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Abstract 
 

The Globus Toolkit Monitoring and Discovery 
System (MDS4) defines and implements mechanisms 
for service and resource discovery and monitoring in 
distributed environments. MDS4 is distinguished from 
previous similar systems by its extensive use of 
interfaces and behaviors defined in the new WS-
Resource Framework and WS-Notification 
specifications, and by its deep integration into 
essentially every component of the Globus Toolkit. We 
describe the MDS4 architecture and the Web service 
interfaces and behaviors that allow users to discover 
resources and services, monitor resource and service 
states, receive updates on current status, and visualize 
monitoring results. We also describe how MDS4 can 
be used to implement large-scale distributed 
monitoring and distributed systems, and present 
experimental results that provide insights into the 
performance that can be achieved via the use of these 
mechanisms.  

 
 
1. Overview 
 

The resources available to a virtual organization 
(VO) in a Grid environment can change frequently as 
new resources and services (brokering services, replica 
managers, file servers, etc.) are added and old ones are 
removed or become inaccessible. In addition, resource 
and service properties may change:  for example, when 
a data server is upgraded to larger capacity, different 
access rates, or different access protocols. These 
dynamic behaviors can make both discovery—the 
process of finding suitable resources to perform a 
task—and monitoring—the process of observing 

resources or services to track their status for purposes 
such as fixing problems and tracking usage—
significant undertakings. 

Typical monitoring and discovery use cases include 
providing data so that resource brokers can locate 
computing elements appropriate for a job, streaming 
data to a steering application so that adjustments can 
be made to a running application, and notifying system 
administrators when changes in system load or disk 
space availability occur, in order to identify possible 
performance anomalies. 

The Globus Toolkit’s solution to these closely 
related problems is its Monitoring and Discovery 
System (MDS): a suite of components for monitoring 
and discovering resources and services. MDS4, the 
version in the Globus Toolkit 4 [Foster05], uses 
standard interfaces defined within the Web Services 
Resource Framework (WSRF) and WS-Notification 
(WS-N) specifications [FCF+05] to provide query and 
subscription interfaces to arbitrarily detailed resource 
data (modeled in XML). A trigger interface can be 
configured to take action when pre-configured 
conditions are met. MDS4 services acquire their 
information through an extensible interface that can be 
used to query WSRF services for resource property 
information, execute a program to acquire data, or 
interface with third-party monitoring systems. 

Grid computing resources and services can 
advertise a large amount of data for many different 
purposes. MDS4 was designed to enable access to such 
data by multiple people across multiple administrative 
domains. As such, it is not an event handling system, 
as is NetLogger [GT03], or a cluster monitor in its own 
right, as is Ganglia [MCC04], but can interface to 
these more detailed monitoring systems (and to 
archives). 

1 



 

The rest of this paper is as follows. We detail in 
Section 2 MDS4 services, infrastructure, data sources, 
and interfaces, and in Section 3 describe a typical 
deployment. We give preliminary performance results 
in Section 4, compare MDS4 with the earlier MDS2 
system in Section 5, discuss related work in Section 6, 
and conclude in Section 7. 

The principal contributions of this paper are as 
follows: 
• We show by example how monitoring and 

discovery capabilities can be integrated into the 
design of a distributed computing infrastructure so 
that any and every resource and service can be 
monitored and discovered in a uniform manner. 

• In doing so, we validate the value of primitive 
interfaces and behaviors defined by the WSRF and 
WS-N specifications as a basis for building such 
systems. 

• We present performance results that provide 
insights into the performance of our MDS4 
implementation of a WSRF/WSN-based 
monitoring and discovery system, and permit 
comparisons with a previous non-WSRF/WSN 
based system. 

 
2. MDS4 Details  
 

MDS4 builds heavily on capabilities provided by 
the WSRF and WS-N specifications [FCF+05]; indeed, 
it can be viewed as an exemplary use case for those 
specifications, which define the mechanisms used to 
describe information sources, access information via 
both queries and subscriptions, and manage 
information lifetimes. 

