance as 
event-driven version. As a comparison, Memcached also shows 
low latency within 1.2 ms until 1024 nodes. It drastically 
increases the insert latency to 47ms. After several run of 
experiments, we’re sure it’s not an exception. 

 

3.2 Throughput 
We conducted several experiments to measure the throughput of 
ZHT as well as Memcached and Cassandra. The throughputs of 
ZHT(TCP with connection caching and UDP) in operations per 
second increases near-linearly with scale, reaching 1.3M ops/sec 
at 1024 nodes while Memcached can reach 900K ops/sec; Figure 
9 shows the comparison between different implementation of 
ZHT and Memcached throughput. 

 
Because of the importance of fault tolerance, ZHT ses replication 
mechanism. It will certainly introduce some overhead. As shown 
in Figure 13, replication does increase the operation latency, but it 
is not a significant increase. 1 replica adds around 20% and 2 
replica adds around 30% overhead compare with no replica 
latency. It is worth noting that the choice of doing the replicas 
asynchronously likely helped keep the overheads low. 

4. Conclusion 
ZHT optimized for high-end computing systems is architected and 
implemented  as a foundation in the development of fault-tolerant, 
high-performance, and scalable storage systems. We performed an 
extensive performance evaluation of ZHT on a modest scale up to 
1K nodes and 16K instances on an IBM BlueGene/P.  
We achieved more than 4M operations/sec throughput. The 
latency is as low as 0.78ms at 1K node scale. We hope to extend 
the performance evaluation to significantly larger scales, as the 
machine we tested on has 40K nodes. We believe that ZHT could 
transform the architecture of future storage systems in HEC, and 
open the door to a much broader class of applications that would 
have normally not been tractable. Furthermore, the concepts, data-
structures, algorithms, and implementations that underpin these 
ideas in resource management at the largest scales can be applied 
to new emerging paradigms, such as Cloud Computing. The work 
presented in this paper addresses the fundamental technical 
challenges that will become increasingly harder to address with 
existing solutions due to a declining MTTF of future HEC 
systems. Our work will benefit the “Many-Task Computing” 
paradigm that bridges the gap between highthroughput computing 
and high-performance computing, generally producing both 
compute-intensive and data-intensive workloads, and has been 
shown to contain a large set of scientific computing applications 
from many domains. 
ZHT has shown excellent performance and scalability. It’s been 
used as building blocks of several distributed systems. Beside 
being highly effective on HPC environment, it also shows 
versatility on commercial cloud. ZHT is more than 20 times faster 
than Amazon DynamoDB while costing less than 1/10 of the 
premium (spent on running VMs), which make it a great 
candidate for both a building block of  distributed HPC systems 
and a general-purpose key-value store on cloud. 
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