
Performance evaluation of AWS
Exploring storage alternatives in Amazon Web Services

Jesús Hernández Martin, Ioan Raicu
Data-Intensive Distributed Systems Laboratory

Illinois Institute of Technology
Chicago, USA

jherna22@hawk.iit.edu, iraicu@cs.iit.edu

Abstract— with the increasing number of public cloud

platforms and the growth in terms of computing capacity, I/O

performance must be one of the main points to look at so that it

keeps up with the current compute capacity. In order to start

considering any of the existing public cloud platforms for its use

in scientific or in general, any high I/O demanding application,

we have to study their raw performance in terms of I/O. In this

paper, I focus on the most known IaaS cloud platform nowadays:

Amazon’s public cloud. Its ease to use, reliability and various

API interfaces allow anyone willing to outsource their

compute/storage capacity to the cloud without any issues. This

document describes the tools I used for benchmarking, a

description of the file systems and storage solutions involved in

this study and finally, the results I obtained from running all the

benchmarks.

Index Terms—storage, Amazon, S3, EBS, pvfs, nfs, dynamoDB

I. INTRODUCTION
Nowadays, all the most demanding scientific applications

and simulations are run on top of big dedicated parallel
systems, which are usually not accessible to everyone. These
computers are getting bigger and faster by the year, so as to be
ready to run new compute intensive scientific applications.
These applications not only require large amounts of
computing power but also need to have access to large datasets.

 Nevertheless, over the last few years we have seen how
new trends in the field of distributed systems are gaining
importance with the concept of Cloud Computing. In this
regard, Amazon.com introduced AWS (Amazon Web
Services) in 2006, which nowadays is the largest IaaS public
cloud platform in the market.

AWS offers anyone the opportunity to use their computing
infrastructure in a pay-per-hour basis. Unlike big dedicated
datacenters, AWS’s infrastructure works on top of commodity
hardware, offering both dedicated and virtualized resources,
depending on the users’ needs. Initially, AWS was meant to be
used by web applications to provide their services at a given
cost. However, the need for building highly parallel systems
puts AWS in the spotlight of several members within the
scientific community, wondering if these cloud platforms could
prove to be a good alternative to substitute current HPC
systems. So far, studies are being made in order to corroborate
whether a virtualized cluster can keep up to the task when
running high capacity demanding applications.

If we talk about capacity, we cannot ignore I/O. I/O on
parallel computers has always been slow compared with
computation and communication. As computers get larger and
faster, I/O becomes even more of a problem, to the point that
when the technology reaches exascale, the bottlenecks of I/O
will be dramatic with the existing level of development [1]

Applications running on most multicore platforms are
usually held back by storage systems that cannot keep up.
Although HDDs provide the capacity needed to handle large
amounts of data, their I/O performance capabilities are
relatively slow. In fact, storage system I/O performance has
increased by only a small fraction of server performance,
which seems to be driven largely by Moore’s Law.

The main concern of this document is to explore the
different storage options offered by Amazon Web Services,
providing insight into their raw I/O performance and suitability
for their usage in scientific applications.

II. AMAZON EC2
Amazon Elastic Compute Cloud (EC2) [2] is a web service

that allows anyone to run their own applications on Amazon’s
computing infrastructure, by letting customers “rent” computing
resources by the hour.

Clients are given access to an “unlimited” source of
compute capacity, which is delivered through what is known as
EC2 instance. Basically, an instance is a running machine on
Amazon’s cloud platform. Each of these instances is deployed
with an Amazon Machine Image (AMI), which is just a pre-
configured operating system and some bundled application
software. There exist several types of instances, each of them
with different compute capacities, memory size, I/O
performance and storage.

If we consider the way we can have access to these
instances, we can categorize them in three different types:

 Reserved instances: Amazon allows us to pay upfront
per each instance that we want to use during a
given period of time, and in exchange, they give us
a lower hourly cost for each of them. Along with
the savings, with these instances we make sure that
we will have availability through all the period that
we paid for.