The neck of the MDS4 “protocol hourglass” (Figure 
1) comprises not only these standard protocols for data 
access and delivery but also standard schemas for 
information representation, such as the GLUE schema 
[GLUE]. Below the neck of the hourglass, MDS4 
interfaces to different local information sources, 
translating their diverse schemas into appropriate XML 
schema transmitted over WSRF/WS-N protocols. 
Above the neck of the hourglass, various tools and 
applications can take advantage of the uniform Web 
services query, subscription, and notification interfaces 
to those information sources that MDS4 implements. 

 In the rest of this section, we describe the MDS4 
implementation. We first review in Section 2.1 the 
Web service standards that underpin our approach. 
Then, in Section 2.2 we describe the higher-level Index 
service, which collects and publishes aggregated 
information about Grid resources, and Trigger service, 
which  collects   resource   information   and   performs 
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Figure 1: MDS4 provides a protocol hourglass. 

 
actions when certain conditions are met. These 
services are built upon a common infrastructure called 
the Aggregation Framework, described in Section 2.3, 
which provides common interfaces and mechanisms 
for working with data sources. MDS4 also includes 
several software components, called Information 
Providers, described in Section 2.4, that are used to 
collect information, and a web-based user interface 
called WebMDS, described in Section 2.5. We describe 
a typical MDS4 deployment in Section 3. 
 
2.1 Web Services Standards Used By MDS4 

 
Different use cases can motivate a need for a wide 

variety of information about Grid resources and 
services. Our experience with MDS2 [CFF+01], in 
which information was collected and delivered by a 
separate set of services, emphasized the advantages of 
incorporating standardized interfaces and monitoring 
functionality into every service, so that monitoring and 
discovery data becomes ubiquitously available. Indeed, 
this experience was a major motivator for the Web 
services standards [FCF+05] on which we build here. 
These standards define interfaces for specifying and 
interacting with data about services. In particular: 
 
• WS-ResourceProperties defines a mechanism by 

which Web services can describe and publish 
resource properties, or sets of information about a 
resource. Resource property types are defined in 
the service’s WSDL, and resource properties can 
be retrieved, in the form of XML documents, 
using WS-ResourceProperties query operations. 

• WS-BaseNotification defines a 
subscription/notification interface for accessing 
resource property information. 
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• WS-ServiceGroup defines a mechanism for 
grouping related resources and/or services 
together as service groups. 

The MDS4 Index and Trigger services make 
extensive use of these standards and the mechanisms 
defined by them. Both use service groups as part of 
their administrative interface to keep track of what 
information they are to collect, and the primary client 
interfaces to the Index are resource property queries 
and subscription/notification. 

 
2.2 MDS4 Services 

 
An MDS Index service collects information about 

Grid resources and makes this information available as 
resource properties. It differs from a UDDI registry 
[UDDI] primarily in the facts that it stores not only the 
location from which a piece of data is available, but 
also a cached version of the data—and maintains that 
cached copy current via lifetime management 
mechanisms.  

An Index service instance (also called an Index) 
provides access to information via the operations 
defined in WS-ResourceProperties and WS-
BaseNotification. The primary resource property 
advertised by the Index Service is a Service Group 
whose entries correspond to the data aggregated by this 
service. A user adds data to the Index by creating a 
service group entry to this Service Group with 
metadata describing how (and how often) the Index 
Service should acquire that data. The Index then 
updates this service group entry to include both the 
actual data and the metadata. Data added to an Index 
can be in any (XML) format. We provide more 
information about the use of Service Groups within 
MDS and the mechanisms used to collect data in 
Section 2.3. 

A Grid will typically operate multiple Indexes that 
maintain different data for different purposes. Each 
GT4 container has a default Index that records 
resources created within the container. In addition, 
sites and VOs may maintain one or more Indexes to 
record available containers, resources, and services. In 
general, Index services can be arranged in hierarchies, 
but there is no single global Index that provides 
information about every resource on the Grid. This 
structure is deliberate, as each VO will have different 
policies on who can access its resources. No person is 
part of every VO. 

