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Abstract— with the increasing number of public cloud 

platforms and the growth in terms of computing capacity, I/O 

performance must be one of the main points to look at so that it 

keeps up with the current compute capacity. In order to start 

considering any of the existing public cloud platforms for its use 

in scientific or in general, any high I/O demanding application, 

we have to study their raw performance in terms of I/O. In this 

paper, I focus on the most known IaaS cloud platform nowadays: 

Amazon’s public cloud. Its ease to use, reliability and various 

API interfaces allow anyone willing to outsource their 

compute/storage capacity to the cloud without any issues. This 

document describes the tools I used for benchmarking, a 

description of the file systems and storage solutions involved in 

this study and finally, the results I obtained from running all the 

benchmarks. 

Index Terms—storage, Amazon, S3, EBS, pvfs, nfs, dynamoDB 

I. INTRODUCTION 
Nowadays, all the most demanding scientific applications 

and simulations are run on top of big dedicated parallel 
systems, which are usually not accessible to everyone. These 
computers are getting bigger and faster by the year, so as to be 
ready to run new compute intensive scientific applications. 
These applications not only require large amounts of 
computing power but also need to have access to large datasets. 

 Nevertheless, over the last few years we have seen how 
new trends in the field of distributed systems are gaining 
importance with the concept of Cloud Computing. In this 
regard, Amazon.com introduced AWS (Amazon Web 
Services) in 2006, which nowadays is the largest IaaS public 
cloud platform in the market.  

AWS offers anyone the opportunity to use their computing 
infrastructure in a pay-per-hour basis. Unlike big dedicated 
datacenters, AWS’s infrastructure works on top of commodity 
hardware, offering both dedicated and virtualized resources, 
depending on the users’ needs. Initially, AWS was meant to be 
used by web applications to provide their services at a given 
cost. However, the need for building highly parallel systems 
puts AWS in the spotlight of several members within the 
scientific community, wondering if these cloud platforms could 
prove to be a good alternative to substitute current HPC 
systems. So far, studies are being made in order to corroborate 
whether a virtualized cluster can keep up to the task when 
running high capacity demanding applications.   

If we talk about capacity, we cannot ignore I/O. I/O on 
parallel computers has always been slow compared with 
computation and communication. As computers get larger and 
faster, I/O becomes even more of a problem, to the point that 
when the technology reaches exascale, the bottlenecks of I/O 
will be dramatic with the existing level of development [1] 

Applications running on most multicore platforms are 
usually held back by storage systems that cannot keep up. 
Although HDDs provide the capacity needed to handle large 
amounts of data, their I/O performance capabilities are 
relatively slow. In fact, storage system I/O performance has 
increased by only a small fraction of server performance, 
which seems to be driven largely by Moore’s Law. 

The main concern of this document is to explore the 
different storage options offered by Amazon Web Services, 
providing insight into their raw I/O performance and suitability 
for their usage in scientific applications. 

II. AMAZON EC2 
Amazon Elastic Compute Cloud (EC2) [2] is a web service 

that allows anyone to run their own applications on Amazon’s 
computing infrastructure, by letting customers “rent” computing 
resources by the hour. 

Clients are given access to an “unlimited” source of 
compute capacity, which is delivered through what is known as 
EC2 instance. Basically, an instance is a running machine on 
Amazon’s cloud platform. Each of these instances is deployed 
with an Amazon Machine Image (AMI), which is just a pre-
configured operating system and some bundled application 
software. There exist several types of instances, each of them 
with different compute capacities, memory size, I/O 
performance and storage. 

If we consider the way we can have access to these 
instances, we can categorize them in three different types: 

 Reserved instances: Amazon allows us to pay upfront 
per each instance that we want to use during a 
given period of time, and in exchange, they give us 
a lower hourly cost for each of them. Along with 
the savings, with these instances we make sure that 
we will have availability through all the period that 
we paid for. 

 On demand instances: these are the most common 
type of instances. You only pay for what you use, 
allowing easy allocation and deallocation of 



resources, depending on your capacity 
requirements. Customers are billed at the end of 
each month. 

