
MCS Preprint #ANL/MCS-P1315-0106.

Monitoring and Discovery in a Web Services Framework:
Functionality and Performance of Globus Toolkit MDS4

Jennifer M. Schopf1,2,4, Ioan Raicu2, Laura Pearlman3, Neill Miller2, Carl Kesselman3, Ian
Foster1,2, Mike D’Arcy3

1 Mathematics and Computer Science Division, Argonne National Laboratory
2 Department of Computer Science, The University of Chicago

3Information Science Institute, University of Southern California
4 UK National eScience Centre, University of Edinburgh

Abstract

The Globus Toolkit Monitoring and Discovery
System (MDS4) defines and implements mechanisms
for service and resource discovery and monitoring in
distributed environments. MDS4 is distinguished from
previous similar systems by its extensive use of
interfaces and behaviors defined in the new WS-
Resource Framework and WS-Notification
specifications, and by its deep integration into
essentially every component of the Globus Toolkit. We
describe the MDS4 architecture and the Web service
interfaces and behaviors that allow users to discover
resources and services, monitor resource and service
states, receive updates on current status, and visualize
monitoring results. We also describe how MDS4 can
be used to implement large-scale distributed
monitoring and distributed systems, and present
experimental results that provide insights into the
performance that can be achieved via the use of these
mechanisms.

1. Overview

The resources available to a virtual organization
(VO) in a Grid environment can change frequently as
new resources and services (brokering services, replica
managers, file servers, etc.) are added and old ones are
removed or become inaccessible. In addition, resource
and service properties may change: for example, when
a data server is upgraded to larger capacity, different
access rates, or different access protocols. These
dynamic behaviors can make both discovery—the
process of finding suitable resources to perform a
task—and monitoring—the process of observing

resources or services to track their status for purposes
such as fixing problems and tracking usage—
significant undertakings.

Typical monitoring and discovery use cases include
providing data so that resource brokers can locate
computing elements appropriate for a job, streaming
data to a steering application so that adjustments can
be made to a running application, and notifying system
administrators when changes in system load or disk
space availability occur, in order to identify possible
performance anomalies.

The Globus Toolkit’s solution to these closely
related problems is its Monitoring and Discovery
System (MDS): a suite of components for monitoring
and discovering resources and services. MDS4, the
version in the Globus Toolkit 4 [Foster05], uses
standard interfaces defined within the Web Services
Resource Framework (WSRF) and WS-Notification
(WS-N) specifications [FCF+05] to provide query and
subscription interfaces to arbitrarily detailed resource
data (modeled in XML). A trigger interface can be
configured to take action when pre-configured
conditions are met. MDS4 services acquire their
information through an extensible interface that can be
used to query WSRF services for resource property
information, execute a program to acquire data, or
interface with third-party monitoring systems.

Grid computing resources and services can
advertise a large amount of data for many different
purposes. MDS4 was designed to enable access to such
data by multiple people across multiple administrative
domains. As such, it is not an event handling system,
as is NetLogger [GT03], or a cluster monitor in its own
right, as is Ganglia [MCC04], but can interface to
these more detailed monitoring systems (and to
archives).

1

The rest of this paper is as follows. We detail in
Section 2 MDS4 services, infrastructure, data sources,
and interfaces, and in Section 3 describe a typical
deployment. We give preliminary performance results
in Section 4, compare MDS4 with the earlier MDS2
system in Section 5, discuss related work in Section 6,
and conclude in Section 7.

The principal contributions of this paper are as
follows:
• We show by example how monitoring and

discovery capabilities can be integrated into the
design of a distributed computing infrastructure so
that any and every resource and service can be
monitored and discovered in a uniform manner.

• In doing so, we validate the value of primitive
interfaces and behaviors defined by the WSRF and
WS-N specifications as a basis for building such
systems.

• We present performance results that provide
insights into the performance of our MDS4
implementation of a WSRF/WSN-based
monitoring and discovery system, and permit
comparisons with a previous non-WSRF/WSN
based system.

2. MDS4 Details

MDS4 builds heavily on capabilities provided by
the WSRF and WS-N specifications [FCF+05]; indeed,
it can be viewed as an exemplary use case for those
specifications, which define the mechanisms used to
describe information sources, access information via
both queries and subscriptions, and manage
information lifetimes.