In the most common use case, an Index republishes 
data that was originally made available by some other 
service. However, the current Index implementation 
does not collect and enforce these remote servers’ 

access control policies. To guard against the risk that 
an Index will allow broader access than the original 
publisher of the data intended, we recommend that the 
Index be run in one of two modes: a public index, in 
which all Index data is collected through anonymous 
queries and access is granted to everyone, or a 
personal index, in which all index data is collected 
using credentials delegated by an individual and access 
is restricted to that same individual. 

The Trigger service collects information and 
compares that data against a set of conditions defined 
in a configuration file. When a condition is met, an 
action takes place, such as emailing a system 
administrator when the disk space on a server reaches 
a threshold. This functionality, inspired by a similar 
capacity in Hawkeye [HAW], has proven useful in 
trouble shooting for projects such as the Earth System 
Grid (ESG) [BBB+05]. 

 
2.3 Aggregator Framework Implementation 

 
The Index and Trigger service implementations are 

both specializations of a more general aggregator 
framework, a software framework for building services 
that collect and aggregate data. This framework can be 
used to construct other services: for example, it should 
be straightforward to implement a variant of the Index 
service that makes data available in Condor ClassAds 
format. 

 
Figure 2: Information flow through the aggregator 
framework. 

 
Services built on this framework are sometimes 

called aggregator services. Such services have five 
properties in common. 

They collect information via aggregator sources. 
An aggregator source is a Java class that implements 
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an interface (defined as part of the aggregator 
framework) to collect XML-formatted data. MDS4 
supports three types of aggregator source (see Figure 
2). A Query source uses WS-ResourceProperties 
mechanisms to poll a WSRF service for resource 
property information. A Subscription source collects 
data from a service via WS-Notification 
subscription/notification. Finally, an Execution source 
executes an administrator-supplied program to collect 
information, which is returned as an XML document.  

Aggregator services use a common configuration 
mechanism to maintain information about aggregator 
sources and parameters specifying what data to get, 
and from where. The aggregator framework WSDL 
defines an aggregating WS-ServiceGroup entry type 
that holds both configuration information and data. 
Administrative client programs use standard WS-
ServiceGroup registration mechanisms to register these 
service group entries to the Aggregator. 

Soft consistency model: published information is 
renewed at a administrator-controllable frequency. 
Thus, load caused by information updates can be 
reduced at the expense of having slightly older 
information. This delay is not a problem in practice, 

for example, it is generally acceptable to know the 
amount of free disk space on a system 5 minutes ago 
rather than 2 seconds ago. 

Aggregator services are self-cleaning. Each 
registration has a lifetime, and if a registration expires 
without being refreshed, it and its associated data are 
removed from the server. Thus, outdated entries are 
removed automatically when they cease to renew their 
registrations. 

The presence of a resource in an aggregator 
service makes no guarantee about the availability of 
the resource for users of that aggregator service. An 
aggregator service such as the Index or Trigger 
provides an indication that certain resources are likely 
to be useful, but the ultimate decision about whether 
the resources can be used is left to direct negotiation 
between user and resource. A user who has decided to 
access a particular service based on MDS4 information 
might still find they are not authorized when they 
submit a request. This strategy has two advantages: 
MDS4 need not keep track of policy information 
(something that is hard to do concisely) and resources 
need not publish policies. 

 
 
 

Table 1: Currently available information providers for MDS4. 

Name Info source Source Type Information Provided 
Hawkeye Condor pool Execution  Basic host data (name, ID), processor 

information, memory size, OS name and version, 
file system data, processor load data, and other 
basic Condor host data. 

Ganglia Cluster Execution Basic host data (name, ID), memory size, OS 
name and version, file system data, processor 
load data, and other basic cluster data. 

