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Abstract
It is expected that our HEC system will enter exascale era in
decade, which is one thousand times of performance as to-
day’s system (petascale). In the mean time, many challenges
also have been noticed and pointed out, as the size of HEC
system increased without some dispensable improving on ar-
chitecture of today’s HEC system, the systems could collapse
at exascale, because the functionality would not be able to
complete their duties successfully and even break down the
whole system. One potential problem is that the MTTF (mean
time to failure) of a HEC system will decrease linearly as the
system size increases. We will probably have to face the se-
rious situation that our HEC system might be very unreliable
and no works could be done successfully, due to too frequent
failures. The situation could be worse for HEC with paral-
lel file system, even armed with checkpointing to guarantee
its reliability. In this project, we study and explore applica-
tion efficiency toward exascale, and show that DFS offers a
lot better performance by taking its advantage of the local
storage speed. We measure the application efficiency in both
parallel and distributed file system, scale them from a small
system size to exascale with and without checkpointing, and
observe the differences between three different workloads:
uniform workload with only one job running at anytime, uni-
form workload with ten jobs running concurrently at anytime,
and Intrepid system’s 8 month workload from Argonne Na-
tional Laboratory. All the experiments were simulated in the
Java simulator developed in the DataSys laboratory at Illinois
Institute of Technology.

1. INTRODUCTION
Exascale computing [3, 6], i.e. 1018 FLOPS, is predicted

to emerge by the end of 2018 with current trend. Millions of
nodes and billions of concurrent data access are expected with
the exascale. This degree of computing capability is similar to
that of a human brain and will enable the unraveling of signif-
icant scientific mysteries and present new challenges and op-
portunities. The US President made the building of exascale
systems a top national priority, stating that it will “dramat-
ically increasing our ability to understand the world around
us through simulation and slashing the time needed to design
complex products such as therapeutics, advanced materials,
and highly-efficient autos and aircraft” [4].

One of most critical challenges for exascale computing is

how to maintain the exascale computer reliable. Failures are
unavoidable in high end computing (HEC) systems, making
the partially-done work useless if no recovery mechanism ex-
ists. The reliability of a system is how strong the system is to
prevent failures and/or recover after a failure. With millions
of nodes and billions of cores and concurrent requests, keep-
ing the entire exascale system reliable is extremely hard.

In order to bring the system back into the last correct state,
checkpointing records system’s (correct) states periodically.
These states need to be stored on the persistent storage, be-
cause otherwise they are gone permanently if the system en-
counters a failure. Checkpointing is a general mechanism to
maintain system’s reliability, which is independent of any par-
ticular system. The fact of dealing with persistent storage im-
plies potentially huge overhead. Therefore, besides other fac-
tors like how frequently to save the states, the question of
improving the checkpointing degenerates to the question of
how to elevate the storage I/O bandwidth.

The state-of-the-art file system for HEC is the parallel
file system (e.g. GPFS [5]) which is deployed on the stor-
age servers that are remotely interconnected to the com-
pute nodes. We believe that future HEC systems should
be equipped with a distributed filesystem deployed on non-
volatile memory on every compute node; every compute node
would actively participate in the metadata and data man-
agement, leveraging the abundance of computational power
many-core processors will have and the many orders of mag-
nitude higher bisection bandwidth in multi-dimensional torus
networks as compared to available cost effective bandwidth
into remote parallel filesystems.

To answer the question how the current checkpointing
mechanism would work for exascale systems among other
HEC systems, we built a model to emulate exascale systems,
designed and implemented a simulator SimHEC to study its
reliability and efficiency. Results show that, unfortunately,
current checkpointing mechanism on parallel filesystems is
incapable to effectively recover the system from failures.
However, it suggests that a distributed filesystem with local
persistent storage, e.g. [7], would offer an excellent scalabil-
ity and aggregate bandwidth, which in turn enables efficient
checkpointing at exascale.



2. MODELING THE HEC SYSTEMS
Application Efficiency is defined as the ratio of applica-

tion up time over the total running time:

E =
up time

running time
×100%,

where running time is the summation of up time, checkpoint-
ing time, lost time and rebooting time. Up time is when
the job is correctly running on the computer. Checkpointing
time is when the system stores the correct states on persistent
storage periodically. Lost time measures the time when a fail-
ure occurred, the work since the last checkpointing would be
lost and needs to be recalculated. Rebooting time is simply
the time for the system to reboot the node.

Optimal Checkpointing Interval is the optimal check-
pointing interval as modeled in [1]:

OPT =
√

2δ(M+R)−δ,

where δ is the checkpointing time, M is the system mean-
time-to-failure (MTTF) and R is the rebooting time of a job.

Memory Per Node is modeled as the following based on
the specifications of IBM BlueGene/P. When the system has
fewer than 64K nodes, each node has 2GB memory. For larger
systems, the per-node memory is calculated (in GB) as

2 · #nodes
64K

.

We have two different models of Storage Bandwidth for
parallel filesystems (PFS) and distributed filesystems (DFS),
respectively, since they have completely different architec-
tures. We assume PFS is the state-of-the-art parallel filesys-
tem used in production today, e.g. GPFS [5], whose band-
width (in GB/sec) is modeled as

BWPFS =
#nodes
1000

.

And for DFS, it is a hypothetical new storage architecture for
exascale. There are no real implementations of a DFS that
can scale to exascale, but this study should be a good mo-
tivator towards investing resources to the realization of DFS
at exascale. The bandwidth of DFS in our simulation has the
following bandwidth

BWDFS = #nodes · (log#nodes)2.

These equations are based on our empirical observations on
the IBM BlueGene/P supercomputer.

For rebooting time, DFS has a constant time of 85 seconds
because each node is independent to other nodes. For PFS,
the rebooting time (in seconds) is calculated as the following:

d0.0254 ·#nodes+55.296e,

which is also based on the empirical data of the IBM Blue-
Gene/P supercomputer. The above formulae indicate that
DFS has a linear scalability of checkpointing bandwidth,
whereas PFS only scales sub-linearly. The sub-linearity of
PFS checkpoint bandwidth would prevent it from working ef-
fectively for exascale systems.

3. PRELIMINARY RESULTS
Experiments can be categorized into three major types. We

first compare SimHEC results to existing valid results with
the same parameters and workload to verify SimHEC. Then
variant workloads are dispatched on SimHEC to study the ef-
fectiveness and efficiency of checkpointing at different scales
of HEC systems. Lastly, we apply SimHEC on a 8-month
log of an IBM BlueGene/P supercomputer, and emulate the
checkpointing at exascale. Metrics Uptime, Check, Boot and
Lost refer to the definitions of up time, checkpointing time,
rebooting time and lost time, respectively.

We found that local persistent storage would be dramati-
cally helpful to leverage data locality in the context of tradi-
tional distributed filesystems. Our study shows that local stor-
age would be one of the key points to succeed in maintaining
the reliability for exascale computers. The results are coinci-
dent with the findings in [2], where a hybrid of local/global
checkpointing mechanism was proposed for the projected ex-
ascale system.
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