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Abstract

The Grid promise is starting to materialize today: large-scale multi-site infrastructures have grown to assist the
work of scientists from all around the world. In only ten years, production Grid environments have grown from a few
hundred to several tens of thousands of resources, and from few to hundreds of users. To exploit this already existing
infrastructure, the behavior of the real systems, and in particular their offered performance, must be understood and
quantified. However, evaluating the performance testing insuch large-scale environments is a non-trivial endeavor,
for which no comprehensive solution exists. To address thisproblem, we present in this work our first steps towards
ServMark, a performance testing framework aimed at simplifying and automating the testing process in Grid envi-
ronments. ServMark coordinates a pool of machines that testa target service, generates complex testing workloads,
collects and aggregates performance metrics, and generates performance statistics. The aggregate data collected pro-
vide information on service throughput, on service fairness when serving multiple clients concurrently, and on the
impact of network latency on service performance, effectively enabling functionality and scalability testing. Our
initial results demonstrate the operation of ServMark whentesting fine-grained services in real environments.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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1 Introduction

The Grid world is starting to fulfill the promise of a world-scale computing infrastructure for the use of the ever-
growing scientific community. In a decade, systems comprising a few hundreds of resources have grown tremendously,
with current systems such as CERN’s LCG, NorduGrid, TeraGrid, Grid’5000, or The Open Science Grid, gathering
together (tens of) thousands of resources, and offering similar or better throughput when compared with large-scale
parallel production environments [41,42]. To exploit thisalready existing infrastructure, the behavior of the systems,
and in particular the offered performance, must be understood and quantified. Using performance evaluation data
it is possible to build empirical performance estimators that link observed service performance (throughput, response
time) to offered load. These estimates can be then used as input by a resource scheduler to increase resource utilization
while maintaining desired quality of service levels. We argue that only real environment testing can provide accurate
performance insights. Indeed, the Grid systems complexityrenders theoretical performance evaluations unpractical,
and the dynamicity, the heterogeneity, or even the sheer size of the current grid systems make simulation results appli-
cable only for first-order evaluations. However, evaluating the performance testing in real large-scale environmentsis
a non-trivial endeavor, for which no comprehensive solution exists.

To address this problem, we present in this work our first steps towards ServMark, a performance testing frame-
work aimed at simplifying and automating the testing process in real Grid environments. ServMark is based on our
previous work on DiPerF [17] and GrenchMark [18]. DiPerF [17] is built around the idea of coordinating a distributed
pool of machines that run clients of a target service, collects and aggregates performance metrics, and generates perfor-
mance statistics. GrenchMark [18] focuses on generating complex workloads for testing purposes. ServMark couples
these two approaches, and adds the necessary coordination and automation layer. Thus, ServMark coordinates a pool
of machines that test a target service, generates complex testing workloads, collects and aggregates performance met-
rics, and generates performance statistics. The aggregatedata collected provide information on service throughput,
on service fairness when serving multiple clients concurrently, and on the impact of network latency on service per-
formance, effectively enabling functionality and scalability testing. Our initial results demonstrate the operation of
ServMark when testing fine-grained services deployed in real large-scale environments. Using machines from the
PlanetLab [46] and the Grid3 [47] testbeds, we conduct experiments in which the service clients experience different
levels of connectivity. The data collected provide information on services maximum throughput, on service fairness
when multiple clients access the service concurrently, andon the impact of network latency on service performance
from both client and service viewpoint. We conclude that ServMark is useful for testing P2P and Grid ideas in real
large-scale systems.

The remainder of this paper is structured as follows. The following section presents our motivation. Section 3
describes the ServMark frameworks design. The validation of the framework is presented in Section 4. The paper
concludes with a brief summary of our experience and future work plans.

2 Motivation and Goals

Grid computing [23] provides a natural way to aggregate resources from different administrative domains for building
large scale distributed environments [2]. The Web Servicesparadigm [24] proposes a way by which virtual services can
be seamlessly integrated into global-scale solutions to complex problems. While the usage of Grid technology ranges
from academia and research to business world and production, two issues must be considered: that the promised
functionality can be accurately quantified and that the performance can be evaluated based on well defined means.
Without adequate functionality demonstrators, systems cannot be tuned or adequately configured, and Web services
cannot be stressed adequately in production environment. Without performance evaluation systems, the system design
and procurement processes are limp, and the performance of Web Services in production cannot be assessed.