 On demand instances: these are the most common
type of instances. You only pay for what you use,
allowing easy allocation and deallocation of

resources, depending on your capacity
requirements. Customers are billed at the end of
each month.

 Spot instances: this is a very interesting concept. In
order to achieve a better utilization of their
infrastructure, Amazon allows us to bid on unused
EC2 capacity and run instances until the current
spot instance price exceeds our bid. The spot price
is set by Amazon based on the available capacity
and load of their systems and it is updated in a 5
minute period. The prices of these instances are
much lower than what you pay for On-demand
instances. As a drawback, the availability of you
instances is only assured while the spot price is
under bid. As previously stated, Amazon
automatically terminates those instances whose bid
is exceeded by the spot price. Besides, one cannot
stop a spot instance and use it later as it happens
with on-demand or reserved instances. Spot
instances can only be terminated or rebooted.

Among these types, the spot instances seem to be the
most appropriate for running short-term applications under
certain conditions, since they provide the same capacity and
features as the other instances at a lower rate. These include
scientific applications, which usually run for a predictable
amount of time, lowering the costs per experiment.

III. STORAGE ALTERNATIVES IN AWS
There are several types of storage options in AWS, each of

them with different features which make them more suitable
for one or another application. When you rent an instance in
Amazon EC2, you basically have three ways to store your files:

 Elastic Block Store (EBS) volumes. These are
network attached volumes that can be mounted to
a device in an EC2 instance and interact with them
as if they were mounted locally. These volumes
are dynamically created, so one can choose its size
(from 1GB to 1TB) and decide whether you want
it pre-loaded with an existing image (for example
a dataset).
EBS volumes are billed $0.10/GB per month and
$0.10 per 1 million I/O requests to them.
According to Amazon, all the data stored in EBS
volumes is implicitly replicated across multiple
servers within the same availability zone, which
makes them highly reliable in comparison with
standard hard drives.
Since these volumes are network attached, they
have a theoretical throughput limit, which is given
by the instance’s network bandwidth (1Gbps in
most cases)

 Simple Storage Service (S3): built from
commodity hardware, S3 is the storage choice for
those who require speed, scalability and security at
the same time. Unlike EBS, this cannot be

mounted to an EC2 instance without the help of
some middleware (like s3fs). However, it provides
higher availability and redundancy, since data
stored in S3 is replicated across different servers
in different availability zones.
S3 is very suitable for applications which require
high scalability and bandwidth. S3 bandwidth is
constrained by the user accessing S3, not by S3
itself, thus providing “infinite” bandwidth to its
users.
The high-level definition for a file in S3 is an
“object” and each object is stored in a bucket,
which can be chosen among different availability
zones.
Its price depends on the data to be stored, the
output bandwidth, number of requests (S3 is
accessed through its SOAP/REST API) and
redundancy (Amazon offers reduced redundancy
S3 storage, which is cheaper).

 Instance store
By default, all instances except for the t1.micro
are provided with some amount of instance
storage. This storage is physically attached to the
host computer , which may be shared by several
VMs at the same time. Hence, the instance store
subsystem may also be shared by the different
VMs running on the same machine, although each
VM has exclusive and dedicated access to its own
instance store.
Unlike the previous storage options, instance
storage is not persistent and the data contained in
it may be lost if the VM to which it is attached is
stopped or terminated.
The size of this instance store varies from instance
to instance, ranging between 150GiB to 3.3 TiB.
The same applies to its bandwidth, which varies
depending on the type of instance.
The price of this storage is included within the
cost of the instance rental, so there are no extra
charges per GB or bandwidth.

IV. NFS
Despite its age, I considered that NFS was a good start point

for the distributed file systems benchmarks. NFS (network file
system) allows remote hosts to mount file systems over a
network and interact with those file systems as though they are
mounted locally. The main issue of NFS is that the performance
of the file system is constrained by the network capacity of the
central server, in which all the files are stored.