 Spot instances: this is a very interesting concept. In 
order to achieve a better utilization of their 
infrastructure, Amazon allows us to bid on unused 
EC2 capacity and run instances until the current 
spot instance price exceeds our bid. The spot price 
is set by Amazon based on the available capacity 
and load of their systems and it is updated in a 5 
minute period. The prices of these instances are 
much lower than what you pay for On-demand 
instances. As a drawback, the availability of you 
instances is only assured while the spot price is 
under bid. As previously stated, Amazon 
automatically terminates those instances whose bid 
is exceeded by the spot price. Besides, one cannot 
stop a spot instance and use it later as it happens 
with on-demand or reserved instances. Spot 
instances can only be terminated or rebooted. 
 

Among these types, the spot instances seem to be the 
most appropriate for running short-term applications under 
certain conditions, since they provide the same capacity and 
features as the other instances at a lower rate. These include 
scientific applications, which usually run for a predictable 
amount of time, lowering the costs per experiment. 

III. STORAGE ALTERNATIVES IN AWS 
There are several types of storage options in AWS, each of 

them with different features which make them more suitable 
for one or another application. When you rent an instance in 
Amazon EC2, you basically have three ways to store your files: 

 Elastic Block Store (EBS) volumes. These are 
network attached volumes that can be mounted to 
a device in an EC2 instance and interact with them 
as if they were mounted locally. These volumes 
are dynamically created, so one can choose its size 
(from 1GB to 1TB) and decide whether you want 
it pre-loaded with an existing image (for example 
a dataset). 
EBS volumes are billed $0.10/GB per month and 
$0.10 per 1 million I/O requests to them.  
According to Amazon, all the data stored in EBS 
volumes is implicitly replicated across multiple 
servers within the same availability zone, which 
makes them highly reliable in comparison with 
standard hard drives. 
Since these volumes are network attached, they 
have a theoretical throughput limit, which is given 
by the instance’s network bandwidth (1Gbps in 
most cases) 
 

 Simple Storage Service (S3): built from 
commodity hardware, S3 is the storage choice for 
those who require speed, scalability and security at 
the same time. Unlike EBS, this cannot be 

mounted to an EC2 instance without the help of 
some middleware (like s3fs). However, it provides 
higher availability and redundancy, since data 
stored in S3 is replicated across different servers 
in different availability zones. 
S3 is very suitable for applications which require 
high scalability and bandwidth. S3 bandwidth is 
constrained by the user accessing S3, not by S3 
itself, thus providing “infinite” bandwidth to its 
users. 
The high-level definition for a file in S3 is an 
“object” and each object is stored in a bucket, 
which can be chosen among different availability 
zones. 
Its price depends on the data to be stored, the 
output bandwidth, number of requests (S3 is 
accessed through its SOAP/REST API) and 
redundancy (Amazon offers reduced redundancy 
S3 storage, which is cheaper). 
 

 Instance store 
By default, all instances except for the t1.micro 
are provided with some amount of instance 
storage. This storage is physically attached to the 
host computer , which may be shared by several 
VMs at the same time. Hence, the instance store 
subsystem may also be shared by the different 
VMs running on the same machine, although each 
VM has exclusive and dedicated access to its own 
instance store. 
Unlike the previous storage options, instance 
storage is not persistent and the data contained in 
it may be lost if the VM to which it is attached is 
stopped or terminated.  
The size of this instance store varies from instance 
to instance, ranging between 150GiB to 3.3 TiB. 
The same applies to its bandwidth, which varies 
depending on the type of instance. 
The price of this storage is included within the 
cost of the instance rental, so there are no extra 
charges per GB or bandwidth. 

IV. NFS 
Despite its age, I considered that NFS was a good start point 

for the distributed file systems benchmarks. NFS (network file 
system) allows remote hosts to mount file systems over a 
network and interact with those file systems as though they are 
mounted locally. The main issue of NFS is that the performance 
of the file system is constrained by the network capacity of the 
central server, in which all the files are stored. 

V. PVFS2 
PVFS stands for Parallel Virtual File System (PVFS) [3]. It 

is an open source parallel file system, aimed at providing a 
scalable and high-performance parallel file system on top of a 
Linux based cluster. PVFS is designed so that the applications 
that access this file system have their data spread out across 



different nodes (local disks) within the cluster in which PVFS 
is installed. To achieve this, PVFS relies (partially) on the 
network interface of each node, routing incoming byte streams 
to the different nodes.  