The neck of the MDS4 “protocol hourglass” (Figure
1) comprises not only these standard protocols for data
access and delivery but also standard schemas for
information representation, such as the GLUE schema
[GLUE]. Below the neck of the hourglass, MDS4
interfaces to different local information sources,
translating their diverse schemas into appropriate XML
schema transmitted over WSRF/WS-N protocols.
Above the neck of the hourglass, various tools and
applications can take advantage of the uniform Web
services query, subscription, and notification interfaces
to those information sources that MDS4 implements.

 In the rest of this section, we describe the MDS4
implementation. We first review in Section 2.1 the
Web service standards that underpin our approach.
Then, in Section 2.2 we describe the higher-level Index
service, which collects and publishes aggregated
information about Grid resources, and Trigger service,
which collects resource information and performs

GLUE Schema Attributes
(cluster info,
queue info, FS info)

Information Users :
Schedulers, Portals, etc.

Cluster monitors
(Ganglia, Hawkeye,
Clumon, and
Nagios soon)

Services
(GRAM, RFT, RLS)

Queueing systems
(PBS, LSF, Torque)

WS standard
interfaces for
subscription,
registration,
notification

GLUE Schema Attributes
(cluster info,
queue info, FS info)

Information Users :
Schedulers, Portals, etc.

Cluster monitors
(Ganglia, Hawkeye,
Clumon, and
Nagios soon)

Cluster monitors
(Ganglia, Hawkeye,
Clumon, and
Nagios soon)

Services
(GRAM, RFT, RLS)

Services
(GRAM, RFT, RLS)

Queueing systems
(PBS, LSF, Torque)
Queueing systems
(PBS, LSF, Torque)

WS standard
interfaces for
subscription,
registration,
notification

Figure 1: MDS4 provides a protocol hourglass.

actions when certain conditions are met. These
services are built upon a common infrastructure called
the Aggregation Framework, described in Section 2.3,
which provides common interfaces and mechanisms
for working with data sources. MDS4 also includes
several software components, called Information
Providers, described in Section 2.4, that are used to
collect information, and a web-based user interface
called WebMDS, described in Section 2.5. We describe
a typical MDS4 deployment in Section 3.

2.1 Web Services Standards Used By MDS4

Different use cases can motivate a need for a wide

variety of information about Grid resources and
services. Our experience with MDS2 [CFF+01], in
which information was collected and delivered by a
separate set of services, emphasized the advantages of
incorporating standardized interfaces and monitoring
functionality into every service, so that monitoring and
discovery data becomes ubiquitously available. Indeed,
this experience was a major motivator for the Web
services standards [FCF+05] on which we build here.
These standards define interfaces for specifying and
interacting with data about services. In particular:

• WS-ResourceProperties defines a mechanism by

which Web services can describe and publish
resource properties, or sets of information about a
resource. Resource property types are defined in
the service’s WSDL, and resource properties can
be retrieved, in the form of XML documents,
using WS-ResourceProperties query operations.

• WS-BaseNotification defines a
subscription/notification interface for accessing
resource property information.

2

• WS-ServiceGroup defines a mechanism for
grouping related resources and/or services
together as service groups.

The MDS4 Index and Trigger services make
extensive use of these standards and the mechanisms
defined by them. Both use service groups as part of
their administrative interface to keep track of what
information they are to collect, and the primary client
interfaces to the Index are resource property queries
and subscription/notification.

2.2 MDS4 Services

An MDS Index service collects information about

Grid resources and makes this information available as
resource properties. It differs from a UDDI registry
[UDDI] primarily in the facts that it stores not only the
location from which a piece of data is available, but
also a cached version of the data—and maintains that
cached copy current via lifetime management
mechanisms.

An Index service instance (also called an Index)
provides access to information via the operations
defined in WS-ResourceProperties and WS-
BaseNotification. The primary resource property
advertised by the Index Service is a Service Group
whose entries correspond to the data aggregated by this
service. A user adds data to the Index by creating a
service group entry to this Service Group with
metadata describing how (and how often) the Index
Service should acquire that data. The Index then
updates this service group entry to include both the
actual data and the metadata. Data added to an Index
can be in any (XML) format. We provide more
information about the use of Service Groups within
MDS and the mechanisms used to collect data in
Section 2.3.

A Grid will typically operate multiple Indexes that
maintain different data for different purposes. Each
GT4 container has a default Index that records
resources created within the container. In addition,
sites and VOs may maintain one or more Indexes to
record available containers, resources, and services. In
general, Index services can be arranged in hierarchies,
but there is no single global Index that provides
information about every resource on the Grid. This
structure is deliberate, as each VO will have different
policies on who can access its resources. No person is
part of every VO.