V. PVFS2
PVFS stands for Parallel Virtual File System (PVFS) [3]. It

is an open source parallel file system, aimed at providing a
scalable and high-performance parallel file system on top of a
Linux based cluster. PVFS is designed so that the applications
that access this file system have their data spread out across

different nodes (local disks) within the cluster in which PVFS
is installed. To achieve this, PVFS relies (partially) on the
network interface of each node, routing incoming byte streams
to the different nodes.

By using PVFS, an application running on node X which
requires some kind of I/O operation will not have to wait until
a previous application finishes performing I/O operations on
the same local storage drive, since its byte stream will be re-
routed by PVFS through the network to another node Y in the
same cluster which may be idle.

We can find three different elements in PVFS:
• I/O servers: store the data in their local storage drives
• Metadata server: stores the information of all the files

spread across the parallel file system
• Clients: store and retrieve data from the servers.

Among the interfaces provided in PVFS, we can find ROMIO,
an MPI-I/O interface implementation that is detailed in the next
section.

VI. MPI-IO ROMIO IMPLEMENTATION
MPI-I/O is the parallel I/O interface included in the MPI-2

specification [4]. It was developed to overcome the lack of
portability and optimization that POSIX had for parallel I/O.

Based on the coordination between processes, there are
different data access patterns in MPI-IO. Independent routines
are used when there is only one processor and an I/O request,
or different processors accessing different files. Collective
routines involve more than one processor. In a collective call,
all the processors open the same given file, but each of them
has a different view of the file. This view defines the data that
is visible to each processor. Hence, collective routines usually
perform better than independent routines, since a number of
small requests to the same file can be merged into one big
request in order to improve I/O performance.

Besides, MPI provides three different types of positioning
within a file: individual file pointers, in which each processor
increments its own pointer after a write/read operation; shared
file pointers, in which a unique file pointer is shared between

all the processes and explicit offsets, by means of which each
process writes/read at the position specified by the offset.

VII. TOOLS
In order to make the benchmarks as exhaustive as possible,

it is important to use wide-spread benchmarking tools. For my
study, I considered Bonnie64 [5], hdparm [6] and IOR [7].
After several test, I decided to go with IOR. However, in some
cases I have had to develop my own benchmarking tools, since
I could not find any well-known tool which fulfilled my needs
and that was also widely accepted.

A. IOR

To provide comprehensive results, I decided to use IOR.
IOR is a benchmark tool used for testing the performance of
parallel file systems using various interfaces and access
patterns. At the same time, IOR is very flexible in terms of
customization, accepting a high variety of input parameters.

For my study, I have used both the POSIX and MPIIO
interface, since MPIIO deals better with parallel access to a
single file than POSIX does.

After some runs of IOR, I realized that something was
going wrong internally, since it was yielding abnormally high
read speeds. By looking at IOR’s source code, I realized that it
had some unimplemented functions. Among these functions,
the one that affected me was “IOR_Fsync_MPIIO”.

One of the input parameters of IOR is “-fsync”. By using
this parameter, we force the underlying file system to maintain
consistency in the local storage by transferring all the
information written to memory to the storage device. The
problem is that this option is only supported if we use the
POSIX.

The equivalent call for MPIIO is MPI_File_sync(). This
call should be placed within the method “IOR_Fsync_MPIIO”.
However, in order to avoid further modifications in the code, I
opted for including this call under the function
“IOR_Close_MPIIO”, so that before closing a file with
MPI_File_close(), all the contents would be transferred to disk.

In my configuration, IOR uses a single shared file by all the
processes involved in the test. The following figure depicts this
situation [8]

The shared file is divided in different segments. Each of

these segments is also divided into a number of blocks which
have a size that must be a multiple of “transfer size”. The
processes accessing the file can read as much as “transfer size”
bytes at a time and each process is assigned a different block
within each segment. Thus, this transfer size corresponds to the
actual amount of data transferred from the processor’s memory
to the file in each I/O function call.

B. S3Bench

In order to benchmark S3, I had to develop my own
benchmark suite, since none of the widespread benchmarking
tools can be used to test storage like this. To achieve this, I
used Amazon’s AWS SDK, which provides several methods to
write (PUT), read (GET) and delete (DELETE) objects and
create/delete buckets.