By using PVFS, an application running on node X which 
requires some kind of I/O operation will not have to wait until 
a previous application finishes performing I/O operations on 
the same local storage drive, since its byte stream will be re-
routed by PVFS through the network to another node Y in the 
same cluster which may be idle. 

We can find three different elements in PVFS: 
• I/O servers: store the data in their local storage drives 
• Metadata server: stores the information of all the files 

spread across the parallel file system 
• Clients: store and retrieve data from the servers. 

Among the interfaces provided in PVFS, we can find ROMIO, 
an MPI-I/O interface implementation that is detailed in the next 
section. 

VI. MPI-IO ROMIO IMPLEMENTATION 
MPI-I/O is the parallel I/O interface included in the MPI-2 

specification [4]. It was developed to overcome the lack of 
portability and optimization that POSIX had for parallel I/O. 

Based on the coordination between processes, there are 
different data access patterns in MPI-IO. Independent routines 
are used when there is only one processor and an I/O request, 
or different processors accessing different files. Collective 
routines involve more than one processor. In a collective call, 
all the processors open the same given file, but each of them 
has a different view of the file. This view defines the data that 
is visible to each processor. Hence, collective routines usually 
perform better than independent routines, since a number of 
small requests to the same file can be merged into one big 
request in order to improve I/O performance. 

Besides, MPI provides three different types of positioning 
within a file: individual file pointers, in which each processor 
increments its own pointer after a write/read operation; shared 
file pointers, in which a unique file pointer is shared between 

all the processes and explicit offsets, by means of which each 
process writes/read at the position specified by the offset. 

VII. TOOLS 
In order to make the benchmarks as exhaustive as possible, 

it is important to use wide-spread benchmarking tools. For my 
study, I considered Bonnie64 [5], hdparm [6] and IOR [7]. 
After several test, I decided to go with IOR. However, in some 
cases I have had to develop my own benchmarking tools, since 
I could not find any well-known tool which fulfilled my needs 
and that was also widely accepted.   

A.  IOR 

To provide comprehensive results, I decided to use IOR. 
IOR is a benchmark tool used for testing the performance of 
parallel file systems using various interfaces and access 
patterns. At the same time, IOR is very flexible in terms of 
customization, accepting a high variety of input parameters. 

For my study, I have used both the POSIX and MPIIO 
interface, since MPIIO deals better with parallel access to a 
single file than POSIX does. 

After some runs of IOR, I realized that something was 
going wrong internally, since it was yielding abnormally high 
read speeds. By looking at IOR’s source code, I realized that it 
had some unimplemented functions. Among these functions, 
the one that affected me was “IOR_Fsync_MPIIO”.  

One of the input parameters of IOR is “-fsync”. By using 
this parameter, we force the underlying file system to maintain 
consistency in the local storage by transferring all the 
information written to memory to the storage device. The 
problem is that this option is only supported if we use the 
POSIX. 

The equivalent call for MPIIO is MPI_File_sync(). This 
call should be placed within the method “IOR_Fsync_MPIIO”. 
However, in order to avoid further modifications in the code, I 
opted for including this call under the function 
“IOR_Close_MPIIO”, so that before closing a file with 
MPI_File_close(), all the contents would be transferred to disk. 

In my configuration, IOR uses a single shared file by all the 
processes involved in the test. The following figure depicts this 
situation [8] 

 



 
The shared file is divided in different segments. Each of 

these segments is also divided into a number of blocks which 
have a size that must be a multiple of “transfer size”. The 
processes accessing the file can read as much as “transfer size” 
bytes at a time and each process is assigned a different block 
within each segment. Thus, this transfer size corresponds to the 
actual amount of data transferred from the processor’s memory 
to the file in each I/O function call. 

B. S3Bench 

In order to benchmark S3, I had to develop my own 
benchmark suite, since none of the widespread benchmarking 
tools can be used to test storage like this. To achieve this, I 
used Amazon’s AWS SDK, which provides several methods to 
write (PUT), read (GET) and delete (DELETE) objects and 
create/delete buckets.  