Nagios Cluster Execution Same as Ganglia 
CluMon Cluster Execution Same as Ganglia 
GRAM GT4 grid resource 

allocation and 
management service 

Query, 
Subscription 

Processor information, memory size, queue 
information, number of CPUs available and free, 
job count information, and some memory 
statistics 

RFT GT4 reliable file 
transfer service 

Query, 
Subscription 

RFT service status data, number of active 
transfers, transfer status, information about the 
resource running the service 

CAS GT4 community 
authorization service 

Query, 
Subscription 

Identifies the VO served by the service instance 

RLS GT4 replica location 
service 

Execution Location of replicas on physical storage systems 
(based on user registrations) for later queries 

Basic Every GT4 Web 
service 

Query, 
Subscription 

ServiceMetaDataInfo element includes start time, 
version, and service type name 

TeraGrid Configuration file Execution TeraGrid-specific cluster data 
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2.4 Information Providers 
 
The data that an MDS4 aggregator source publishes 

into an aggregator service is obtained from an external 
component called an information provider. In the case 
of a Query or Subscription source, the information 
provider is a WSRF-compliant service from which 
data is obtained via WS-ResourceProperty or WS-
Notification mechanisms, respectively. In the case of 
an Execution source, the information provider is an 
executable program that obtains data via some domain-
specific mechanism. Table 1 lists the currently 
available information providers for MDS4. 
 
2.5 User Interfaces 
 

An advantage of using a standard, widely-adopted 
data format such as  XML is that one can then use 
various commodity tools to manipulate data. For 

example, we have developed a tool called WebMDS 
that uses standard resource property requests to query 
resource property data and XSLT transforms [XSLT] 
to format and display them. In this way, we obtain  
user-friendly front-end to Index data. Web site 
administrators can customize their own WebMDS 
deployments by using HTML form options and 
creating their own XSLT transforms. Index data can 
also be retrieved in its raw XML format via WebMDS 
and viewed using a web browser’s native XML 
formatting capabilities, or saved in a file and viewed 
using any commodity XML viewer.  Figure 3 shows a 
sample general WebMDS page, and Figure 4 shows 
the TeraGrid adaptation we have deployed. 

In addition, GT4 command-line clients (wsrf-query, 
wsrf-get-property, wsrf-get-properties) and 
corresponding Java, C, and Python API implement 
resource property query operations that can be used to 
query an Index directly, when required.  

 

 
Figure 3: Sample WebMDS page from 

http://mds.globus.org:8080/webmds/webmds?info=indexinfo&xsl=servicegroupxsl. 

5 



 

 
Figure 4: WebMDS for TeraGrid deployment. 

 
3. Putting it All Together 
 

We describe a typical MDS4 deployment: a multi-
project VO spanning 30 sites (three representative sites 
are shown in Figure 3) and including a wide set of 
collaborating applications. The components are 
heterogeneous in nature, and deploy a varied set of 
software and services. The MDS4 online 
documentation provides details on how to configure 
the various components of such a deployment. 

Working from the local level up, each clustered 
resource in this deployment has deployed Ganglia (on 
common queued clusters) or Hawkeye (on Condor 
pools) for host-level monitoring and to allow MDS 
access to scheduler and cluster information. In Figure 
3, Site 1 has two clusters, each with a Ganglia 
deployment, and Site 2 is running Condor and 
Hawkeye tool. The different schedulers run on the two 
clusters at Site 1 (PBS and LSF, respectively), are 
easily handled in our MDS deployment.  

Each site also runs additional services. Site 1 in 
Figure 3 runs a Reliable File Transfer (RFT) server 
and Site 3 a Replica Location Service (RLS). In 
addition, each site has deployed a site-wide Index (e.g., 
the Index for Site 1 is labeled “A” in Figure 3). Each 
such Index contains all services and resources at the 
site, and thus allow the site to track its local resources, 
including those provided by Ganglia or Hawkeye. 