This program, written in java, covers all the parameter
space and returns a file containing all the results.

C. DynamoDBench

Like S3, there is not a widespread benchmark for
Amazon’s DynamoDB, so I wrote my own benchmark by
using Amazon’s AWS SDK.

D. EC2Cluster

Configuring a fully working cluster with support for some
specific file system may be a tricky task. For this reason, I
developed a tool which, along with several scripts, allows users
to fully configure and run a fully customizable cluster on top of
Amazon EC2 infrastructure.

For my study, I customized this program to easily build a
NFS/PVFS cluster with MPI support, so that I could take
advantage of MPI to run the benchmark simultaneously on all
the clients. These are some of the different parameters accepted
by the program:

 Server instance type
 Client instance type
 Availability zone
 Maximum bids for clients/servers
 Security group
 Number of servers/clients
 File system
 MPI process mapping

As well as running a cluster, it allows the user to terminate
it.

VIII. PARAMETER SPACE AND TESTBED
Defining a plausible parameter space is as important as

obtaining the proper results. If we put together all the different
instance types in EC2, the different storage options, access
patterns and IOR configurations, we may end up with
thousands of different tests to be covered. With this in mind, I
had to decide what the most important issues were and discard
those which would not yield any significant result.

My study can be divided into four different parts: EC2 micro
benchmarks, S3, parallel file system benchmarking and finally,

DynamoDB benchmarking. A description of each of them is
included below:

A. EC2 micro benchmarks

These cover all the different instance types (except for the
cluster and micro instances):

 m1.small
 m1.medium
 m1.large
 m1.xlarge
 m2.xlarge
 m2.2xlarge
 m2.4xlarge
 c1.medium
 c1.xlarge
 hi1.4xlarge
For my study, I have used EBS backed instances. As I said

before in this document, each of these instances includes some
amount of instance store, which usually comes mounted and
formatted. If it was not the case, I chose formatted them using
ext4.

Besides, I attached an EBS volume to each instance, with a
size which varied based on the instance type, since it should be
at least twice its memory. If we do not verify this, we will get
incorrect read results, because all the contents of the file
created by IOR will be read back from memory instead of the
actual EBS volume.

With this in mind, in each instance, I had to benchmark
both EBS storage and instance store. To observe the influence
of the intermediate I/O buffers, I ran IOR with ten different
transfer buffer sizes: 4 KB, 16 KB, 64KB, 256 KB, 512 KB, 1
MB, 2 MB, 4 MB, 8 MB, and 16 MB. A description of how
IOR works can be found in section VIII.A. The block size and
segment count were established based, again, on the memory
size.

Each test is repeated three times in order to get more fine-
grained results.

B. S3

For S3, I considered all the previous instance types and also
three different regions (us-west-1, us-west-2, us-standard). In
this case, I used my own benchmark, which obtains write/read
throughput for different zones and different file sizes: 4 KB, 16
KB, 64KB, 128KB, 512KB, 1MB, 4MB, 16MB, 64MB and
128 MB.

My program automatically creates a bucket in each
specified zone and writes/reads to/from that bucket. It also
works as a multithreaded client, allowing doing multiple
requests from the same instance to the same bucket at the same
time. However, this part of the benchmark should be revised in
the future to improve the method that I used to compute the
aggregate bandwidth among the different threads.

Another test that I found interesting was to request different
files from different instances simultaneously to the same
bucket. With this, I would know whether Amazon implicitly
limits the bandwidth of a bucket or it is unlimited as they
claim.

C. NFS and PVFS

After running micro-benchmarks on each instance, it makes
sense to see how they behave when working in parallel.
Specifically, my objective was to measure the performance of
both PVFS and NFS. To benchmark these file systems I used
IOR along with MPICH2, allowing me to run the same test
simultaneously on all the clients.