This program, written in java, covers all the parameter 
space and returns a file containing all the results. 

C. DynamoDBench 

Like S3, there is not a widespread benchmark for 
Amazon’s DynamoDB, so I wrote my own benchmark by 
using Amazon’s AWS SDK. 

D. EC2Cluster 

Configuring a fully working cluster with support for some 
specific file system may be a tricky task. For this reason, I 
developed a tool which, along with several scripts, allows users 
to fully configure and run a fully customizable cluster on top of 
Amazon EC2 infrastructure. 

For my study, I customized this program to easily build a 
NFS/PVFS cluster with MPI support, so that I could take 
advantage of MPI to run the benchmark simultaneously on all 
the clients. These are some of the different parameters accepted 
by the program: 

 Server instance type 
 Client instance type 
 Availability zone 
 Maximum bids for clients/servers 
 Security group 
 Number of servers/clients 
 File system 
 MPI process mapping 

As well as running a cluster, it allows the user to terminate 
it. 

VIII. PARAMETER SPACE AND TESTBED 
Defining a plausible parameter space is as important as 

obtaining the proper results. If we put together all the different 
instance types in EC2, the different storage options, access 
patterns and IOR configurations, we may end up with 
thousands of different tests to be covered. With this in mind, I 
had to decide what the most important issues were and discard 
those which would not yield any significant result. 

My study can be divided into four different parts: EC2 micro 
benchmarks, S3, parallel file system benchmarking and finally, 

DynamoDB benchmarking. A description of each of them is 
included below: 

A. EC2 micro benchmarks 

These cover all the different instance types (except for the 
cluster and micro instances): 

 m1.small 
 m1.medium 
 m1.large 
 m1.xlarge 
 m2.xlarge 
 m2.2xlarge 
 m2.4xlarge 
 c1.medium 
 c1.xlarge 
 hi1.4xlarge 
For my study, I have used EBS backed instances. As I said 

before in this document, each of these instances includes some 
amount of instance store, which usually comes mounted and 
formatted. If it was not the case, I chose formatted them using 
ext4. 

Besides, I attached an EBS volume to each instance, with a 
size which varied based on the instance type, since it should be 
at least twice its memory. If we do not verify this, we will get 
incorrect read results, because all the contents of the file 
created by IOR will be read back from memory instead of the 
actual EBS volume. 

With this in mind, in each instance, I had to benchmark 
both EBS storage and instance store. To observe the influence 
of the intermediate I/O buffers, I ran IOR with ten different 
transfer buffer sizes: 4 KB, 16 KB, 64KB, 256 KB, 512 KB, 1 
MB, 2 MB, 4 MB, 8 MB, and 16 MB. A description of how 
IOR works can be found in section VIII.A. The block size and 
segment count were established based, again, on the memory 
size. 

Each test is repeated three times in order to get more fine-
grained results. 

B. S3 

For S3, I considered all the previous instance types and also 
three different regions (us-west-1, us-west-2, us-standard). In 
this case, I used my own benchmark, which obtains write/read 
throughput for different zones and different file sizes: 4 KB, 16 
KB, 64KB, 128KB, 512KB, 1MB, 4MB, 16MB, 64MB and 
128 MB. 

My program automatically creates a bucket in each 
specified zone and writes/reads to/from that bucket. It also 
works as a multithreaded client, allowing doing multiple 
requests from the same instance to the same bucket at the same 
time. However, this part of the benchmark should be revised in 
the future to improve the method that I used to compute the 
aggregate bandwidth among the different threads. 

Another test that I found interesting was to request different 
files from different instances simultaneously to the same 
bucket. With this, I would know whether Amazon implicitly 
limits the bandwidth of a bucket or it is unlimited as they 
claim. 



C. NFS and PVFS 

After running micro-benchmarks on each instance, it makes 
sense to see how they behave when working in parallel. 
Specifically, my objective was to measure the performance of 
both PVFS and NFS. To benchmark these file systems I used 
IOR along with MPICH2, allowing me to run the same test 
simultaneously on all the clients. 