Application B in Figure 3 also operates an 
application-specific Index (“B”) that contains 
registrations for the application-specific services at the 
different sites: i.e., the RFT service at Site 1 and the 
RLS service at Site 3. This Index makes it easy for 
users of those applications to see track such 
application-specific resources and services. 

Figure 3 also shows that this VO has decided on a 
three-level tier for the VO-wide indexes. The first tier 
is at the site level, as described. The second tier is an 
East Coast-West Coast division, whereby Sites 2 and 3 
share a combined West Coast Index running at Site 2 
(labeled C in Figure 3). Site 2 also maintains the VO-
wide server running on a resource at Site 2 (labeled D 
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in Figure 3) to which the other sites’ Index services 
have also registered. This structure allows any VO 
participant to view all VO resources. In general, such 
hierarchical structures can be arbitrarily deep—indeed, 
they may not be organized hierarchical.  

The VO has deployed WebMDS as well (“E” in 
Figure 3) so that all VO users can view the current 
state of VO resources and services. In addition, a 
Trigger service (“F”) is deployed to alert interested 
parties about changes in VO status. The VO operations 
center uses this Trigger for automatic notification of 
service failures. 

This deployment provides VO members with a rich 
collection of data that they can use in a variety of 

ways. For example, they can make job submission or 
replica selection decisions by querying the VO-wide 
Index; evaluate the status of Grid services by looking 
at the VO-wide WebMDS setup; and/or be notified 
when disks are full or other error conditions happen by 
being on the list of administrators via the configured 
Trigger service. Individual projects can examine just 
the state of the resources and services of interest to 
them, as Application B is doing. Furthermore, these 
sophisticated capabilities are provided quite easily, via 
the appropriate configuration of mechanisms and 
interfaces built in to every GT4 container and service. 
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Figure 5: Sample MDS4 deployment. Yellow (light grey) boxes are containers, orange (dark grey) are 

services, ovals are Indexes, white boxes with a small outline are resources, and white boxes with a thick line 
are sites. The dashed lines are registrations. 
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4. MDS4 Performance Results 
 

We performed experiments to measure MDS4 
query response time, throughput, and stability, and to 
compare MDS4 performance with that of MDS2. This 
included the response time and throughput, stability, 
and capacity of the Index service. 

 
4.1 Index Performance 
 

We first quantify MDS4 response time, or time to 
serve a query request, and throughput, or aggregate 
number of queries per minute. We find that query 
performance is tied to the size of the index being 
queried, the number of other concurrent requests, and 
the size of a query. Our experiments investigate this 
performance space. 
 
4.1.1 Experimental Methodology 
 

We ran our experiments on a portion of the 
University of Chicago TeraGrid machine, with 20 
dedicated IA32 nodes used to run the client workload 
and one dedicated IA32 node used for the Index. Each 
node had dual 2.4GHz Xeon processors, 4GB RAM, 
and SuSE v8.1. The 21 nodes were all connected via 
1Gb/s Ethernet network. 

The Index was populated with sample entries 
consisting of the standard pieces of information 
required for a ServiceGroupEntry (i.e., 
ServiceGroupEntryEPR, MemberServiceEPR, 
Aggregator configuration information), as well as a 
small amount of data. The size of each sample entry 
was approximately 1.9KB. 

We performed experiments with Indexes containing 
1, 10, 25, 50, 100, 250, and 500 entries. To compare 
these sizes to current practice, we can look at the 
number of XML elements in the Index. In our current 
TeraGrid deployment, we collect 17 attributes from 
each of 10 queues at SDSC and NCSA, host data 
consisting of 3 attributes for approximately 900 nodes, 
and 12 attributes for sub-cluster data for 7 subclusters, 
giving us approximately 3,000 attributes, roughly 1900 
XML elements, at a total size of 192KB. Each XML 
entry is roughly comparable to several attributes  
because of the overhead of the ServiceGroup 
registration elements for each entry, along with the 
actual data.  To compare that to the tests run here, an 
Index populated with 50 sample entries has an element 
count of 1113 and is approximately 94KB in size. 
Thus, we conclude that the entry sizes used for these 
experiments are similar to what is being used in current 

deployments from the perspective of data size and 
element counts.  