For NFS, the cluster size ranged from 2 nodes (1 client and
1 server) up to 65 nodes (64 clients and 1 server). On the other
hand, PVFS’ cluster size ranged from 1 node to 64 nodes. In
the latter, each node acts as a metadata and an I/O server at the
same time. I tried to scale these clusters up to 128 nodes
without success due to Amazon restrictions affecting the
number of running instances/spot requests.

In the NFS cluster, I used IOR with both MPIIO and
POSIX APIs and 2 processes per node synchronized with MPI.
However, the combination IOR/MPICH2/POSIX was not
possible without configuring the PVFS2 kernel interface,
which cannot be done with the Linux kernel version that I was
using in the instances (it is an amazon specific version). Thus,
on the PVFS2 cluster I could only use the MPIIO interface.

Instead of covering all the instance types, I decided to go
with the m1.medium, since they have proved to be one of the
most cost-efficient in terms of compute capacity, network
performance and storage. However, for NFS, I set the server to
run on an m1.xlarge instance, because a smaller one would end
up being a serious bottleneck for big clusters.

Regarding the storage devices under these file systems; I
used instance store (physical attached drive), EBS volumes (the
instance volume itself) and also the /dev/shm device which is
backed by RAM memory. The latter one has been used to
emulate a cluster backed with high I/O devices, such as a
cluster composed of hi1.4xlarge instances.

As in the micro benchmarks, I ran IOR with different
transfer sizes, block size and segment count to adapt it to each
different cluster.

The entire network, MPI and file system configuration has
been made through the EC2Cluster tool, which I wrote for this
project.

D. DynamoDB

Despite not being a storage solution, DyamoDB has gained
importance as one of the most robust alternatives to
conventional (SQL-based) relational databases. Its NoSQL
nature allows customers to bypass all the problems related with
database scaling, management, reliability and performance.

According to Amazon, each data item stored in DynamoDB
is automatically replicated across three different availability
zones within the same region, providing high availability and
data durability. Besides, by using Solid State Drives as storage,
the I/O performance of DynamoDB can keep up to the most
demanding application in terms of throughput and requests
volume.

To measure its performance, I wrote a little java program
which creates a table, puts a big number of items to the table
and then gets all those items back. By doing this and taking
into account the item size, I obtain an estimate of both read and

write throughput, which might be constrained by the network
bandwidth due to the high I/O performance offered by SSDs.

IX. RESULTS

A. EC2 micro-benchmarks

The following charts show the results obtained after
running IOR on each of the previously mentioned
instances with different transfer sizes and storage devices.

We can see that EBS volumes show a very poor
performance, which comes from the fact that they are attached
over the network. This fact is noticeable if we carefully
examine the all the charts, where we will see that neither write
nor read throughput exceeds ~120 MB/s in any of the
instances. Taking into account that all the instances are bundled
with a 1Gbps Ethernet interface, these results make a lot of
sense.

Regarding the instance store, we cannot appreciate a great
difference among the instances’ throughput. The best
performing instances are those with higher memory (m2’s) and
the overall outperformer is the hi1.4xlarge, since it is equipped
with SSDs.

 The following table summarizes the previous chart,
showing the highest throughput obtained for each of the
different studied instances, both in reads and writes and local
storage and EBS.

instance Throughput (MB/s)

 LS write LS read EBS write EBS read

m1.small 85.31 93.25 37.31 53.29
m1.medium 100.95 115.55 44.52 75.78
m1.large 94.63 159.43 56.82 62.31
m1.xlarge 104.50 166.12 41.50 83.75
m2.xlarge 78.75 127.97 28.91 60.81
m2.2xlarge 136.81 166.64 27.82 43.96
m2.4xlarge 117.20 136.74 30.43 113.81
c1.medium 81.63 77.15 82.40 80.20
c1.xlarge 98.94 140.32 68.39 84.88
hi1.xlarge 661.38 407.64 51.83 74.40

Recently, AWS announced a new feature called “EBS with

provisioned IOPS” [9]. These are EBS volumes for which they
guarantee a given amount of IOPS, which is specified by the
client during the creation of these volumes. The amount of
allowed IOPS ranges from 100 to 1000 and is limited by the
actual size of the volume by a proportion of 10 to 1 (if your
volume is 10 GB, you can choose 100 IOPS at maximum).

