
Evaluating Information Dispersal Algorithms

Corentin Debains1, Pedro Alvarez-Tabio1, and Ioan Raicu1,2
1Illinois Institute of Technology, Chicago, IL, USA
2Argonne National Laboratory, Argonne, IL, USA

Abstract—The explosion in data acquisition and storage has led
to the emergence of data-intensive applications that are used to
process enormous quantity of information using methods such
as the MapReduce paradigm. Data-Intensive Distributed File
Systems (DI-DFS) have been designed to support these kinds
of applications. These large-scale storage systems require fault-
tolerance mechanisms to handle failures, which are a norm
rather than an exception when working at a scale that will
shortly reach exascale. A new trend among large-scale systems
is the implementation of information dispersal algorithms, called
erasure codes. The overhead introduced by the encoding and
decoding can be a limiting factor for the integration at large-scale.
This work compares two different approaches of erasure code
computing on GPU and CPU. Our work in erasure coding serves
as the foundation for the next step: integrating an information
dispersal algorithm that eventually outperforms current state-of-
the-art approaches in DI-DFSs.

I. INTRODUCTION

The reliability of a computer system refers to the property
that a system can run continuously without failure. Here “with-
out failure” by no means indicates that failures do not happen.
Rather, with data-intensive applications deployed on extreme-
scale distributed systems, failures are the norm instead of the
exception. The reliability a computer system could achieve
becomes a problem of how well failures can be handled.
Ideally, these failures should be completely transparent to the
users, with a relatively low or even negligible cost. Keeping
high reliability is one of the most important metrics for high
performance computing (HPC) and cloud computing, and is
often listed as mean-time-to-failure (MTTF) in the service-
level agreement (SLA).

One of the most commonly used techniques to make data
highly reliable is replication. For example, Google File System
(GFS) [2] makes 3 replicas as the default. The Hadoop
distributed file system [7] also uses replication to achieve
high reliability. This technique is often sufficient: it is easy
to implement and has excellent performance (assuming data
are replicated asynchronously), at the cost of space efficiency.
For example, with the original data and 3 replicas, the storage
utilization rate is only 1

1+3 = 25%. In this case the cost
of storage is quadrupled when building a distributed system,
which might not be economically acceptable in many appli-
cations. Another drawback of replication is that it consumes
network bandwidth to migrate data across different nodes to
maintain the consistency and reliability of replicas. Moreover,
replicating the intact and non-encrypted data can potentially
expose more security holes.

Other than replication, another important technique of data
redundancy is erasure coding which is well known for its
storage efficacy. Erasure coding partitions a file into multiple

fragments which are encoded and stored on different nodes.
Literature [6, 9] shows that erasure coding delivers a better
space efficiency but, unfortunately, cannot meet the bandwidth
requirement for a large-scale distributed file system because
the encoding/decoding computation hits the bottleneck of CPU
capacity, thus could not saturate the network bandwidth. With
the state-of-the-art GPU/many-core technology, this comput-
ing bottleneck could potentially be alleviated.

In this work we systematically study the effectiveness of
information dispersal algorithms (IDA) that operate using both
CPUs and GPUs in a single-node basis. We believe this study
will enlighten the design and implementation of the future
generation of distributed systems.

II. ERASURE CODING

Erasure coding, together with data replication, are the two
major mechanisms to achieve data redundancy. Erasure coding
has been studied by the computer communication community
since the 1990’s [4], as well as in storage and file systems [3].
Figure 1 describes what the encoding process looks like.

Fig. 1. Encoding k chunks into n = k + m chunks so that the system is
resilient to m failures.

The idea is straightforward: a file is split into k chunks and
encoded into n > k chunks, where any k chunks out of these n
chunks can reconstruct the original file. We denote m = n−k
as the number of redundant or parity chunks. We assume each
chunk is stored on a distinct storage disk. That assumption is
supported by Weatherspoon et al. in [8],where they showed
that, for N the total number of machines and M the number
of unavailable machines then the availability of a chunk (or
replica) A can be calculated as

A =

n−k∑
i=0

(
M
i

)(
N−M
n−i

)(
N
n

) .