For NFS, the cluster size ranged from 2 nodes (1 client and 
1 server) up to 65 nodes (64 clients and 1 server). On the other 
hand, PVFS’ cluster size ranged from 1 node to 64 nodes. In 
the latter, each node acts as a metadata and an I/O server at the 
same time. I tried to scale these clusters up to 128 nodes 
without success due to Amazon restrictions affecting the 
number of running instances/spot requests. 

In the NFS cluster, I used IOR with both MPIIO and 
POSIX APIs and 2 processes per node synchronized with MPI. 
However, the combination IOR/MPICH2/POSIX was not 
possible without configuring the PVFS2 kernel interface, 
which cannot be done with the Linux kernel version that I was 
using in the instances (it is an amazon specific version). Thus, 
on the PVFS2 cluster I could only use the MPIIO interface.  

Instead of covering all the instance types, I decided to go 
with the m1.medium, since they have proved to be one of the 
most cost-efficient in terms of compute capacity, network 
performance and storage. However, for NFS, I set the server to 
run on an m1.xlarge instance, because a smaller one would end 
up being a serious bottleneck for big clusters. 

Regarding the storage devices under these file systems; I 
used instance store (physical attached drive), EBS volumes (the 
instance volume itself) and also the /dev/shm device which is 
backed by RAM memory. The latter one has been used to 
emulate a cluster backed with high I/O devices, such as a 
cluster composed of hi1.4xlarge instances. 

As in the micro benchmarks, I ran IOR with different 
transfer sizes, block size and segment count to adapt it to each 
different cluster. 

The entire network, MPI and file system configuration has 
been made through the EC2Cluster tool, which I wrote for this 
project. 

D. DynamoDB 

Despite not being a storage solution, DyamoDB has gained 
importance as one of the most robust alternatives to 
conventional (SQL-based) relational databases. Its NoSQL 
nature allows customers to bypass all the problems related with 
database scaling, management, reliability and performance. 

According to Amazon, each data item stored in DynamoDB 
is automatically replicated across three different availability 
zones within the same region, providing high availability and 
data durability. Besides, by using Solid State Drives as storage, 
the I/O performance of DynamoDB can keep up to the most 
demanding application in terms of throughput and requests 
volume. 

To measure its performance, I wrote a little java program 
which creates a table, puts a big number of items to the table 
and then gets all those items back. By doing this and taking 
into account the item size, I obtain an estimate of both read and 

write throughput, which might be constrained by the network 
bandwidth due to the high I/O performance offered by SSDs. 

IX. RESULTS 

A. EC2 micro-benchmarks 

The following charts show the results obtained after 
running IOR on each of the previously mentioned 
instances with different transfer sizes and storage devices. 

 

 
 

 
 

 















We can see that EBS volumes show a very poor 
performance, which comes from the fact that they are attached 
over the network. This fact is noticeable if we carefully 
examine the all the charts, where we will see that neither write 
nor read throughput exceeds ~120 MB/s in any of the 
instances. Taking into account that all the instances are bundled 
with a 1Gbps Ethernet interface, these results make a lot of 
sense. 

Regarding the instance store, we cannot appreciate a great 
difference among the instances’ throughput. The best 
performing instances are those with higher memory (m2’s) and 
the overall outperformer is the hi1.4xlarge, since it is equipped 
with SSDs. 
 

 
 



 
 

 
 

 
 

 
 
 The following table summarizes the previous chart, 
showing the highest throughput obtained for each of the 
different studied instances, both in reads and writes and local 
storage and EBS. 
 

instance Throughput (MB/s) 

 LS write LS read EBS write EBS read 

m1.small 85.31 93.25 37.31 53.29 
m1.medium 100.95 115.55 44.52 75.78 
m1.large 94.63 159.43 56.82 62.31 
m1.xlarge 104.50 166.12 41.50 83.75 
m2.xlarge 78.75 127.97 28.91 60.81 
m2.2xlarge 136.81 166.64 27.82 43.96 
m2.4xlarge 117.20 136.74 30.43 113.81 
c1.medium 81.63 77.15 82.40 80.20 
c1.xlarge 98.94 140.32 68.39 84.88 
hi1.xlarge 661.38 407.64 51.83 74.40 

 
Recently, AWS announced a new feature called “EBS with 

provisioned IOPS” [9]. These are EBS volumes for which they 
guarantee a given amount of IOPS, which is specified by the 
client during the creation of these volumes. The amount of 
allowed IOPS ranges from 100 to 1000 and is limited by the 
actual size of the volume by a proportion of 10 to 1 (if your 
volume is 10 GB, you can choose 100 IOPS at maximum). 