The following graphs contain the results from running the
previous benchmark in different IOPS provisioned EBS
volumes. All of them have been run in a c1.medium instance.

For this benchmark I used four different IOPS provisioned
EBS volumes and one standard EBS volumes. Surprisingly, the
standard EBS volume outperformed the others in all the tests.

However, the provisioned IOPS EBS volumes seem to
behave very well in terms of stability, since they provide the
exact same throughput in all the different tests, in spite of the
different transfer size, which seems to slightly affect the
standard EBS volume.

Finally, to complete these micro-benchmarks, I set up a
software RAID-0 with EBS volumes, varying the number of
volumes from 1 to 8. I ran the same benchmark on a
c1.medium instance and these were the results:

Here we see how the write throughput increases with the
size of the RAID and on the other hand, the read throughput
does exactly the contrary. However, both of them keep nearly
constant as we vary the trasnfer size and the maximum
achievable throughput is around 120MB/s, which is the
maximum network bandwidth for this type of instance.

B. S3

We can find up to three different regions in the USA where
you can create a storage bucket for S3. Internally, these regions
are known as us_west-1, us_west-2 and us_standard.
Choosing one region or another depends on the latency and the
type of consistency that we want for our data. Whereas the
us_standard region provides eventual consistency for all
requests, us_west-2/1 regions assure read-after-write
consistency for PUTS of new objects in a bucket and eventual
consistency for overwrite PUTS and DELETES.
All the instances, except for the hi1.4xlarge were running on
us_west-2. For this study, I have measured the read/write
throughput from all the instance types to one bucket in each
different region. The following charts show the difference in
terms of write/read throughput for each instance between the
different regions.
 Us_standard region covers both facilities in Northern
Virginia and Pacific Northwest. The final destination of the
data uplaoded to this region is established by using network
maps.

Leaving aside the small instances, we cannot

appreciate any big difference between the maximum read/write
throughput across instances. The reason is that these values are
implictily limited by either the network capabilities or S3 itself.
Unlike EBS volumes, the links between the data which goes
from the instances to S3 might be treated differently in terms of
network routing, so that the underlying physical links have
lower capacity than those between instances and EBS volumes.

However, since S3 is held back by standard-storage
devices (i.e. commodity hardware), the additional redundancy
and high consistency provided by S3 may struggle the overall
I/O performance offered by this service.

instance Throughput (MB/s)

 LS write LS read

m1.small 10.26 13.49
m1.medium 9.53 26.99
m1.large 12.66 27.85
m1.xlarge 14.93 27.57
m2.xlarge 10.79 28.92
m2.2xlarge 14.59 30.85
m2.4xlarge 13.37 30.66
c1.medium 14.17 29.63
c1.xlarge 10.91 28.05

instance Throughput (MB/s)

 LS write LS read

hi1.xlarge 9.14 22.65

The following graph shows that the maximum write
throughput saturates at a filesize of 16 MB. Increasing the
filesize does not make any significant difference from that
point.

 AWS offers its users the option to store their data in
S3 at a lower cost by providing less redundancy than
Amazon’s S3 standard storage. They call this feature Reduced
Redundancy Storage (RRS). Since data is replicated fewer
times, the cost is lower. However, I wanted to know whether
this had some effect on other aspects regarding performance,
such as write and read throughput.
To do this, I ran a S3Bench on a m1.medium instance on us-
west-2 and checked whether there was any difference when
uploading and downloading files with RRS. The results are
shown below:

 In this zone, we can see that both writing with RRS
enabled and RRS disabled is affected by the filesize, since
write throughput slighly decreases as we make the filesize
bigger. This is due to the latency between regions us-west-1
and us-west-2.