In the most common use case, an Index republishes
data that was originally made available by some other
service. However, the current Index implementation
does not collect and enforce these remote servers’

access control policies. To guard against the risk that
an Index will allow broader access than the original
publisher of the data intended, we recommend that the
Index be run in one of two modes: a public index, in
which all Index data is collected through anonymous
queries and access is granted to everyone, or a
personal index, in which all index data is collected
using credentials delegated by an individual and access
is restricted to that same individual.

The Trigger service collects information and
compares that data against a set of conditions defined
in a configuration file. When a condition is met, an
action takes place, such as emailing a system
administrator when the disk space on a server reaches
a threshold. This functionality, inspired by a similar
capacity in Hawkeye [HAW], has proven useful in
trouble shooting for projects such as the Earth System
Grid (ESG) [BBB+05].

2.3 Aggregator Framework Implementation

The Index and Trigger service implementations are

both specializations of a more general aggregator
framework, a software framework for building services
that collect and aggregate data. This framework can be
used to construct other services: for example, it should
be straightforward to implement a variant of the Index
service that makes data available in Condor ClassAds
format.

Figure 2: Information flow through the aggregator
framework.

Services built on this framework are sometimes

called aggregator services. Such services have five
properties in common.

They collect information via aggregator sources.
An aggregator source is a Java class that implements

3

an interface (defined as part of the aggregator
framework) to collect XML-formatted data. MDS4
supports three types of aggregator source (see Figure
2). A Query source uses WS-ResourceProperties
mechanisms to poll a WSRF service for resource
property information. A Subscription source collects
data from a service via WS-Notification
subscription/notification. Finally, an Execution source
executes an administrator-supplied program to collect
information, which is returned as an XML document.

Aggregator services use a common configuration
mechanism to maintain information about aggregator
sources and parameters specifying what data to get,
and from where. The aggregator framework WSDL
defines an aggregating WS-ServiceGroup entry type
that holds both configuration information and data.
Administrative client programs use standard WS-
ServiceGroup registration mechanisms to register these
service group entries to the Aggregator.

Soft consistency model: published information is
renewed at a administrator-controllable frequency.
Thus, load caused by information updates can be
reduced at the expense of having slightly older
information. This delay is not a problem in practice,

for example, it is generally acceptable to know the
amount of free disk space on a system 5 minutes ago
rather than 2 seconds ago.

Aggregator services are self-cleaning. Each
registration has a lifetime, and if a registration expires
without being refreshed, it and its associated data are
removed from the server. Thus, outdated entries are
removed automatically when they cease to renew their
registrations.

The presence of a resource in an aggregator
service makes no guarantee about the availability of
the resource for users of that aggregator service. An
aggregator service such as the Index or Trigger
provides an indication that certain resources are likely
to be useful, but the ultimate decision about whether
the resources can be used is left to direct negotiation
between user and resource. A user who has decided to
access a particular service based on MDS4 information
might still find they are not authorized when they
submit a request. This strategy has two advantages:
MDS4 need not keep track of policy information
(something that is hard to do concisely) and resources
need not publish policies.

Table 1: Currently available information providers for MDS4.

Name Info source Source Type Information Provided
Hawkeye Condor pool Execution Basic host data (name, ID), processor

information, memory size, OS name and version,
file system data, processor load data, and other
basic Condor host data.

Ganglia Cluster Execution Basic host data (name, ID), memory size, OS
name and version, file system data, processor
load data, and other basic cluster data.

Nagios Cluster Execution Same as Ganglia
CluMon Cluster Execution Same as Ganglia
GRAM GT4 grid resource

allocation and
management service

Query,
Subscription

Processor information, memory size, queue
information, number of CPUs available and free,
job count information, and some memory
statistics

RFT GT4 reliable file
transfer service

Query,
Subscription

RFT service status data, number of active
transfers, transfer status, information about the
resource running the service

CAS GT4 community
authorization service

Query,
Subscription

Identifies the VO served by the service instance

RLS GT4 replica location
service

Execution Location of replicas on physical storage systems
(based on user registrations) for later queries

Basic Every GT4 Web
service

Query,
Subscription

ServiceMetaDataInfo element includes start time,
version, and service type name

TeraGrid Configuration file Execution TeraGrid-specific cluster data

4

2.4 Information Providers

The data that an MDS4 aggregator source publishes

into an aggregator service is obtained from an external
component called an information provider. In the case
of a Query or Subscription source, the information
provider is a WSRF-compliant service from which
data is obtained via WS-ResourceProperty or WS-
Notification mechanisms, respectively. In the case of
an Execution source, the information provider is an
executable program that obtains data via some domain-
specific mechanism. Table 1 lists the currently
available information providers for MDS4.