We ran our experiments for in-cache data in the 
Indexes only. Current Grid deployments seem to renew 
data on 1, 6, or even 24 hour cycles [GITS, SOE+04], 
so cache misses are likely to be rare in those 
configurations.  

We ran experiments using DiPerf [DRR+04] for 
approximately 10 minute each. In the first two minutes 
we started the concurrent clients and in the remaining 
eight minutes we collected performance data. Each 
data point is the average behavior over the eight 
minutes. For throughput the error bars show the 95% 
variance for each client for each minute. For response 
time, the error bars are the standard deviation of all the 
measurements. We ran experiments with 1, 4, 8, 16, 
32, 64, 128, 256, 384, 512, 640, 768, and 800 
concurrent clients. The limit of 800 clients was due to 
a maximum of 1024 open file descriptors allowed on 
our test-bed machine. Sites with root permissions can 
adjust this parameter.  

Each query retrieved all data in the Index. We did 
this because we wanted to reflect the performance of 
the MDS infrastructure not the performance of 
Xquery’s searches. Each client only opens and closes 
its connection to the server once over the course of an 
experiment. 

We compare our performance to that of the MDS2 
[CFF+01] Index service. MDS2 is an LDAP-based 
monitoring system that is part of the pre-WS Globus 
Toolkit v 2.4.3. A more detailed description is given in 
Section 5. We used a 100-entry Index, which was 
approximately 11.4KB in size. The queries were for 
the full Index contents.  

 
4.1.2 Results 
 

Figure 6 shows both MDS4 throughput for the set 
of index sizes and MDS2 for 100 entries. MDS4 
performance is consistent and robust, as seen by the 
flat throughput achieved once the service is saturated, 
regardless of the number of concurrent clients. MDS2 
on a small index outperforms MDS4, likely because of 
its C implementation and smaller OpenLDAP 
messages. (MDS4 is implemented in Java, and uses 
SOAP over HTTP and XML.) However MDS2 shows 
a much higher variance, especially for small numbers 
of clients. MDS2 and MDS4 differences are discussed 
in greater detail in Section 5. 

Figure 7 shows response times, which for MDS4 
are also stable and consistent once the service is 
saturated. MDS2 outperforms MDS4, but has a higher 
variance, especially for small numbers of clients. 
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Figure 6: MDS4 Index service throughput performance. Larger values are better. 
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Figure 7: MDS4 Index service response time performance. Smaller values are better. 
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4.2 Index Service Stability 
 

To test service stability, we ran long-running 
experiments against Indexes of different sizes on a 
cluster of dual-processor Intel PIII 1133MHz 
computers, each with 1.5GB of RAM and connected 
on the same physical switch via Gigabit Ethernet. The 
Indexes were populated as in the previous experiment. 
In each case, multiple clients repeatedly queries the 
Index, which is running on a separate machine. 
Stability is excellent. 

 

Table 2: Index service stability results. 

Vers. Index 

Size 

Time 
up 

(Days) 

Queries 

Processed 

Query 

Per 

Sec. 

Round
-trip 

Time 
(ms) 

4.0.1 25 66+ 81,701,925 14 69 

4.0.1 50 66+ 49,306,104 8 115 

4.0.1 100 33 14,686,638 5 194 

4.0.0 1 14 93,890,248 76 13 

4.0.0 1 96 623,395,877 74 13 

 
 
4.3 Index Service Maximum Size 
 

The MDS4 Index is currently maintained in 
memory, and thus the maximum Index size is limited 
by the Java heap size. To evaluate the practical 
applications of this approach, we measured the 
maximum number of sample entries that could be 
stored for different heap sizes, Table 3 shows that the 
number of entries scales linearly with available 
memory. The maximum heap size on a most machines 
is approximately 2GB due to address space limitations. 
We are currently examining out-of-memory 
approaches for larger indexes.  

