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ABSTRACT 

Exascale computing have challenges, most of which can be 

potentially addressed by Many-task computing paradigm through 

efficient task execution frameworks that are several orders of 

magnitude beyond current batch schedulers. This paper proposes 

a light-weight discrete event simulator, SimMatrix, which 

simulates distributed job scheduler comprising of millions of 

nodes and billions of cores/tasks. We validated SimMatrix against 

MATRIX up to 4K-cores, running on an IBM Blue Gene/P 

system, and compared SimMatrix with SimGrid and GridSim in 

terms of resource consumption at scale. Results show that 

SimMatrix consumes up to two-orders of magnitude lower 

memory per task, and at least one-order of magnitude (and up to 

four-orders of magnitude) lower time per task overheads.   

1. INTRODUCTION 
With exascale computing, we expect that applications running on 

exascale machines would be decomposed with large number of 

tasks with finer granularity in size and duration, along with large 

volume of data. Driven by these expectations, Many-Task 

Computing (MTC) was proposed [1] to bridge the gap between 

HPC and HTC. Many MTC applications are structured as graphs 

of discrete tasks, with input and output dependencies forming the 

graph edges. MTC applications often demand a short time to 

solution, may be communication intensive or data intensive [2]. 

For many applications, a graph of distinct tasks is a natural way to 

conceptualize the computation. 

Task execution framework for exascale systems will have to be 

much more scalable and flexible to handle both HPC and MTC. 

We fall back to simulations to study various scheduling 

architectures and algorithms at exascale. In Discrete event 

simulation (DES), the operations of a system are represented as a 

chronological sequence of events. We propose SimMatrix that 

simulates job scheduler comprising of millions of nodes and 

billions of cores/tasks. SimMatrix supports centralized (FIFO) and 

distributed (work stealing) scheduling at node/core level.  

2. RELATED WORK 
The earliest batch job schedulers are Condor [3], Slurm [4]. All 

these systems target as the HPC or HTC applications, and lack the 

granularity of scheduling jobs at node/core level, making them 

hard to be applied to the MTC applications. What’s more, the 

centralized dispatcher in these systems suffers scalability and 

reliability issues. Falkon [5] is a light-weight task execution 

framework with both centralized and hierarchical architectures for 

MTC workload, and although it scaled and performed several 

orders magnitude better than the traditional batch schedulers, it 

even cannot scale to petascale systems [6]. Sparrow [7] is another 

hierarchical task execution framework targeting at sub-second 

tasks. However the Java-based framework is very hard to be 

deployed on supercomputers. 

Popular simulators for distributed systems are SimGrid [8], 

GridSim [9]. SimGrid uses PDES and claims to have 2M nodes’ 

scalability. However, it is neither suitable to run exascale MTC 

applications, due to the complex parallelism. GridSim uses multi-

threading (one thread per simulated element), making it 

impossible to reach exascale on a single shared-memory system. 

3. SIMMATRIX 
SimMatrix is a DES for MTC execution fabric at exascale. The 

architectures of SimMatrix are shown in Figure 1.  

 

 

Log
Visual

Steal

Available 

cores

H
as

 ta
sk

s

First node needs 

m
ore tasks

Global Event Queue

S
o

rte
d

 b
y
 tim

e

Insert Event(time:t)

No waiting tasks

TaskEnd

Has Waiting 

Tasks and 

available cores

Failed

N
o 

Tas
ks

D
is

p
a
tc

h
 

ta
s
k
s

TaskRec

TaskDispStart

First node 

needs tasks

 

Figure 2: State transition diagram of SimMatrix 

For simplicity, we assign consecutive integer numbers as the node 

ids, ranging from 0 to the number of node N-1. The system could 

be centralized (Figure 1 left part), where a single dispatcher 

maintains a task queue and manages the task submission, task 

assignment, and task execution state updates. It could also be 

distributed (Figure 1 right part), where each computing node 

Figure 1: SimMATRIX architectures 



maintains a task execution framework, and they cooperate with 

each other to achieve load balancing through work stealing 

technique. The global event queue is the core part of SimMatrix. 

Any behavior is converted to an event and put in the queue that is 

sorted based on the occurrence time. We advance the simulation 

time to the occurrence time of the first event removed from the 

queue. The state transition diagram of all the events are shown in 

Figure 2, where each state is an event that is executed, the next 

state is the event to be inserted in the event queue signaled after 

finishing the current event. For example, if the current event is 

“TaskEnd”, meaning that a node finishes a task and has one more 

available core. It will insert another “TaskEnd” event for the 

available core, or steal tasks from neighbors. 

4. PERFORMANCE EVALUATION 
We validate SimMatrix against MATRIX [10], a real task 

execution framework for MTC, up to 4K-core scale running on an 

IBM Blue Gene/P machine. The result is shown in Figure 3. For 

SimMatrix, each node is configured to have 4 cores; the number 

of tasks is 10 times of the number of cores, and we use “sleep 0” 

tasks. The simulation matched the real performance data with 

average 5.85% normalized difference (abs(SimMatrix - MATRIX) 

/ SimMatrix), a relatively small amount of error. 

We also compare SimMatrix with SimGrid and GridSim in terms 

of memory and time consumption. The results are depicted in 

Figure 4. Notice that for GridSim, we just scaled up to 256 nodes, 

as it took significant time to run larger scales. The time per task of 

GridSim is increasing as the system scales up, while SimMatrix 

and SimGrid experienced decreasing or constant time per task. 

SimGrid could scale up to 65K nodes, however, after which point 

it ran out of memory (256GB). SimMatrix scales up to 1M nodes 

without any problems, and it is likely to simulate even greater 

scales with moderate resource requirement. 

5. CONCLUSION & FUTURE WORK 
Efficient task execution frameworks are needed to address the 

challenges of exascale computing with MTC. We developed a 

light-weight and scalable DES of JMS, SimMatrix, at exascale. 

The scalability and resource consumption of SimMatrix are 

significantly better. In the future, we plan to explore more 

complex network topologies for exascale systems, such as Fat 

Tree, 3D/4D/nD Torus, and InfiniBand. We believe SimMatrix 

could also be developed to simulate workflow systems, and it 

would allow us to study job dependency and data aware 

scheduling with more realistic constraints. 
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Figure 3: Validation of SimMatrix against MATRIX 
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Figure 4: Resouce consumption comparions among SimMatrix, SimGrid, and GridSim 