2.5 User Interfaces

An advantage of using a standard, widely-adopted
data format such as XML is that one can then use
various commodity tools to manipulate data. For

example, we have developed a tool called WebMDS
that uses standard resource property requests to query
resource property data and XSLT transforms [XSLT]
to format and display them. In this way, we obtain
user-friendly front-end to Index data. Web site
administrators can customize their own WebMDS
deployments by using HTML form options and
creating their own XSLT transforms. Index data can
also be retrieved in its raw XML format via WebMDS
and viewed using a web browser’s native XML
formatting capabilities, or saved in a file and viewed
using any commodity XML viewer. Figure 3 shows a
sample general WebMDS page, and Figure 4 shows
the TeraGrid adaptation we have deployed.

In addition, GT4 command-line clients (wsrf-query,
wsrf-get-property, wsrf-get-properties) and
corresponding Java, C, and Python API implement
resource property query operations that can be used to
query an Index directly, when required.

Figure 3: Sample WebMDS page from

http://mds.globus.org:8080/webmds/webmds?info=indexinfo&xsl=servicegroupxsl.

5

Figure 4: WebMDS for TeraGrid deployment.

3. Putting it All Together

We describe a typical MDS4 deployment: a multi-
project VO spanning 30 sites (three representative sites
are shown in Figure 3) and including a wide set of
collaborating applications. The components are
heterogeneous in nature, and deploy a varied set of
software and services. The MDS4 online
documentation provides details on how to configure
the various components of such a deployment.

Working from the local level up, each clustered
resource in this deployment has deployed Ganglia (on
common queued clusters) or Hawkeye (on Condor
pools) for host-level monitoring and to allow MDS
access to scheduler and cluster information. In Figure
3, Site 1 has two clusters, each with a Ganglia
deployment, and Site 2 is running Condor and
Hawkeye tool. The different schedulers run on the two
clusters at Site 1 (PBS and LSF, respectively), are
easily handled in our MDS deployment.

Each site also runs additional services. Site 1 in
Figure 3 runs a Reliable File Transfer (RFT) server
and Site 3 a Replica Location Service (RLS). In
addition, each site has deployed a site-wide Index (e.g.,
the Index for Site 1 is labeled “A” in Figure 3). Each
such Index contains all services and resources at the
site, and thus allow the site to track its local resources,
including those provided by Ganglia or Hawkeye.

Application B in Figure 3 also operates an
application-specific Index (“B”) that contains
registrations for the application-specific services at the
different sites: i.e., the RFT service at Site 1 and the
RLS service at Site 3. This Index makes it easy for
users of those applications to see track such
application-specific resources and services.

Figure 3 also shows that this VO has decided on a
three-level tier for the VO-wide indexes. The first tier
is at the site level, as described. The second tier is an
East Coast-West Coast division, whereby Sites 2 and 3
share a combined West Coast Index running at Site 2
(labeled C in Figure 3). Site 2 also maintains the VO-
wide server running on a resource at Site 2 (labeled D

6

in Figure 3) to which the other sites’ Index services
have also registered. This structure allows any VO
participant to view all VO resources. In general, such
hierarchical structures can be arbitrarily deep—indeed,
they may not be organized hierarchical.

The VO has deployed WebMDS as well (“E” in
Figure 3) so that all VO users can view the current
state of VO resources and services. In addition, a
Trigger service (“F”) is deployed to alert interested
parties about changes in VO status. The VO operations
center uses this Trigger for automatic notification of
service failures.

This deployment provides VO members with a rich
collection of data that they can use in a variety of

ways. For example, they can make job submission or
replica selection decisions by querying the VO-wide
Index; evaluate the status of Grid services by looking
at the VO-wide WebMDS setup; and/or be notified
when disks are full or other error conditions happen by
being on the list of administrators via the configured
Trigger service. Individual projects can examine just
the state of the resources and services of interest to
them, as Application B is doing. Furthermore, these
sophisticated capabilities are provided quite easily, via
the appropriate configuration of mechanisms and
interfaces built in to every GT4 container and service.

