
Data Caching vs. GPFS Results

09-15-07

Ioan Raicu

For each given number of nodes (1, 2, 4, 8, 16, 32, 64), I have 12 experiments for 8 different file sizes, summing to a
total of 7*12*8 = 672 experiments. I have finished (last night) running 8 of the 12 experiments (448 runs in total).
The experiments I have finished are, which were done for a varying number of nodes (1, 2, 4, 8, 16, 32, 64) and
varying number of file sizes (1B, 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB)... the data lived on GPFS
initially for all experiments:

1. Read Caching 0% Locality: Data Caching read with no locality and round-robin scheduler

2. Read Caching 100% Locality: Data Caching read with 100% locality (ran the same workload 4 times in a
row) and round-robin scheduler

3. Read+Write Caching 0% Locality: Data Caching read+write with 0% locality and round-robin scheduler

4. Read+Write Caching 100% Locality: Data Caching read+write with 100% locality and round-robin
scheduler

5. Read GPFS: read from GPFS

6. Read+Write GPFS: read+write from GPFS

7. Read Wrapper GPFS: read from GPFS through the wrapper script; the wrapper script creates a temp scratch
directory on GPFS, makes a symbolic link to the input file, performs the operation, and finally removes the
temp scratch directory from GPFS... the Swift wrapper actually does even more things that could slow
things down, such as writing logs 10~20 times to a file on GPFS, which I did not do, as these loging is no
essential for the wrapper script to function; however, the temp scratch directory and symbolic linking is,
and therefore it is what I tested

8. Read+Write Wrapper GPFS: read+write from GPFS through the wrapper script

The following set of figures (1 – 11) are showing the performance of one of the above experiments, and have
throughput (either tasks/sec or Mb/s) on the x-axis and the file size on the y-axis.

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 1: Read Caching 0% Locality

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 2: Read Caching 100% Locality

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 3: Read+Write Caching 0% Locality

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 4: Read+Write Caching 100% Locality

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 5: Read GPFS

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 6: Read+Write GPFS

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 7: Read Wrapper GPFS

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 8: Read+Write Wrapper GPFS

The experiments which I still have left to do are (these tests might take a few days, as I haven't made any large scale
runs yet with this part of the code, hopefully I don't have to mess with the code... which is why I left this to the end):

1. Read Caching Data-Aware Scheduler 0% Locality: Data Caching read with 0% locality and data-aware
scheduler

2. Read Caching Data-Aware Scheduler 100% Locality: Data Caching read with 100% locality and data-
aware scheduler

3. Read+Write Caching Data-Aware Scheduler 0% Locality: Data Caching read+write with 0% locality and
data-aware scheduler

4. Read+Write Caching Data-Aware Scheduler 100% Locality: Data Caching read+write with 100% locality
and data-aware scheduler

These tests will populate Figures 8, 9, 10 and 11, and add 4 more lines to figures 12 through 18.

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 9: Read Caching Data-Aware Scheduler 0% Locality

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 10: Read Caching Data-Aware Scheduler 100% Locality

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 11: Read+Write Caching Data-Aware Scheduler 0% Locality

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d
Th

ro
ug

hp
ut

 (t
as

ks
/s

ec
)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1 Executor
2 Executor
4 Executor
8 Executor
16 Executor
32 Executor
64 Executor

Figure 12: Read+Write Caching Data-Aware Scheduler 100% Locality

The rest of the graphs (Figures 13 through 19) show the same data from Figures 1 through 12, but organized by the
number of executors, rather than experiment (i.e. caching, GPFS, etc). The axis remain the same as the previous
experiments, only the lines change their meaning from the number of executors to the experiment name. These
graphs allow the ease of inspection to see which method is best for particular file sizes and particular deployment
size.

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)
Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (M

b/
s)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

Figure 13: Comparing performance for 1 executor

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (M

b/
s)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

Figure 14: Comparing performance for 2 executors

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (M

b/
s)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

Figure 15: Comparing performance for 4 executors

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)
Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (M

b/
s)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

Figure 16: Comparing performance for 8 executors

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (M

b/
s)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

Figure 17: Comparing performance for 16 executors

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (M

b/
s)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

Figure 18: Comparing performance for 32 executors

0

50

100

150

200

250

300

350

400

450

500

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)
Read GPFS

Read Wrapper GPFS

Read Caching 0% Locality

Read Caching 100% Locality

Read Caching Data-Aware
Scheduler 100% Locality
Read+Write GPFS

Read+Write Wrapper GPFS

Read+Write Caching 0% Locality

Read+Write Caching 100% Locality

Read+Write Caching Data-Aware
Scheduler 100% Locality

0

1000

2000

3000

4000

5000

6000

7000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data Size

Th
ro

ug
hp

ut
 (M

b/
s)

Read GPFS
Read Wrapper GPFS
Read Caching 0% Locality
Read Caching 100% Locality
Read Caching Data-Aware Scheduler 100% Locality
Read+Write GPFS
Read+Write Wrapper GPFS
Read+Write Caching 0% Locality
Read+Write Caching 100% Locality
Read+Write Caching Data-Aware Scheduler 100% Locality

Figure 19: Comparing performance for 64 executors

Overall, I think the most interesting tests are the larger scale ones, so now that we have nice baselines from these
tests, I think we could concentrate (and dig deeper into other scenarios) on just 2 different cases, one extreme (1
worker), and the other extreme (64 executors, or ever 128 if we could get the entire ANL/UC site). We could also
take the 3rd case, 8 executors, as that should perform similarly to GPFS (as far as I know, GPFS has 8 I/O nodes
supporting GPFS calls, so having 8 executors in our experiment makes sense to have comparable performance to
GPFS). Notice that the biggest gains were with 64 executors, and I bet the gains will grow further with 128
executors. Also, none of these results reflect the data-aware scheduler, but I’ll have those results ready soon. What
I expect to see is more poor performance for small file sizes, but better performance for large file sizes when
compared to the data caching approach with the round-robin scheduler. Finally, I have experienced poor
performance of the data caching code when running the experiment with large file sizes (100MB and 1GB) and with
data locality at 100%; this is evident in the graphs. I need to investigate this further…

There is still lots of work to be done here, detailed explanation of each experiment’s results, perhaps pick out a few
from this bunch to concentrate on, compute the standard deviations and integrate them into the graphs, etc… Then,
I need to start putting the paper together, and at the same time, start testing some real apps to see what kind of
performance improvement we get.