 

Table 3: Container heap size currently dictates the 
number of entries in an MDS4 Index service. 

Heap 
Size 

(MB) 

Approx. 
Max. 

Index Entries 

Index 
Size 

(MB) 
64 600 1.0 

128 1275 2.2 
256 2650 4.5 
512 5400 9.1 

1024 10800 17.7 

1536 16200 26.18 
5. MDS4 vs MDS2: Other Factors 
 

MDS2 was one of the first cross-administrative 
domain grid monitoring systems, It was designed “to 
support initial discovery and ongoing monitoring of 
the existence and characteristics of resources, services, 
computations, and other entities” [CFF+01]. It defined 
the basic architecture for grid monitoring that we are 
still using today – a set of distributed information 
providers that communicate with a set of higher level 
services that collect, manage, index and respond to the 
data, with caching and soft-state registrations. 

While MDS4 and MDS2 have a similar 
architecture, they differ significantly in their 
implementations. MDS2 is primarily a set of C-coded 
LDAP backend modules to the University of 
Michigan’s OpenLDAP server. Published information 
is modeled in the LDIF format, and information 
providers are mostly shell scripts. While the tight 
integration with the OpenLDAP server provided 
certain advantages, in particular fast client query 
response times, the MDS2 index’s caching ability was 
hampered by the lack of a persistent query mechanism 
and cache stability issues in large deployments.  

In contrast, the MDS4 code is written in Java and 
runs on top of the SOAP-over-HTTP protocol stack 
used by the GT4 Java WSRF core, which allows 
MDS4 to be closely integrated with core GT4 
functionality. Unlike MDS2, MDS4 is designed as an 
integral part of GT4 that leverages many of its features 
including the communication protocols, shared code-
base, and WSRF-compatibility. In contrast, MDS2 
system was a separate component with a more loosely-
coupled integration to the rest of the toolkit. 

WSRF compliance provides MDS4 with standard, 
well-defined interfaces. The MDS4 Index can, without 
any modification, aggregate any data advertised as 
resource properties by any service that supports any of 
the query or subscription/notification operations 
defined in the WS-ResourceProperties specification, 
and any client application that supports the operations 
described in that standard can query or receive 
notifications from the MDS4 Index.  

While the MDS2 protocols specified the use of 
LDAP as a query language, the MDS4 standards allow 
for the use of multiple query languages, with the name 
of the query language specified as part of the query 
request. Our current implementation supports only 
XPath; however, the GT4 code base includes a plug-in 
interface to support additional query languages. 

MDS4 also benefits from added extensibility when 
working with information providers. User-
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customizable API and code mechanisms are provided 
to make the task of data ingestion more flexible. The 
Aggregator mechanism provides a facility through 
which XML data can be ingested from a variety of 
sources (including WSRF services, non-WSRF 
services, and/or external programs or program 
interfaces), and subsequently published as a single 
aggregate resource property using the WS-
ServiceGroup paradigm. In addition to the Aggregator 
component, MDS4 also provides a similar facility for 
working with WS-Resource Properties, whereby data 
can be collected from the same variety of potential 
information sources as the Aggregator, but is published 
as individual WS-Resource Properties rather than 
Service Group entries. 

In MDS2, the learning curve for writing 
information providers was steep and often involved 
more than simple working knowledge of the LDIF data 
format, which could include such activities as 
registering LDIF OID namespaces with a naming 
authority and other complex information modeling 
tasks in order for compliance with the LDIF data 
format. The XML-based information model for data in 
MDS4 is generally considered to be more flexible and 
user-friendly than LDIF, and the process of writing 
and/or integrating information providers into the 
system is easier and less time-consuming. In fact, for 
WSRF-compliant services, no special information 
provider is required; if the service advertises resource 
properties, the MDS4 services can aggregate those 
properties without using specialized providers. 
Common registration tasks are simplified, allowing for 
easier construction of VOs. Furthermore, the addition 
of the Trigger service allows for more sophisticated 
monitoring configurations to be constructed, which in 
MDS2 were not possible without extensive 
customizations to the existing code. 