 On this region, we cannot appreciate much
degradation in the write throughput as we increase the filesize.
In this case, both the running instance and the storage are
within the same region.
Regarding the RRS option, we can see that there is not any
noticeable difference between uploading objects with this
option or leaving it as is. The slight changes that we see are due
to changes in the network load at each time.

Finally, I wanted to check whether Amazon has some
type of bandwidth allocation policy by which several different
instances accessing the same bucket at the same time would
see their individual bandwidth affected. I used the tool
S3Bench along with EC2Cluster and some parsing scripts to
launch all the needed instances and run the benchmark at the
same time. The results obtained from this tests are divided in
reads and writes and can be seen below:

 reads
The moving average does not show any trend that
would indicate a lower individual throughput as we
increase the number of simultaneous instances.

 writes
Despite not being very stable, write operations do not
seem to be affected by any kind of bandwidth
allocation policy. The peaks that we observe may be
due to the status of the network link between the
instances and S3 servers.

.The conclusion that we can draw from these results is that
S3 does offer a quality service in terms of bandwidth
allocation, altough its overall throughput may be very low for
applications requiring fast I/O access to data, as we observed in
the individual instance study.

C. NFS

Its centralized topology does not make NFS the most
suitable file system for the applications which may be of
interest for readers of this document. However, NFS is still
being used in many scenarios where a centralized source of
information is needed.

In these tests, I simulated some of those scenarios by
setting up clusters of different sizes, varying the storage
devices, basic I/O transaction size and access interface.

 writes

 In these charts we can observe different things. First
of all, memory, as expected, yields much higher throughput
than EBS and instance store altogether. However, whereas
POSIX writes keep almost constant across the different tests,
MPIIO tests suffer a great performance improvement as we
increase the transfer size. This size is directly connected with
the number of basic I/O transactions and hence, the overhead
associated with each of those transactions. Therefore, by
increasing the transfer size, we reduce the number of
transactions and thus, the additional overhead introduced by
MPIIO. This makes the throughput noticeably higher.
 Another remarkable fact is that the aggregated write
throughput across all memory tests except for the 1 client/1
server benchmark is higher than the maximum theoretical
network bandwidth for a m1.xlarge instance, which has been
the one used for the server in all cases. This may mean that the
1Gbps interface is virtualized on top of a higher capacity one,
and Amazon does some kind of internal traffic differenciation
which allows higher throughput for some data flows.
In contrast with it, we can see that the 1 client / 1 server
configuration does not yield any throuhgput higher than
~120MB/s, which is congruent with the maximum network
capacity of the server.

 reads

 The benchmarks up to 4 clients / 1 server seem to
follow the same pattern in terms of aggregate throughput
across clients, with very similar results. However, in this case,
none of them exceeds the maximum theoretical bandwidth
allocated for a m1.xlarge instance (1 Gbps).
In this case, it seems that Amazon does not allow higher
bandwidth allocation for incoming data flows.

 The following graph shows the variability of the
aggregate throughput across clients when using small transfer
sizes (<1MB). The data plotted here have been obtained from
averaging the MPIIO results, which are quite similar within the
same test (same transfer size).

 As wee see, the greater the transfer size, the more
plain the lines are. This depicts how the overall aggregate
throughput is less sensitive to changes in the size of the cluster
as we increase the basic I/O transaction size.

D. PVFS2

To benchmark PVFS2 I only used the MPIIO interface,
since MPICH2 implicitly includes support for PVFS2. Unlike
NFS, there is not a centralized source of data. Here, each file is
divided into different parts, which are stored in those nodes
working as I/O servers. The metadata associated with these
files is stored by the Metadata servers. In the configuration that
I used, every node in the cluster serves both as an I/O and
Metadata server.
The main problem of this configuration is that having such an
amount of metadata servers increases the network overhead to
a great extent. As an advantage, it drastically decreases the
probability of the whole file system to go down, since it does
not have a single point of failure, as NFS does.