In Section 1 we have argued for the importance of performancetesting in real environments. We further detail the
main requirements for testing in real grid environments:

• Representative workload generation.In order for the results to be significant, the testing tool must be able to
create the conditions that the Grid environments (or their components) were designed to handle [4, 12, 46, 47].
Consider the case of a resource management system. Here, thesystem users submit jobs according to daily
patterns [9, 15, 40], and may respond to the systems feedback, i.e., they will not continue to submit until their
already submitted jobs are finished [41]. It would thereforebe interesting to establish the performance of the
resource management system under both real-life and extreme conditions.
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• Accurate testing.The accuracy of the performance metrics collected is heavily dependent on the accuracy of the
timing mechanisms used and on accurate time synchronization among the testing machines.

• Scalable testing.The scalability of the testing framework must be at least that of the scalability of tested system.
Because the number of resources to be found in nowadays Gridsis on the order of thousands to tens of thousands
[42], and because the size is expected to grow, the evaluation system must generate and coordinate significant
loads, in a scalable way.

• Reliable testing.The testing framework must detect and account for its own failures, especially when operating
in wide-area environments.

• Extensibility, Automation, and Ease-of-Use.The usability of a testing system is at least as important as its
features. We argue that it is the ease-of-use, the degree of automation, and the extensibility, that separate a
successful tester from other similar approaches. The automation and the ease-of-use can be summarized as
single-click testing procedure. Given the current evolution speed in the Grid world, that a testing system would
become obsolete is only a matter of years. Without the ability to accommodate extensions, already obtained
results would become obsolete, as they would not be comparable with those for the new systems.

3 The Design of ServMark

In this section we present the design of ServMark. which integrates two existing performance evaluation systems:
DiPerF [17] and GrenchMark [18]. In addition to its components capabilities, ServMark adds the needed coordination
and automation layer, for improved automation and ease-of-use (see Figure 1).

Figure 1: The ServMark Architecture.

3.1 The ServMark Components

ServMark is based on two components: DiPerF and GrenchMark.DiPerF is a distributed testing system and test
generator, and GrenchMark is a centralized system that can generate complex testing scenarios. ServMark makes use
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of the properties of both systems in order to generate truly significant testing scenarios.
DiPerF aims to simplify and automate service performance evaluation. DiPerF coordinates a pool of machines

that access a centralized or distributed target service andcollect performance metrics. Centralized DiPerF components
then, aggregate these performance measurements and generate performance statistics. The aggregate data collected
provides information on service throughput, service response time, service fairness when serving multiple clients
concurrently, and on the impact of network latency on service performance. All steps involved in this process are
automated.

Figure 2: DiPerF Overview and Deployment Scenario Exemplification

DiPerF consists of four major components: the analyzer, thecontroller, the submitters and the testers. A user of
the framework provides to the controller the location of thetarget service to be evaluated and the client code to access
the service. The controller then coordinates the performance evaluation experiment: it distributes the client code to
testers via submitters and coordinates testers activity. Each tester runs the client code on its local machine and times
their (RPClike) access to the target service. Finally, the controller collects all the measurement data from testers and
performs additional operations (e.g., reconciles time stamps from various testers) to compute aggregated performance
views. Sophisticated clients can have complex interactions with the target service and return periodic feedback and
user defined metrics to the tester be propagated back to the controller.

GrenchMark is a framework for synthetic Grid workload generation and submission, which has been designed,
implemented, and deployed by the MultiProbe team in the Parallel and Distributed Systems group of the Faculty of
Electrical Engineering, Mathematics, and Computer Science of the Delft University of Technology. GrenchMark is
extensible, in that it allows new types of grid applicationsto be included in the workload generation, parameteriz-
able, as it allows the user to parameterize the workloads generation and submission, and portable, as its reference
implementation is written in Python. The workload generator is based on the concepts of unit generators and of job
description files (JDF) printers. The unit generators produce detailed descriptions on running a set of applications
(workload unit), according to the workload description provided by the user. In principle, there is one unit for each
supported application type. The printers take the generated workload units and create job description files suitable for
grid submission. In this way, multiple unit generators can be coupled to produce a workload that can be submitted to
any grid resource manager, as long as the resource manager supports that type of applications. Currently, GrenchMark
can submit jobs to the KOALA, Globus GRAM, and Condor resource management systems.