MDS4 is also more reliable than MDS2. The MDS4 
Index is able to sustain a heavy load for months 
without significant impact on server performance. In 
contrast, MDS2 servers experienced significant load 
and memory usage problems when run for prolonged 
periods without restarting. This difference is apparent 
in the high MDS2 variance numbers, which we 
attribute in part to concurrency issues that result in not 
all homogenous clients receiving equal share of 
resources. Thus, the time to answer a query can vary 
by orders of magnitude across different clients. 

 
6. Related Work 
 

The MDS4 approach is not dissimilar to others used 
in the field. Its primary advantage is the use of 

standard interfaces, the flexibility of the information 
provider infrastructure, the robust high-level services, 
and notification of failures. It can, and does, interact 
with many other tools in order to provide a standard 
interface to a wide variety of data. 

The most closely related project is Inca [SOE+04], 
which is primarily used for software stack validation 
and site certification. A central manager controls a set 
of information providers (called reporters) that are run 
at regular intervals, collecting data in an archive 
(called the depot). It is currently deployed on TeraGrid 
[TG], GEON [GEON], NGS [NGS], and DEISA 
[DEI]. Inca does not gather cluster or queuing data for 
resource selection data at this time. 

R-GMA [CGM+03] is the other widely-deployed 
monitoring framework, primarily because of its strong 
ties to the EGEE project [EGEE]. R-GMA makes all 
data that is publishes appear as if it were all resident in 
a single, large, relational database. However, because 
it does not use caching, it has had significant 
performance problems [ZFS05]. 

There are many other tools that look at part of the 
Grid monitoring and discovery space, these include 
Nagios [NAG], Ganglia [MCC04], and MonaLisa 
[Legrand03].  

Similarly, there is a large body of work on resource 
discovery in large-scale distributed systems, for 
example pragmatic systems such as  SWORD 
[OAP+04], CAN [RFH+01] , CHORD [SMK+01] , 
PASTRY [RD01] and TAPESTRY [ZKJ01], and more 
theoretical work, such as [HLL99]. 

Performance studies of Grid monitoring systems 
include work on previous MDS versions. Smith et al. 
[SWM+00] investigated MDS2 performance by 
focusing on the effect of different versions of backend 
LDAP and data distribution strategies. Aloisio et al. 
[ACE+01] studied the capabilities and limitations of 
MDS2 as well as the security effect on the 
performance although their experiments were limited 
to simple tests on the MDS2 Index (GIIS) only.  

Keung et al. [KDJ+03, KDJ+03b] analyzed MDS2 
performance with different back-end implementations 
by varying information-gathering methods. This work 
compliments our studies [ZS04] in which we examined 
MDS2 behavior at a fine granularity by using 
NetLogger technologies to instrument the server and 
client codes, but did not compare this behavior to any 
other system. Zhang et al. have examined the 
performance of MDS2, R-GMA, and Hawkeye 
[ZFS03, ZFS05]. 

Plale et al. [PJJ+04, PJL+03] benchmarked a 
synthetic workload (queries and updates) against a non 
realistic Grid information service implemented with 
three different database platforms: relational 
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(MySQL), native XML (Xindice), and LDAP. In other 
work, Plale et al. [PDvL02] discussed the pros and 
cons of building a Grid Information service on a 
hierarchical representation and a relational 
representation; however, their approach was theoretical 
not experimental.  

 
7. Conclusions 

 
We have described how monitoring and discovery 

capabilities can be integrated into the design of a 
distributed computing infrastructure so that any and 
every resource and service can be monitored and 
discovered in a uniform manner. Using Web service 
standards that define the primitive interfaces and 
behaviors, we have built the basis of a monitoring 
system for Grid use. Our initial performance results 
indicate that the basic performance is acceptable, 
although further work is needed to understand 
performance bottlenecks of the system. 
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