• As expected, the memory-backed pvfs2 cluster
outperforms the rest in most of the tests. However,
since in this case the throughput is not limited by the
maximum network capacity of a single instance, but
(theoretically) by the aggregated maximum network
capacity, the instance-store-backed cluster performs
really well in comparison with EBS and in some
cases, memory.

 reads

 In general, the effect of having a small transfer size is
reflected in all the graphs, where we see that the throughput
inceases as we make the transfer size bigger. Again, this fact is
due to the overhead added by each little I/O transaction.
To have a more detailed view of the behaviour of PVFS2 on
different storage options, I have included the following graphs:

We can observe how write/read throughput is affected by

the basic I/O transaction size in each different storage option
and cluster size. For example, we can see how the write
throughput tends to increase more linearly with the transfer
size as we make the cluster bigger.
Reads, on the other hand, show a more moderate growth in all
cases, although it also tends to increase linearly in big clusters.

Finally, the next graphs serve as a summary to show how
the cluster size affects overall read/write throughput using
different storage options, for both NFS and PVFS2. For these
graphs I have used the highest values obtained from the
benchmarks for both PVFS2 and NFS.

X. CONCLUSIONS
Amazon’s cloud, due to its size and versatility in terms of

offered services and solutions may be the start point for all of
those who think that cloud computing may be displacing some
HPC systems in the near future.

Despite being initially thought for web services, AWS is
increasingly beginning to be understood as a good alternative
to run short term experiments and simulations.

However, we have seen that the performance of some of
their services is not what we expected or we would like to be
getting from them. Amazon is currently more worried about
providing a quality service in terms of security, consistency
and durability rather than offering ultra-fast systems capable of
outperforming any other machine out there at a fair price.

This trend is said to be changing within a short period of
time. Nowadays, more and more web applications require an
amount of capacity which is getting higher by the day, due to
the nearly exponential growth of their users. The spread of
smartphones, bundled with high-speed network access, forces
these web applications to be prepared for rapidly changing
demand of capacity and thus, resources. For this reason, lots of
them rely on AWS to provide a quality service which is
unaffected by peaks of activity, since they will be leveraged to
the AWS infrastructure.

Amazon is aware of this situation and it is slowly
introducing new services and products into their platform
which, far from being something really innovative, improves
the existing ones. In this regard, increasing compute capacity
and I/O performance are two of the most important objectives
being pursued by Amazon. An example is the introduction of
new high I/O instances, equipped with SSDs, provisioned EBS
volumes which provide a constant IOPS rate and many more.

The scientific community must keep an eye on the changes
occurring in platforms like Amazon’s cloud since lots of web
applications are beginning to be held back by systems which
could also be suitable for the workloads imposed by any
scientific simulation or experiment.

XI. FUTURE WORK
The next steps in this study include benchmarking other

distributed file systems such as GLuster, Ceph and the under-
development FusionFS. With the tools I have developed, it

should be fairly easy to deploy big clusters in Amazon using
any of the available configurations.

Regarding Amazon services, another step to be done should
be to benchmark cluster instances, which have not been
included in this study. These instances provide very high
network performance and can be a good starting point to form
a cluster out of few resources.

To complete this paper, an economic analysis and a
comparison with other available platforms would complement
this study.

REFERENCES
[1] “MPI-IO Optimization for Solid State Drives”, Pedro Álvarez

Tabío-Togores, Jesús Hernández, unpublished.
[2] http://aws.amazon.com/ec2/

[3] http://www.pvfs.org
[4] Gropp, W. 2002. MPICH2: A new start for MPI

implementations.
[5] http://code.google.com/p/bonnie-64/
[6] http://sourceforge.net/projects/hdparm/
[7] http://sourceforge.net/projects/ior-sio/
[8] “Using IOR to Analyze the I/O performance for HPC

Platforms”, Hongzhang Shan, John Shalf, National Energy
Research Scientific Computing Center (NERSC), Future
Technology Group, Computational Research Division,
Lawrence Berkeley National Laboratory

[9] http://aws.amazon.com/about-aws/whats-
new/2012/07/31/announcing-provisioned-iops-for-amazon-ebs/

