
SimMatrix: SIMulator for MAny-Task computing execution

fabRIc at eXascale
Ke Wang

Department of Computer Science
Illinois Institute of Technology

Chicago, IL, USA

kwang22@hawk.iit.edu

Kevin Brandstatter
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

kbrandst@hawk.iit.edu

Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

iraicu@cs.iit.edu

ABSTRACT

Exascale computing have challenges, most of which can be

potentially addressed by Many-task computing paradigm through

efficient task execution frameworks that are several orders of

magnitude beyond current batch schedulers. This paper proposes

a light-weight discrete event simulator, SimMatrix, which

simulates distributed job scheduler comprising of millions of

nodes and billions of cores/tasks. We validated SimMatrix against

MATRIX up to 4K-cores, running on an IBM Blue Gene/P

system, and compared SimMatrix with SimGrid and GridSim in

terms of resource consumption at scale. Results show that

SimMatrix consumes up to two-orders of magnitude lower

memory per task, and at least one-order of magnitude (and up to

four-orders of magnitude) lower time per task overheads.

1. INTRODUCTION
With exascale computing, we expect that applications running on

exascale machines would be decomposed with large number of

tasks with finer granularity in size and duration, along with large

volume of data. Driven by these expectations, Many-Task

Computing (MTC) was proposed [1] to bridge the gap between

HPC and HTC. Many MTC applications are structured as graphs

of discrete tasks, with input and output dependencies forming the

graph edges. MTC applications often demand a short time to

solution, may be communication intensive or data intensive [2].

For many applications, a graph of distinct tasks is a natural way to

conceptualize the computation.

Task execution framework for exascale systems will have to be

much more scalable and flexible to handle both HPC and MTC.

We fall back to simulations to study various scheduling

architectures and algorithms at exascale. In Discrete event

simulation (DES), the operations of a system are represented as a

chronological sequence of events. We propose SimMatrix that

simulates job scheduler comprising of millions of nodes and

billions of cores/tasks. SimMatrix supports centralized (FIFO) and

distributed (work stealing) scheduling at node/core level.

2. RELATED WORK
The earliest batch job schedulers are Condor [3], Slurm [4]. All

these systems target as the HPC or HTC applications, and lack the

granularity of scheduling jobs at node/core level, making them

hard to be applied to the MTC applications. What’s more, the

centralized dispatcher in these systems suffers scalability and

reliability issues. Falkon [5] is a light-weight task execution

framework with both centralized and hierarchical architectures for

MTC workload, and although it scaled and performed several

orders magnitude better than the traditional batch schedulers, it

even cannot scale to petascale systems [6]. Sparrow [7] is another

hierarchical task execution framework targeting at sub-second

tasks. However the Java-based framework is very hard to be

deployed on supercomputers.

Popular simulators for distributed systems are SimGrid [8],

GridSim [9]. SimGrid uses PDES and claims to have 2M nodes’

scalability. However, it is neither suitable to run exascale MTC

applications, due to the complex parallelism. GridSim uses multi-

threading (one thread per simulated element), making it

impossible to reach exascale on a single shared-memory system.

3. SIMMATRIX
SimMatrix is a DES for MTC execution fabric at exascale. The

architectures of SimMatrix are shown in Figure 1.

Log
Visual

Steal

Available

cores

H
as

 ta
sk

s

First node needs

m
ore tasks

Global Event Queue

S
o

rte
d

 b
y
 tim

e

Insert Event(time:t)

No waiting tasks

TaskEnd

Has Waiting

Tasks and

available cores

Failed

N
o

Tas
ks

D
is

p
a
tc

h

ta
s
k
s

TaskRec

TaskDispStart

First node

needs tasks

Figure 2: State transition diagram of SimMatrix

For simplicity, we assign consecutive integer numbers as the node

ids, ranging from 0 to the number of node N-1. The system could

be centralized (Figure 1 left part), where a single dispatcher

maintains a task queue and manages the task submission, task

assignment, and task execution state updates. It could also be

distributed (Figure 1 right part), where each computing node

Figure 1: SimMATRIX architectures

maintains a task execution framework, and they cooperate with

each other to achieve load balancing through work stealing

technique. The global event queue is the core part of SimMatrix.

Any behavior is converted to an event and put in the queue that is

sorted based on the occurrence time. We advance the simulation

time to the occurrence time of the first event removed from the

queue. The state transition diagram of all the events are shown in

Figure 2, where each state is an event that is executed, the next

state is the event to be inserted in the event queue signaled after

finishing the current event. For example, if the current event is

“TaskEnd”, meaning that a node finishes a task and has one more

available core. It will insert another “TaskEnd” event for the

available core, or steal tasks from neighbors.

