

Ke Wang

Department of Computer Science

Illinois Institute of Technology

kwang22@hawk.iit.edu

Kevin Brandstatter

Department of Computer Science

Illinois Institute of Technology

kbrandst@hawk.iit.edu

Zhao Zhang

Department of Computer Science

University of Chicago

zhaozhang@uchicago.edu

Ioan Raicu

Department of Computer Science, Illinois Institute of Technology

Mathematics and Computer Science Division, Argonne National Laboratory

iraicu@cs.iit.edu

 Exascale computers will enable the unraveling of significant scientific mysteries. Predictions are

that by 2019, supercomputers will reach exascales with millions of nodes and billions of threads of

execution. Many-task computing (MTC) is a new viable distributed paradigm for extreme-scale su-

percomputing. The MTC paradigm can address four of the five major challenges of exascale com-

puting, namely concurrency, resilience, heterogeneity, and I/O and memory; this work lays the foundations for addressing the first

three challenges.

 This work presents a new light-weight and scalable discrete event simulator, SimMatrix, which enables the exploration of dis-

tributed scheduling for MTC workloads at exascale levels with up to 1 million nodes and 1 billion cores. SimMatrix is validated

against a real system, Falkon, with up to 2K-cores, running on an IBM BlueGene/P system. SimMatrix is compared with two other

existing simulators, SimGrid and GridSim in terms of scalability and resource (time and memory) consumption. We found that

SimMatrix consumes up to 20 bytes less memory per task, and up to 90 us less time per task for distributed scheduling. Due to its

excellent scalability, SimMatrix has been able to run at scales up to 1 million nodes, 1 billion cores, and 10 billion tasks with mod-

est resources (e.g. 200GB of memory and 256-core hours).

 Work stealing is an efficient distributed load balancing technique whose potential scalability has not been well understood at

extreme scales. This work presents an adaptive work stealing algorithm, which is investigated at exascale levels through the Sim-

Matrix simulator. Through SimMatrix, we explore a wide range of parameters important to understand work stealing at up to ex-

ascale levels, such as number of tasks to steal, number of neighbors of a node, and static/dynamic neighbors. Experiment results

show that adaptive work stealing configured with optimal parameters could scale up to 1 million nodes and 1 billion cores, while

achieving 85%+ efficiency running on real MTC workload traces obtained from 17 months from a petascale supercomputer.

The left part is the centralized scheduling with a single dispatcher connecting all

nodes; the right part is the homogeneous distributed topology with each node hav-

ing the same number of cores and neighbors

Validate SimMa-

trix against the

state-of-the-art

MTC systems

(e.g. Falkon), to

ensure that the

simulator can

accurately pre-

dict the perfor-

mance of current

petascale sys-

tems.
0.0% 0.0% 0.1% 0.1% 0.2% 0.3% 0.5% 0.7% 1.3% 2.3% 2.2% 2.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Cores)

1 sec (Falkon) 1 sec (SimMatrix)
2 sec (Falkon) 2 sec (SimMatrix)
4 sec (Falkon) 4 sec (SimMatrix)
8 sec (Falkon) 8 sec (SimMatrix)
16 sec (Falkon) 16 sec (SimMatrix)

Difference

Efficiency

85%+

Co-Variance

<0.05

(Load imbalance

of <500 tasks

from 10K tasks

per node)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
o

-V
a

ri
a

n
ce

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

Efficiency

Co-Variance

1

10

100

1000

10000

100000

1000000

Ti
m

e
 P

e
r

Ta
sk

 (u
s)

Scale (No. of Nodes)

SimMatrix_Time/Task

SimGrid_Time/Task

GridSim_Time/Task

1

10

100

1000

10000

100000

1000000

M
e

m
o

ry
 P

e
r

Ta
sk

 (
B

yt
e

)

Scale (No. of Nodes)

SimMatrx_Mem/Task

SimGrid_Mem/Task

GridSim_Mem/Task

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

1.2

Ta
sk

s
B

ill
io

n

N
o.

 o
f W

or
ke

rs
B

ill
io

n

SimTime (sec)

num_all_workers
num_busy_workers
throughput(task/day)
delivered_tasks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

nb_2

nb_log

nb_sqrt

nb_eighth

nb_quar

nb_half

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

nb_1
nb_2
nb_log
nb_sqrt

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fi

ci
e

n
cy

Scale (No. of Nodes)

steal_1 steal_2

steal_log steal_sqrt

steal_half

Visualization for

1024 nodes and

MTC workload

for different num-

ber of neighbors;

the upper left has

2 static neigh-

bors, the upper

right has a

squared root

static neighbors;

the lower left has

a quarter static

neighbors, the

lower right has a

squared root dy-

namic neighbors.

Exascale systems bring great opportunities in unraveling of significant

scientific mysteries. Also, there are challenges, such as concurrency, re-

silience, I/O and memory, heterogeneity, and energy. New programming models are needed to solve some of these

challenges, and we believe that Many-Task Computing could offer many advantages over High-Performance Compu-

ting.

 Work stealing is a scalable method to achieve distributed load balance, even at exascales. In order to achieve the

best work stealing performance, we find the number of tasks to steal is half and there must be a squared root number

of dynamic neighbors (e.g. at 1M nodes, we would need 1K neighbors).

 In the future, we will use SimMatrix to explore work stealing for many-core chips with thousands of cores. Another

direction for future improvements of SimMatrix is to allow more complex network topologies for an exascale system,

such as fat tree, 3D/4D/5D torus networks, daisy chained switches, etc. We will also develop the MATRIX, a MTC task

execution fabric at exascales, to implement the proposed adaptive work stealing algorithm. MATRIX will be tested on

BlueGene/P/Q systems at full scales, and be integrated with other projects, such as ZHT, FusionFS, Swift, and

Charm++.

[1] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and Supercomputers,” 1st IEEE Workshop on Many-Task Computing

on Grids and Supercomputers (MTAGS) 2008.

[2] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford, “Toward Loosely Coupled Programming on Petascale

Systems,” IEEE SC 2008.

[3] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde, “Falkon: A Fast and Light-weight tasK executiON Framework,” IEEE/ACM

SC 2007.

[4] I. Raicu, I. Foster, et al, “Middleware Support for Many-Task Computing,” Cluster Computing, The Journal of Networks, Software

Tools and Applications, 2010.

 Develop a new light-weight and scalable discrete event simulator, SimMatrix, which enables distributed scheduling for MTC

workloads at exascales. SimMatrix has excellent flexibility and extensibility; it can be used to study both homogenous systems,

heterogeneous systems, different programming models (HPC, MTC, or HTC), and different scheduling strategies (centralized,

distributed, hierarchical)

 Propose an adaptive work stealing algorithm, which applies dynamic multiple random neighbor selection, and adaptive poll in-

terval techniques.

 Provide evidence that work stealing is a scalable method to achieve distributed load balancing, even at exascales with millions

of nodes and billions of cores.

 Identify optimal parameters affecting the performance of work stealing; at the largest scales, in order to achieve the best work

stealing performance, we find that the number of tasks to steal is half and there must be a squared root number of dynamic

random neighbors (e.g. at 1M nodes, we would need 1K neighbors).