GrenchMark offers support for the following workload modeling aspects. First, it supports unitary (e.g., sequential,
parallel jobs using MPI, malleable/evolving jobs using Java/Ibis) and composite applications (e.g., workflows in the
form of Directed Cyclic Graphs), single-site and co-allocated jobs. Second, it allows the user to define various job
inter-arrival times based on well-known statistical distributions. Besides the Poisson distribution, used traditionally
in queue-based systems simulation, GrenchMark also supports uniform, normal, exponential and hyper-exponential,
Weibull, log normal, and gamma distributions. Third, it allows the workload designer to combine several workloads
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Figure 3: The GrenchMark Process

into a single one (mixing). This allows for instance the inclusion of bursts, by combining a short workload with many
jobs per time unit with a longer one, comprising fewer jobs per time unit. An additional use of workload mixing is in
a what-if analysis that evaluates what will happen to a grid community if its resources would be shared with another
group of users. In this case, the workload modeler can mix thetypical workload of the two communities and evaluate
whether the system can support both, under various job acceptance and execution policies.

3.2 The Coordination and Automation Layer

The intended use for ServMark is to evaluate the performanceof Grid environments and Grid and Web services. Grid
environments and Web services have quite different behaviors in terms of response time, so different testing strategies
need to be used. For ServMark, the testing process is initiated by a central controller, which distributes the testing
parameters to multiple nodes. Each node generates its own test scenario based on the given parameters and then plays
the generated scenario. The practical requirements are:

• uniquely identify each test (REQ1);

• automatically generate a multi-node test according to the user specifications (REQ2);

• store the test and make it available for replay (REQ3);

• run the test and store its results (REQ4);

• analyze the results and compute statistics (REQ5);

• the performance evaluation must be online: results should be able to be visualized as the testing process advances
(REQ6).

Figure 1 shows the proposed architecture for ServMark, highlighting the relationship between GrenchMark, DiPerF
and the new ServMark modules. The interaction between the user and the ServMark Controller goes as follows: the
user decides the parameters to be used in the testing process(see REQ2), starts the ServMark Controller, and then is
notified when the testing operation has completed. The ServMark Controller should generate a test ID for the testing
process initiated by the user (see REQ1), update the database and send the testing parameters to the DiPerF controller.
The DiPerF controller controls the testing process, by invoking the DiPerF submitter. It also updates the results into
the database. The DiPerF submitter creates the tester processes and communicates with them, sending in parameters
and receiving back test results. The DiPerF tester invokes GrenchMark, which performs the actual testing process
and communicates with GrenchMark, sending parameters and receiving back test results. GrenchMark generates a
workload according to the user parameters and then submits the generated workload for execution, computing the test
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results and sending them to the DiPerF tester. The test parameters are inserted into the database by the ServMark
controller. The DiPerF controller inserts and updates the test results into the database as the testing process advances.

3.3 The Performance Metrics

We have focused on flexibility in handling large data analysis tasks completely unsupervised. The performance ana-
lyzer is designed to allow a reduction of the raw performancedata to a summary of the performance data with samples
computed at a specified time quantum. For example, a particular experiment can accumulate more than one million
performance samples over a period of and hour, but after the performance analyzer summarizes the data for one sample
per second, the end result can be reduced to less than ten samples.

We also introduce the performance metrics considered by ServMark. While the performance metrics of interest to
the user may vary from case to case, and our system allows the introduction and processing of user specified metrics,
providing the following minimal set of pre-configured metrics [17,18]:

• service processing time: the time from when a client issues a request to the moment a reply is received minus the
round-trip time to the service and minus the execution start-up time of the client code. This metric is measured
from the point of view of the client;

• service throughput: number of requests completed successfully by the service averaged over a short time interval
specified by the user (e.g., a second or a minute) in order to reduce the large number of samples. To make the
results easier to understand most of the graphs below also present moving averages;

• offered load: number of concurrent service requests (per second); service utilization (per client): ratio between
the number of requests completed for a specific client and thetotal number of requests completed by the whole
service during the time the client was active;

• service fairness: the standard deviation in service utilization measured when all clients are active concurrently;

• job success rate (per client): the ratio of jobs that were successfully completed for a particular client;

• job fail rate (per client): the ratio of jobs that failed for a particular client;

• time to job completion (TTJC): for every correctly completed job, the difference betweenthe moment of suc-
cessful completion and the previous moment of a successful job completion, or the beginning of the testing
interval;

• time to job failure (TTJF): for every failed job, the difference between the moment of failure and the previous
moment of a failure, or the beginning of the testing interval.

