
Broadcast primitive: transmit the key/value pair over the edges of the spanning tree with the goal to distrib-

ute the key/value pair to all the caches.

Data Indexing: When dealing with massive data collections, one challenge is indexing the material to support

re-use and analysis.

Distributed Metadata Management: FusionFS will use ZHT to implement the distributed metadata man-

agement.

 More than 4M operations/sec aggregated throughput with 16K ZHT instances on 1024 nodes.
As low as 0.78ms latency on 1024 nodes scale.

 UDP shows a better scalability and reliability. TCP can be as fast as UDP when using connection
caching.

 The performance differences among three basic operations (insert, lookup and remove) are very
small.

ZHT uses a direct 0-hop algorithm and that the majority of the overhead comes from network
communication, it is not expected that the time per operation to increase significantly with larger
scales.

Hardware

 IBM Blue Gene/P supercomputer

 1024 nodes

 2GB RAM/node

 4096 cores in total

Software

 OS: ZeptOS

 Batch execution system: Cobalt

 Persistent hash table: NoVoHT

 Data serialization: Google protocol buffers

Experiment

Each client creates a long list of key-value pairs, here we set the length of
key is 15 byte and length of value is 132 bytes. Clients firstly sequentially
send all these key-value pairs ZHT API, ZHT will decide which server to
send. Secondly clients send the same list of keys as lookup parameter to
servers; finally send remove request with the same list of keys.

 Assumptions: reliable hardware, fast networks, non-existent "churn", low latencies, and scientific
computing data-access patterns.

 Solution: a light-weighted and high performance DHT for metadata management.

 Design goal: excellent availability, fault tolerance, high throughput, and low latencies.

 ZHT: A Zero-hop Distributed Hash Table for High-end Computing Systems

Tonglin Li
1
, Antonio Perez de Tejada

1
, Kevin Brandstatter

1
, Zhao Zhang

2
 , Ioan Raicu

1,3

1Department of Computer Science, Illinois Institute of Technology

2Department of Computer Science, University of Chicago

3Mathematics and Computer Science Division, Argonne National Laboratory

 ZHT optimized for high-end computing systems is architected

and implemented as a foundation in the development of fault-

tolerant, high-performance, and scalable storage systems.

 We performed an extensive performance evaluation of ZHT on a

modest scale up to 1K nodes and 16K instances on an IBM Blue-

Gene/P. We achieved more than 4M operations/sec throughput. The

latency is as low as 0.78ms at 1K node scale. We hope to extend the

performance evaluation to significantly larger scales, as the machine

we tested on has 40K nodes.

 We believe that ZHT could transform the architecture of future

storage systems in HEC, and open the door to a much broader class

of applications that would have normally not been tractable. Fur-

thermore, the concepts, data-structures, algorithms, and implemen-

tations that underpin these ideas in resource management at the

largest scales can be applied to new emerging paradigms, such as

Cloud Computing.

 One critical component of future file systems for high-end com-

puting is meta-data management. This work presents ZHT, a ze-

ro-hop distributed hash table, which has been tuned for the re-

quirements of HEC systems. ZHT aims to be a building block for

future distributed file systems to implement distributed metada-

ta management. The goals are delivering availability, fault toler-

ance, high throughput, and low latencies. ZHT has some im-

portant properties, such as being light-weight, fault tolerant us-

ing replication and persistence. We have evaluated ZHT's per-

formance under a variety of systems, ranging from a Linux clus-

ter to an IBM BlueGene/P supercomputer. We scaled ZHT up to

16K processes and achieved 4M operations/sec throughput. La-

tencies have scaled similarly well, with sub-milliseconds laten-

cies at 4K-core scales. We compared ZHT against other systems

and found it offers superior performance for the features and

portability it supports.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels. “Dynamo: Amazon’s Highly Available Key-Value Store.” SIGOPS Operating
Systems Review, 2007

B. Fitzpatrick. “Distributed caching with Memcached.” Linux Journal, 2004(124):5, 2004

Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, M. Wilde. “Design and Evaluation of a Collective I/O Model for Loosely-coupled Petascale Programming”, IEEE MTAGS 2008

I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford. “Toward Loosely Coupled Programming on Petascale Systems,” IEEE SC 2008

This work is supported in part by the U.S. Dept. of Energy under Contract DE-AC02-06CH11357, as well as the National Science Foundation grant NSF-0937060 CIF-72 and NSF-1054974.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1024

E
ff

ic
ie

n
cy

 i
n

 p
e

rc
e

n
ta

g
e

Number of Nodes

Efficiency

TCP: no connection caching

TCP with connection caching

UDP

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1 2 4 8 16 32 64 128 256 512 1024

Th
ro

u
gh

p
u

t
in

 o
p

s/
s

Number of Nodes

Throughput

TCP: no connection caching

TCP with connection caching

UDP

Multithreading TCP without caching

Memcached

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024

O
ve

rh
ea

d
 in

 p
er

ce
n

ta
ge

Number of nodes

Replication overhead

1 replica

2 replicas

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

1 2 4 8 16 32 64 128 256 512 1024

Th
ro

u
gh

p
u

t
 in

 o
p

s/
s

Number of Nodes

Agregated throughput

1 instances/node

2 instances/node

4 instances/node

8 instances/node

16 instances/node

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256 512 1024

La
te

n
cy

 (
m

s)

Number of Nodes

Request latencies
TCP without Connection Caching

TCP with connection caching

UDP

Multithreading TCP without caching

Memcached

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32 64 128 256 512 1024

La
te

n
cy

 (
m

s)

Number of Nodes

Request latencies
1 instances/node

2 instances/node

4 instances/node

8 instances/node

16 instances/node