Compared to data replication, erasure coding has 3 impor-
tant features. First, it offers a higher storage efficiency, denoted



(a) Estorage = 33% (b) Estorage = 75%

Fig. 2. Encoding and decoding throughput with 1MB buffer size.

as Estorage, which is defined as k
n . The second advantage

of erasure coding is the higher efficiency of storage, fewer
copies of data exist in the system, which in turn saves the
network bandwidth for data migration. The last and often
underrated one is security. Rather than copying the intact and
non-encrypted data from one node to another, erasure coding
chops the data and encodes the chunks to disperse them into
multiple nodes.

The drawback of erasure coding comes from its compute
intensive nature. It placed an extensive burden on the CPU,
which makes it impractical in the today’s production dis-
tributed file systems that require high performance.

III. LIBRARIES

Jerasure [5] is a C/C++ library that supports a wide range of
erasure codes: RS coding, Minimal Density RAID-6 coding,
CRS coding and most generator matrix coding. One of the
most popular codes is the Reed-Solomon encoding method,
which has been used for the RAID-6 disk array model. This
coding can either use Vandermonde or Cauchy matrices to
create generator matrices.

Gibraltar [1] is a CUDA Reed-Solomon coding library for
storage applications. It has been demonstrated to be highly
efficient when tested in a prototype RAID system. This library
is known to be more flexible than other RAID standards; it is
scalable with parity’s size of an array.

IV. PRELIMINARY RESULTS

The encode and decode throughput of Jerasure and Gibraltar
are plotted in figure 2(a) with m increasing from 2 to 128
while keeping Estorage = 33%. The buffer size is set to
1MB. In all cases, with larger m values, the throughput
decreases exponentially. This is because when the number of
parity chunks increases, encoding and decoding take more time
which reduces the throughput. A more interesting observation
is the gap between Gibraltar and Jerasure for both encode

and decode. There is more than 10X speedup with Gibraltar
which suggests that GPU-based erasure coding would likely
break through the CPU bottleneck in distributed file systems.

We then change the storage efficiency Estorage = 75% and
measure the throughput with different m values in figure 2(b).
Similar observations and trends are found just like the case
Estorage = 33%.

REFERENCES

[1] M. L. Curry, A. Skjellum, H. Lee Ward, and R. Brightwell.
Gibraltar: A Reed-Solomon coding library for storage applica-
tions on programmable graphics processors. Concurr. Comput. :
Pract. Exper., 23(18):2477–2495, Dec. 2011.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, SOSP ’03, 2003.

[3] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang. Rethinking
erasure codes for cloud file systems: minimizing I/O for recovery
and degraded reads. In Proceedings of the 10th USENIX
conference on File and Storage Technologies, FAST’12, pages
20–20, Berkeley, CA, USA, 2012. USENIX Association.

[4] A. J. McAuley. Reliable broadband communication using a burst
erasure correcting code. In Proceedings of the ACM symposium
on Communications architectures & protocols, SIGCOMM ’90,
pages 297–306, New York, NY, USA, 1990. ACM.

[5] J. S. Plank. Jerasure: A library in C/C++ facilitating erasure
coding for storage applications. Technical report, University of
Tennessee, 2007.

[6] R. Rodrigues and B. Liskov. High availability in DHTs: erasure
coding vs. replication. In Proceedings of the 4th international
conference on Peer-to-Peer Systems, IPTPS’05, 2005.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
distributed filesystem: Balancing portability and performance.
In Proceedings of the IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[8] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. repli-
cation: A quantitative comparison. Peer-to-Peer Systems, 2002.

[9] H. Xia and A. A. Chien. RobuSTore: a distributed storage
architecture with robust and high performance. In Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, SC ’07,
2007.