4 Towards Real Grid Testing

While we acknowledge that a lot of ground must still be covered to fulfill the requirements of a system for testing Grid
environments, and Web (and Grid) Services, we argue that ServMark addresses the main requirements for testing in
real grid environments (see Section 2). ServMark

• makes use of the properties of both its constituent systems in order to generate truly significant testing scenarios.
First, by using a distributed approach;

• is able to generate a wide range of testing conditions for many Grid environments and services. Second, by
using a versatile workload generation engine, each testingunit of ServMark may generate complex workloads,
both real (trace-based) and realistic (model-based);

• synchronizes the time between client nodes with a synchronization error smaller than 100ms. This ensures the
accuracy of the testing procedure;

• detects client failures during the test, and reports the failure impact on the obtained results accuracy;

• can be automated to the degree of a single-click testing procedure, especially for periodic functionality or per-
formance testing. In particular, data collected by testersare automatically retrieved and stored in a central
repository.
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5 The ServMark Validation

In order to test the ServMark implementation, we chose to evaluate a scenario in which ServMark is used to test fine-
grained services deployed in real large-scale environments, which we consider the most difficult aspect of the generic
problem of testing P2P and Grid components in real large-scale systems. Using machines from the PlanetLab [46] and
the Grid3 [47] testbeds, we conduct experiments in which theservice clients experience different levels of connectivity.
We test in this environment the performance of six of the most-used web servers: Apache, Null HTTPD, Apache
Tomcat, Nweb, Jetty and Awhttpd. The data collected provideinformation on services maximum throughput, on
service fairness when multiple clients access the service concurrently, and on the impact of network latency on service
performance from both client and service viewpoint. While our results should not be used as indicators to what is the
best web server (for this we should have devised much more realistic load, and should have used many more testing
scenarios), we conclude that ServMark is useful for testingfine-grained services in real large-scale environments.

Table 1: Service processing time for the six web servers (in seconds)
Web Server Average (Standard Deviation) Minimum Maximum Weighted Average
Apache 1.0779 (0.647) 0.0810 16.5440 1.0969
Null HTTPD 0.9442 (0.482) 0.1244 30.4872 0.9495
Apache Tomcat 1.3617 (0.732) 0.1724 24.2665 1.3930
Nweb 0.9731 (0.565) 0.1293 10.9908 1.0152
Jetty 10.0745 (1.210) 0.2651 35.4375 9.0297
Awhttpd 1.1739 (0.558) 0.1242 29.5580 1.0117

Table 2: TTJC for the six web servers (in seconds))
Web Server Average (Standard Deviation) Minimum Maximum Weighted Average
Apache 3.8803 (1.975) 0.0022 13.5419 3.6702
Null HTTPD 3.9409 (1.922) 0.0177 11.7235 3.7446
Apache Tomcat 4.0902 (2.061) 0.0034 13.8347 3.8399
Nweb 4.0870 (2.008) 0.0393 14.1707 3.8613
Jetty 6.4677 (1.582) 0.0010 15.0310 5.9648
Awhttpd 4.1798 (2.041) 0.0106 13.9180 3.9005

5.1 Experimental Setup

The ServMark controller was installed ons8.diperf.cs.uchicago.edu, a machine located at the University of Chicago,
Computer Science Department. The web servers were started on alice01.rogrid.pub.ro, a machine located at the Poly-
technic University of Bucharest. The testers were spawned on machines which are part of PlanetLab [46]. PlanetLab
currently consists of over 600 machines hosted by over 300 sites, and is spanning over 25 countries. For each test,
20 testers were selected to run on hosts from North and South America, Asia, and Europe, simultaneously. Each
ServMark tester was configured to launch 100 HTTP requests, with a Poisson inter-arrival time distribution ofλ = 1s.
A request which remained unanswered for more than 25 secondswas considered to be faulty and was, subsequently,
killed.