The following graphs contain the results from running the 
previous benchmark in different IOPS provisioned EBS 
volumes. All of them have been run in a c1.medium instance. 
 

 
 

 
 



 
 

For this benchmark I used four different IOPS provisioned 
EBS volumes and one standard EBS volumes. Surprisingly, the 
standard EBS volume outperformed the others in all the tests. 

However, the provisioned IOPS EBS volumes seem to 
behave very well in terms of stability, since they provide the 
exact same throughput in all the different tests, in spite of the 
different transfer size, which seems to slightly affect the 
standard EBS volume. 

Finally, to complete these micro-benchmarks, I set up a 
software RAID-0 with EBS volumes, varying the number of 
volumes from 1 to 8. I ran the same benchmark on a 
c1.medium instance and these were the results: 
 

 
 

 
 
 

 
 

Here we see how the write throughput increases with the 
size of the RAID and on the other hand, the read throughput 
does exactly the contrary. However, both of them keep nearly 
constant as we vary the trasnfer size and the maximum 
achievable throughput is around 120MB/s, which is the 
maximum network bandwidth for this type of instance. 

B. S3 

We can find up to three different regions in the USA where 
you can create a storage bucket for S3. Internally, these regions 
are known as us_west-1, us_west-2 and us_standard. 
Choosing one region or another depends on the latency and the 
type of consistency that we want for our data. Whereas the 
us_standard region provides eventual consistency for all 
requests, us_west-2/1 regions assure read-after-write 
consistency for PUTS of new objects in a bucket and eventual 
consistency for overwrite PUTS and DELETES. 
All the instances, except for the hi1.4xlarge were running on 
us_west-2. For this study, I have measured the read/write 
throughput from all the instance types to one bucket in each 
different region. The following charts show the difference in 
terms of write/read throughput for each instance between the 
different regions. 
 Us_standard region covers both facilities in Northern 
Virginia and Pacific Northwest. The final destination of the 
data uplaoded to this region is established by using network 
maps. 
  

 
 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



 
 
Leaving aside the small instances, we cannot 

appreciate any big difference between the maximum read/write 
throughput across instances. The reason is that these values are 
implictily limited by either the network capabilities or S3 itself. 
Unlike EBS volumes, the links between the data which goes 
from the instances to S3 might be treated differently in terms of 
network routing, so that the underlying physical links have 
lower capacity than those between instances and EBS volumes. 

However, since S3 is held back by standard-storage 
devices (i.e. commodity hardware), the additional redundancy 
and high consistency provided by S3 may struggle the overall 
I/O performance offered by this service. 

 

 
 

instance Throughput (MB/s) 

 LS write LS read 

m1.small 10.26 13.49 
m1.medium 9.53 26.99 
m1.large 12.66 27.85 
m1.xlarge 14.93 27.57 
m2.xlarge 10.79 28.92 
m2.2xlarge 14.59 30.85 
m2.4xlarge 13.37 30.66 
c1.medium 14.17 29.63 
c1.xlarge 10.91 28.05 

instance Throughput (MB/s) 

 LS write LS read 

hi1.xlarge 9.14 22.65 
 

The following graph shows that the maximum write 
throughput saturates at a filesize of 16 MB. Increasing the 
filesize does not make any significant difference from that 
point.  
 

 
  
 AWS offers its users the option to store their data in 
S3 at a lower cost by providing less redundancy than 
Amazon’s S3 standard storage. They call this feature Reduced 
Redundancy Storage (RRS). Since data is replicated fewer 
times, the cost is lower. However, I wanted to know whether 
this had some effect on other aspects regarding performance, 
such as write and read throughput.  
To do this, I ran a S3Bench on a m1.medium instance on us-
west-2 and checked whether there was any difference when 
uploading and downloading files with RRS. The results are 
shown below: 
 

 
 
 In this zone, we can see that both writing with RRS 
enabled and RRS disabled is affected by the filesize, since 
write throughput slighly decreases as we make the filesize 
bigger. This is due to the latency between regions us-west-1 
and us-west-2. 