4. PERFORMANCE EVALUATION
We validate SimMatrix against MATRIX [10], a real task

execution framework for MTC, up to 4K-core scale running on an

IBM Blue Gene/P machine. The result is shown in Figure 3. For

SimMatrix, each node is configured to have 4 cores; the number

of tasks is 10 times of the number of cores, and we use “sleep 0”

tasks. The simulation matched the real performance data with

average 5.85% normalized difference (abs(SimMatrix - MATRIX)

/ SimMatrix), a relatively small amount of error.

We also compare SimMatrix with SimGrid and GridSim in terms

of memory and time consumption. The results are depicted in

Figure 4. Notice that for GridSim, we just scaled up to 256 nodes,

as it took significant time to run larger scales. The time per task of

GridSim is increasing as the system scales up, while SimMatrix

and SimGrid experienced decreasing or constant time per task.

SimGrid could scale up to 65K nodes, however, after which point

it ran out of memory (256GB). SimMatrix scales up to 1M nodes

without any problems, and it is likely to simulate even greater

scales with moderate resource requirement.

5. CONCLUSION & FUTURE WORK
Efficient task execution frameworks are needed to address the

challenges of exascale computing with MTC. We developed a

light-weight and scalable DES of JMS, SimMatrix, at exascale.

The scalability and resource consumption of SimMatrix are

significantly better. In the future, we plan to explore more

complex network topologies for exascale systems, such as Fat

Tree, 3D/4D/nD Torus, and InfiniBand. We believe SimMatrix

could also be developed to simulate workflow systems, and it

would allow us to study job dependency and data aware

scheduling with more realistic constraints.

3.96% 4.71%

3.70%
4.95%

11.93%

0%

10%

20%

30%

40%

50%

60%

70%

0

2000

4000

6000

8000

10000

12000

14000

256 512 1024 2048 4096

D
if

fe
re

n
c

e

T
h

ro
u

g
h

p
u

t
(t

a
s
k

/s
e
c

)

Scale (No. of Cores)

sleep 0 (Matrix)

sleep 0 (SimMatrix)

Normalized Difference

Figure 3: Validation of SimMatrix against MATRIX

6. REFERENCES
[1] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and

Supercomputers,” 1st IEEE Workshop on Many-Task Computing on

Grids and Supercomputers (MTAGS) 2008.

[2] I. Raicu et. al. “Towards Data Intensive Many-Task Computing”,

book chapter in Data Intensive Distributed Computing: Challenges

and Solutions for Large-Scale Information Management, IGI Global

Publishers, 2011.

[3] J. Frey et. al. “Condor-G: A Computation Management Agent for

Multi-Institutional Grids,” Cluster Computing, 2002.

[4] M. A. Jette et. al, Slurm: Simple linux utility for resource

management. Proceedings of Job Scheduling Strategies for Prarallel

Procesing (JSSPP) 2003 (2002), Springer-Verlag, pp. 44-60.

[5] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON

Framework,” IEEE/ACM SC 2007.

[6] I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale

Systems,” IEEE SC 2008.

[7] K. Ousterhout et. al. “Batch Sampling: Low Overhead Scheduling

for Sub-Second Prallel Jobs.” University of California, Berkeley,

2012

[8] M. Quinson et. al “Parallel Simulation of Peer-to-Peer Systems.” In

Proceedings of the 12th IEEE International Symposium on Cluster

Computing and the Grid (CCGrid'12), May 2012.

[9] R. Buyya and M. Murshed. “GridSim: A Toolkit for the Modeling

and Simulation of Distributed Resource Management and

Scheduling for Grid Computing,” The Journal of Concurrency and

Computation: Practice and Experience (CCPE), Volume 14, Issue

13-15, Wiley Press, Nov.-Dec., 2002.

[10] K. Wang et. al. MATRIX: MAny-Task computing execution fabRIc

at eXascales. http://datasys.cs.iit.edu/projects/MATRIX/index.html,

2013.

1

10

100

1000

10000

100000

1000000

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

T
im

e
 P

e
r

T
a
s

k
 (

u
s
)

Scale (No. of Nodes)

SimMatrix(Time/Task)

SimGrid(Time/Task)

GridSim(Time/Task)

1

10

100

1000

10000

100000

1000000

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

M
e

m
o

ry
 P

e
r

T
a
s

k
 (

B
y

te
)

Scale (No. of Nodes)

SimMatrx(Mem/Task)

SimGrid(Mem/Task)

GridSim(Mem/Task)

Figure 4: Resouce consumption comparions among SimMatrix, SimGrid, and GridSim