5.2 Validation: Testing Fine-Grained Services

Table 3 presents the statistical values for the service processing time of the six web servers we tested. For the selected
scenario, the results have shown the existence of three classes of web servers: very fast, fast and slow. The very fast
class contains Nweb, with Null HTTPD and Apache coming close, respectively. The fast class contains the Apache
Tomcat web server, which is 30% slower than its non-services-enabled counterpart, and Awhttpd. Finally, the slow
class contains the Jetty web server, which is at least 8-10 times slower than all the others. We observe very large
service processing times in the case of the Jetty web server,compared to the other five servers. We note that the
Jetty web server is the only one using the Java platform, and that the Java Virtual Machine used during our tests was
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non-commercial, possibly providing less optimizations. In addition, it is possible that during the testing process ofthe
Jetty web server, the PlanetLab machines used for testing may have been extra loaded.

The web server achieving the smallest average service processing time was Null HTTPD, followed by Nweb, but
the web server obtaining the minimum response time among allthe requests is Apache. Looking at the variability of
the service processing time, the observed standard deviation lies within 10% of the average, for each server. However,
the maximum response time outliers range from 10-15 times higher than the average (e.g., NWeb and Apache) to
20-35 times (e.g., Apache Tomcat, Awhttpd). We conclude that, for the selected test scenario, NWeb and Apache are
the best performers, followed by Null HTTPD, Apache Tomcat,and Awhttpd (with lower performance or robustness),
and then, at some distance, Jetty. Table 2 presents the statistical values for the time to job completion (TTJC) of the
six web servers we tested. The average TTJC is higher than theaverage service processing time due to the workload
structure and of the environment performance (notably, dueto failures). The results based on TTJC measurement seem
to be consistent with our previous conclusions: Apache, Nweb and Null HTTPD achieved the best performance for
this test scenario.

Table 3: TTJF for the six web servers (in seconds))
Web Server Average (Standard Deviation) Minimum Maximum Weighted Average
Apache No Failures - - -
Null HTTPD 2.7893 (0.000) 0.0000 5.5786 2.7893
Apache Tomcat No Failures - - -
Nweb No Failures - - -
Jetty 1.4840 (0.000) 0.000 17.8760 1.4840
Awhttpd No Failures - - -

Table 3 presents the statistical values for the time to job failure (TTJF) of the six web servers we tested. Analyzing
the Failure metric, we notice that in the case of NullHTTPD and Jetty, some failures did occur. We concluded that all
of these failures occurred because the requests exceeded the allotted time of 25 seconds. This could have happened
for two reasons: either the machine on which the failure occurred was too loaded and the request was delayed, or the
machine on which the web server was running became too loaded. Ideally, we would not want the machines on which
the testers were running to become too loaded, but we have little control over the load of the machines which are part
of PlanetLab.

Our tests show also that ServMark can be used for testing fine-grained services in a wide-scale environment. We
have met the main requirements for testing in real grid environments, except for the representative workload generation
(see Section 2), which was beyond the scope of this work; however, we have shown in Section 3.1 and in [18] that
representative workloads of high complexity can be generated with ServMarks components. The test parameters we
chose (20 testers and 100 queries per tester) were large enough to make good use of the resources available at the
testing nodes. The testers were fault-tolerant, in the sense that they automatically detected and stopped the blocked
testing routines. We have used a single-click test deployment. We have also met the practical requirements (see Section
3.2) by implemented mechanisms.

6 Related Work

A significant number of projects have tried to tackle the Gridperformance assessment problem from different angles:
modeling workloads and simulating their run under various environment assumptions [3, 5, 15], attempting to produce
a representative set of grid applications like the NAS Grid Benchmarks [8], creating synthetic applications that can
assess the status of grid services like the GRASP project [4]and the Grid Exerciser1, and creating tools for launch-
ing benchmarks/application-specific functionality testslike the GridBench project [13] and the NMI projects [43].
ServMark is the natural complement to these approaches, by offering a much larger application base, more advanced
workload modeling features, and the ability to replay existing workload traces. In addition, ServMark can be used for
much more than just Grid performance evaluation.

The modeling/simulation approach is almost exclusively based on traces which are now part of the Parallel Work-
loads Archive. The major hurdle for this approach is to provethe representativeness of simulation results for real grid
environments.

1The Grid Exerciser (GEx) is available online at http://www.cs.wisc.edu/condor/tools/exerciser/
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Frumkin et al. [8] propose a small set of parallel applications as Grid benchmarks. Simple workloads are defined
for the applications, in that the running parameters and theorder in which the applications are to be run are fixed.
The drawbacks of this approach are that the applications areonly representative for a restricted research area (here,
computational fluid dynamics), make very little use of Grid components (only Grid-enabled MPI and a scheduler),
and cannot adapt to the dynamic behavior of Grids (they require fixed resource sizes, and have no fault-tolerance,
migration, or check-pointing features).

