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I. INTRODUCTION

One of the bottlenecks of distributed file systems (DFS),
e.g. Google File System [1] and Hadoop Distributed File
System [2], is mechanical hard disk drives (HDD): their slow
increase in bandwidth, slow decrease in latency, and exponen-
tial increase in capacity, have made modern storage devices
quite unbalanced. Making things worse, the low bandwidth and
high latency of HDD hinders the exploration of data locality,
which is critical to distributed computing applications [3].
Even though non-volatile memory e.g. Solid State Drive
(SSD), has been introduced for over a decade, HDDs are still
dominant storage media in most systems because of their large
capacities and low costs.

We propose a middleware called HyCache to manage het-
erogeneous storage devices for distributed file systems. Hy-
Cache provides standard POSIX interfaces through FUSE [4]
and works completely in the user space. We show that in the
context of file systems, the overhead of user-level APIs (i.e.
libfuse) is negligible with multithread support on SSD, and
with appropriate tuning can even outperform the kernel-level
implementation.

II. DESIGN AND IMPLEMENTATION

Figure 1 shows a bird’s view of HyCache as a middleware
between distributed file systems and local storages. At the
highest level there are three logical components: request
handler, file dispatcher and data manipulator. Request handler
interacts with distributed file systems and passes the requests
to the file dispatcher. File dispatcher takes file requests from
request handler and decides where and how to fetch the
data based on some replacement algorithm. Data manipulator
manipulates data between two access points of fast- and
regular-speed devices, respectively.

The HyCache mount point itself is not only a single local
directory but a virtual entry point of two mount points for SSD
partition and HDD partition, respectively. Assuming HyCache
would be mounted on a local directory called hycache mount,
and another local directory (e.g. hycache root) has been
created and has at least two subdirectories: the mount point of
the SSD partition and the mount point of the HDD partition,
users can simply execute ./hycache <root> <mount> where
hycache is the executable for HyCache, root is the physical
directory and mount is the virtual directory.

We keep only one single copy of any file at any time
to achieve strong consistency. For manipulating files across
multiple storage devices we use symbolic links to track file
locations. HyCache is implemented for manipulating data at
the file level rather than the block level because it is the job
of the upper-level distributed file system to chop the big files
(e.g. > 1TB). For example in Hadoop Distributed File System,
an arbitrarily large file will typically be chunked up in 64MB
chunks on each data node.

End users only see virtual files in HyCache mount point (i.e.
hycache mount) and every single file in the virtual directory
is mapped to the underlying SSD physical directory. SSD
only has a limited space so when the usage is beyond some
threshold then HyCache will move some file(s) from SSD to
HDD and only keep symbolic link(s) to the swapped files. The
replacement policy, e.g. LRU or LFU, determines when and
how to do the swapping.

HyCache provides two built-in cache algorithms: LRU and
LFU. End users are free to plug in other cache algorithms
depending on their data patterns and/or application characteris-
tics. We implement LRU and LFU with the standard C library
<search.h> instead of importing any third-party libraries
for queue-handling utilities. This header supports doubly-
linked list with only two operation: insque() for insertion and
remque() for removal. We implement all other utilities from
scratch e.g. check the queue length, search for a particular
element in the queue, etc. Each element of LRU and LFU
queues stores some metadata of a particular file like filename,
access time, number of access (only useful for LFU though),
etc.

HyCache fully supports multithreading to leverage the
many-core architecture in most high performance computers.
Users have the option to disable this feature to run applications
in the single-thread mode. Even though there are cases where
multithreading does not help and only introduces overheads
by switching contexts, by default multithreading is enabled
in HyCache because in most cases this would improve the
overall performance by keeping the CPU busy. We will see
in the evaluation section how the aggregate throughput is
significantly elevated with the help of concurrency.

HyCache has about 2,500 lines of C code, together with
some scripts and configuration files. It was compiled with GCC
version 4.6.3.
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Fig. 1. Three major components in HyCache architecture: Request Handler, File Dispatcher and Data Manipulator.

III. EVALUATION

Single-node experiments are carried out on a system com-
prised of an AMD Phenom II X6 1100T Processor (6 cores
at 3.3 GHz) and 16 GB RAM. The spinning disk is Seagate
Barracuda 1 TB. The SSD is OCZ RevoDrive2 100 GB. The
HHD is Seagate Momentus XT 500 GB (with 4 GB built-in
SSD cache). For the experiments on Hadoop the testbed is
a 32-node cluster, each of which has two Quad-Core AMD
Opteron 2.3GHz processors with 8GB memory. The SSD and
HDD are the same as in the single node workstation.

On a single node, we show the throughput with a variety
of block sizes ranging from 4 KB to 16 MB. For each
block size we show five bandwidths from the left to the
right: 1) the theoretical bandwidth upper bound (obtained
from RAMDISK), 2) HyCache, 3) a simple FUSE file system
accessing a HDD, 4) HDD Ext4 and 5) HHD Ext4. Figure
2(a) shows HyCache read speed is about doubled comparing
to the native Ext4 file system for most block sizes. We see a
similar result of file writes in Figure 2(b) as file reads.

(a) Read Bandwidth (b) Write Bandwidth

Fig. 2. IOzone bandwidth of 5 file systems.

In the 32-node cluster, we have run two real world ap-
plications on HyCache: MySQL and the Hadoop. We install
MySQL 5.5.21 with database engine MySIAM, and deploy
TPC-H 2.14.3 databases. To test file writes in HyCache, we
loaded table lineitem at scale 1 (which is about 600 MB) and
scale 100 (which is about 6 GB) in these three file systems:
LRU HyCache, HDD Ext4 and HHD Ext4. As for file reads
we ran Query #1 at scale 1 and scale 100. HyCache has an
overall of 9% and 4% improvement over Ext4 on HDD and
HHD, respectively. The marginal improvement could be best
explained by that the TPC-H is more computation-intensive.

For HDFS [2] we measure the bandwidth by concurrently
copying a 1GB file per node from HDFS to the RAMDISK
(i.e. /dev/shm). The results are reported in Table I, showing
that HyCache helps improve HDFS performance by 28% at
32-node scales. We also run the built-in ‘sort’ example as a
real Hadoop application. The ‘sort’ application is to use map-
reduce [5] to sort a 10GB file. We kept all the default settings
in the Hadoop package except for the temporary directory
which is specified as the HyCache mount point or a local
Ext4 directory. The results are reported in Table I.

TABLE I
HDFS PERFORMANCE

w/o HyCache w/ HyCache Improvement
bandwidth 114 MB/sec 146 MB/sec 28%

sort 2087 sec 1729 sec 16%

IV. CONCLUSION

In this paper we addressed the long-existing issue with the
bottleneck of local spinning hard drives in distributed file
systems and proposed a cost-effective solution —HyCache—
to alleviate this bottleneck, aimed at delivering comparable
performance of an all SSD solution at a fraction of the cost.
Our performance evaluation of both micro benchmarks and
real applications showed that HyCache can be competitive
with kernel-level file systems, and significantly improves the
performance of the upper-level distributed file systems.
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