 
 
 On this region, we cannot appreciate much 
degradation in the write throughput as we increase the filesize. 
In this case, both the running instance and the storage are 
within the same region. 
Regarding the RRS option, we can see that there is not any 
noticeable difference between uploading objects with this 
option or leaving it as is. The slight changes that we see are due 
to changes in the network load at each time. 

Finally, I wanted to check whether Amazon has some 
type of bandwidth allocation policy by which several different 
instances accessing the same bucket at the same time would 
see their individual bandwidth affected. I used the tool 
S3Bench along with EC2Cluster and some parsing scripts to 
launch all the needed instances and run the benchmark at the 
same time. The results obtained from this tests are divided in 
reads and writes and can be seen below: 

 reads 
The moving average does not show any trend that 
would indicate a lower individual throughput as we 
increase the number of simultaneous instances. 
 

 
 

 
 

 writes 
Despite not being very stable, write operations do not 
seem to be affected by any kind of bandwidth 
allocation policy. The peaks that we observe may be 
due to the status of the network link between the 
instances and S3 servers. 
 

 
 

 
 

.The conclusion that we can draw from these results is that 
S3 does offer a quality service in terms of bandwidth 
allocation, altough its overall throughput may be very low for 
applications requiring fast I/O access to data, as we observed in 
the individual instance study. 

C.  NFS 

Its centralized topology does not make NFS the most 
suitable file system for the applications which may be of 
interest for readers of this document. However, NFS is still 
being used in many scenarios where a centralized source of 
information is needed. 



In these tests, I simulated some of those scenarios by 
setting up clusters of different sizes, varying the storage 
devices, basic I/O transaction size and access interface. 

 writes 

 
 

 

 

 
 

 
 

 



 
 
 In these charts we can observe different things. First 
of all, memory, as expected, yields much higher throughput 
than EBS and instance store altogether. However, whereas 
POSIX writes keep almost constant across the different tests, 
MPIIO tests suffer a great performance improvement as we 
increase the transfer size. This size is directly connected with 
the number of basic I/O transactions and hence, the overhead 
associated with each of those transactions. Therefore, by 
increasing the transfer size, we reduce the number of 
transactions and thus, the additional overhead introduced by 
MPIIO. This makes the throughput noticeably higher. 
 Another remarkable fact is that the aggregated write 
throughput across all memory tests except for the 1 client/1 
server benchmark is higher than the maximum theoretical 
network bandwidth for a m1.xlarge instance, which has been 
the one used for the server in all cases.  This may mean that the 
1Gbps interface is virtualized on top of a higher capacity one, 
and Amazon does some kind of internal traffic differenciation 
which allows higher throughput for some data flows. 
In contrast with it, we can see that the 1 client / 1 server 
configuration does not yield any throuhgput higher than 
~120MB/s, which is congruent with the maximum network 
capacity of the server. 
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 The benchmarks up to 4 clients / 1 server seem to 
follow the same pattern in terms of aggregate throughput 
across clients, with very similar results. However,  in this case, 
none of them exceeds the maximum theoretical bandwidth 
allocated for a m1.xlarge instance (1 Gbps).  
In this case, it seems that Amazon does not allow higher 
bandwidth allocation for incoming data flows. 
  

 
 

 
 

 The following graph shows the variability of the 
aggregate throughput across clients when using small transfer 
sizes (<1MB). The data plotted here have been obtained from 
averaging the MPIIO results, which are quite similar within the 
same test (same transfer size). 

 
 As wee see, the greater the transfer size, the more 
plain the lines are. This depicts how the overall aggregate 
throughput is less sensitive to changes in the size of the cluster 
as we increase the basic I/O transaction size.  