Chun et al. [4] use a small set of applications specifically designed to test specific aspects of Grids functionality
(probes). The applications assume the existence of common Grid components, like a global information system, or
a file-transferring service. No attempt to form workloads with these applications is made. Tsouloupas et al. [13]
propose a benchmark launching tool. This tool has the ability to launch benchmarks and display their results, and can
be coupled with many of the existing HPC benchmarks. However, it has very limited workload modeling features, and
cannot replay real traces. NMI [43] facilitates the definition and run of functionality tests. It currently lacks the ability
to define complex workloads, specific for performance and scalability testing.

Many studies have investigated the performance of individual Grid services. As an example, Zhang et al. [26]
compare the performance of three resource selection and monitoring services: the Globus Monitoring and Discovery
Service (MDS), the European Data Grid Relational Grid Monitoring Architecture (R-GMA), and Hawkeye. Their
experiment uses two sets of machines (one running the service itself and one running clients) in a LAN environment.
The setup is manual and each client node simulates 10 users accessing the service. This is exactly the scenario where
ServMark would have proved its usefulness: it would have freed the authors from deploying clients, coordinating them,
and collecting performance results, and allow them to focuson optimally configuring and deploying the services to
test, and on interpreting performance results.

The Globus Toolkits job submission service test suite [27] uses multiple threads on a single node to submit an
entire workload to the server. However, this approach does not gauge the impact of a wide-area environment, and
does not scale well when clients are resource intensive which means that the service will be relatively hard to saturate.
The Network Weather Service (NWS) [28, 29] is a distributed monitoring and forecasting system. A distributed set
of performance sensors feed forecasting modules. There areimportant differences to ServMark. First, NWS does not
attempt to control the offered load on the target service butmerely to monitor it. Second, the performance testing
framework deployed by ServMark is built on the fly, and removed as soon as the test ends, while NWS sensors aim
to monitor services over long periods of time. Similarly, NETI@home [30], Gloperf [31], and NIMI [32] focus on
monitoring service or network level performance. NetLogger [33] targets instrumentation of Grid middleware and
applications, and attempts to control and adapt the amount of instrumentation data produced in order not to generate
too much monitoring data. NetLogger is focusing on monitoring, and requires code modification in the clients; fur-
thermore, it does not address automated client distribution or automatic data analysis. Similarly, the CoSMoS system
[34] is geared toward generic network applications.

GridBench [35] provides benchmarks for characterizing Grid resources and a framework for running these bench-
marks and for collecting, archiving, and publishing results. While DiPerF focuses on performance exploration for en-
tire services, GridBench uses synthetic benchmarks and aims to test specific functionalities of a Grid node. However,
the results of these benchmarks alone are probably insufficient to infer the performance of a particular service. Finally,
Web server performance has been a high-interest topic of recent research [36,37]. The Wide Area Web Measurement
(WAWM) Project designs an infrastructure distributed across the Internet allowing simultaneous measurement of web
client performance, network performance, and web server performance [36]. Banga et al. [37] measure the capacity
of web servers under realistic loads. Both systems could have benefited from a generic framework such as ServMark.

7 Conclusion and Ongoing Work

In this paper we have presented ServMark, a distributed system for testing Grid environments and Grid and web
services. We have described its design and have successfully implemented the system. The implementation was
tested first on DAS and then, using PlanetLab to deploy the testers, we have evaluated the performance of six Web
servers. We have shown how ServMark can fulfill the main requirements for testing in real grid environments: generate
realistic workloads, provide accurate testing, be scalable and reliable, and provide hooks for extension (through plug-
in mechanisms). We have also shown that in practice ServMarkcan be easily used used for completely automated
testing.

Currently, we are working on improving ServMark in several directions. First, we are trying to improve the
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interface between the user and the ServMark controller, formore complex testing scenarios. Second, we are thinking
about alternative ways to send the information from the testers to the controller, i.e., through configurable push/pull
mechanisms. Third, we are working towards making ServMark amore fault-tolerant grid service.

Availability

The ServMark package is developed jointly by the Delft University of Technology, University of Muenster, University
of Chicago, University of British Columbia, and Politehnica Univeristy of Bucharest. ServMark is freely available
from its Globus Incubator project homepage: http://dev.globus.org/wiki/Incubator/ServMark
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