D.  PVFS2 

To benchmark PVFS2 I only used the MPIIO interface, 
since MPICH2 implicitly includes support for PVFS2. Unlike 
NFS, there is not a centralized source of data. Here, each file is 
divided into different parts, which are stored in those nodes 
working as I/O servers. The metadata associated with these 
files is stored by the Metadata servers. In the configuration that 
I used, every node in the cluster serves both as an I/O and 
Metadata server. 
The main problem of this configuration is that having such an 
amount of metadata servers increases the network overhead to 
a great extent. As an advantage, it drastically decreases the 
probability of the whole file system to go down, since it does 
not have a single point of failure, as NFS does. 
 

 
 



 
 

 
 

 
 

 
 

 
 

 
 

• As expected, the memory-backed pvfs2 cluster 
outperforms the rest in most of the tests. However, 
since in this case the throughput is not limited by the 
maximum network capacity of a single instance, but 
(theoretically) by the aggregated maximum network 
capacity,  the instance-store-backed cluster performs 
really well in comparison with EBS and in some 
cases, memory.  
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 In general, the effect of having a small transfer size is 
reflected in all the graphs, where we see that the throughput 
inceases as we make the transfer size bigger. Again, this fact is 
due to the overhead added by each little I/O transaction. 
To have a more detailed view of the behaviour of PVFS2 on 
different storage options, I have included the following graphs:  
 

 
 

 
 

 
 

 
 

 
 



 
 
We can observe how write/read throughput is affected by 

the basic I/O transaction size in each different storage option 
and cluster size. For example, we can see how the write 
throughput tends to increase more linearly with the transfer 
size as we make the cluster bigger. 
Reads, on the other hand, show a more moderate growth in all 
cases, although it also tends to increase linearly in big clusters. 

Finally, the next graphs serve as a summary to show how 
the cluster size affects overall read/write throughput using 
different storage options, for both NFS and PVFS2. For these 
graphs I have used the highest values obtained from the 
benchmarks for both PVFS2 and NFS. 
 

 
 

 
 

 
 

X. CONCLUSIONS 
Amazon’s cloud, due to its size and versatility in terms of 

offered services and solutions may be the start point for all of 
those who think that cloud computing may be displacing some 
HPC systems in the near future. 

Despite being initially thought for web services, AWS is 
increasingly beginning to be understood as a good alternative 
to run short term experiments and simulations. 

However, we have seen that the performance of some of 
their services is not what we expected or we would like to be 
getting from them. Amazon is currently more worried about 
providing a quality service in terms of security, consistency 
and durability rather than offering ultra-fast systems capable of 
outperforming any other machine out there at a fair price. 

This trend is said to be changing within a short period of 
time. Nowadays, more and more web applications require an 
amount of capacity which is getting higher by the day, due to 
the nearly exponential growth of their users. The spread of 
smartphones, bundled with high-speed network access, forces 
these web applications to be prepared for rapidly changing 
demand of capacity and thus, resources. For this reason, lots of 
them rely on AWS to provide a quality service which is 
unaffected by peaks of activity, since they will be leveraged to 
the AWS infrastructure.  

Amazon is aware of this situation and it is slowly 
introducing new services and products into their platform 
which, far from being something really innovative, improves 
the existing ones. In this regard, increasing compute capacity 
and I/O performance are two of the most important objectives 
being pursued by Amazon. An example is the introduction of 
new high I/O instances, equipped with SSDs, provisioned EBS 
volumes which provide a constant IOPS rate and many more. 

The scientific community must keep an eye on the changes 
occurring in platforms like Amazon’s cloud since lots of web 
applications are beginning to be held back by systems which 
could also be suitable for the workloads imposed by any 
scientific simulation or experiment.  

XI. FUTURE WORK 
The next steps in this study include benchmarking other 

distributed file systems such as GLuster, Ceph and the under-
development FusionFS.  With the tools I have developed, it 



should be fairly easy to deploy big clusters in Amazon using 
any of the available configurations.  

Regarding Amazon services, another step to be done should 
be to benchmark cluster instances, which have not been 
included in this study. These instances provide very high 
network performance and can be a good starting point to form 
a cluster out of few resources. 

To complete this paper, an economic analysis and a 
comparison with other available platforms would complement 
this study. 
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