WebMDS

Site 3

App B
Index
App B
Index

Site 3
Index
Site 3
Index

Rsc 3.a

RLS

I

Rsc 3.b

RLS

II

Rsc 3.b

Site 1

West Coast
Index

West Coast
Index

Trigger
Service

Rsc 2.a

HawkeyeHawkeye

Rsc 2.b

GRAMGRAMII

Site 2
Index
Site 2
Index
Site 2
Index

Ganglia/LSF

Rsc 1.c

GRAM
(LSF)I

Ganglia/LSFGanglia/LSF

Rsc 1.c

GRAM
(LSF)
GRAM
(LSF)II

Rsc 1.a

Ganglia/PBS

Rsc 1.b

GRAM
(PBS)I

Ganglia/PBSGanglia/PBS

Rsc 1.b

GRAM
(PBS)
GRAM
(PBS)II

Site 1
Index
Site 1
Index
Site 1
Index

RFTRFT

Rsc 1.d

II

AA

BB

CC

DD

EE

VO Index

FF

Trigger action

Figure 5: Sample MDS4 deployment. Yellow (light grey) boxes are containers, orange (dark grey) are

services, ovals are Indexes, white boxes with a small outline are resources, and white boxes with a thick line
are sites. The dashed lines are registrations.

7

4. MDS4 Performance Results

We performed experiments to measure MDS4
query response time, throughput, and stability, and to
compare MDS4 performance with that of MDS2. This
included the response time and throughput, stability,
and capacity of the Index service.

4.1 Index Performance

We first quantify MDS4 response time, or time to
serve a query request, and throughput, or aggregate
number of queries per minute. We find that query
performance is tied to the size of the index being
queried, the number of other concurrent requests, and
the size of a query. Our experiments investigate this
performance space.

4.1.1 Experimental Methodology

We ran our experiments on a portion of the
University of Chicago TeraGrid machine, with 20
dedicated IA32 nodes used to run the client workload
and one dedicated IA32 node used for the Index. Each
node had dual 2.4GHz Xeon processors, 4GB RAM,
and SuSE v8.1. The 21 nodes were all connected via
1Gb/s Ethernet network.

The Index was populated with sample entries
consisting of the standard pieces of information
required for a ServiceGroupEntry (i.e.,
ServiceGroupEntryEPR, MemberServiceEPR,
Aggregator configuration information), as well as a
small amount of data. The size of each sample entry
was approximately 1.9KB.

We performed experiments with Indexes containing
1, 10, 25, 50, 100, 250, and 500 entries. To compare
these sizes to current practice, we can look at the
number of XML elements in the Index. In our current
TeraGrid deployment, we collect 17 attributes from
each of 10 queues at SDSC and NCSA, host data
consisting of 3 attributes for approximately 900 nodes,
and 12 attributes for sub-cluster data for 7 subclusters,
giving us approximately 3,000 attributes, roughly 1900
XML elements, at a total size of 192KB. Each XML
entry is roughly comparable to several attributes
because of the overhead of the ServiceGroup
registration elements for each entry, along with the
actual data. To compare that to the tests run here, an
Index populated with 50 sample entries has an element
count of 1113 and is approximately 94KB in size.
Thus, we conclude that the entry sizes used for these
experiments are similar to what is being used in current

deployments from the perspective of data size and
element counts.

We ran our experiments for in-cache data in the
Indexes only. Current Grid deployments seem to renew
data on 1, 6, or even 24 hour cycles [GITS, SOE+04],
so cache misses are likely to be rare in those
configurations.

We ran experiments using DiPerf [DRR+04] for
approximately 10 minute each. In the first two minutes
we started the concurrent clients and in the remaining
eight minutes we collected performance data. Each
data point is the average behavior over the eight
minutes. For throughput the error bars show the 95%
variance for each client for each minute. For response
time, the error bars are the standard deviation of all the
measurements. We ran experiments with 1, 4, 8, 16,
32, 64, 128, 256, 384, 512, 640, 768, and 800
concurrent clients. The limit of 800 clients was due to
a maximum of 1024 open file descriptors allowed on
our test-bed machine. Sites with root permissions can
adjust this parameter.

Each query retrieved all data in the Index. We did
this because we wanted to reflect the performance of
the MDS infrastructure not the performance of
Xquery’s searches. Each client only opens and closes
its connection to the server once over the course of an
experiment.

We compare our performance to that of the MDS2
[CFF+01] Index service. MDS2 is an LDAP-based
monitoring system that is part of the pre-WS Globus
Toolkit v 2.4.3. A more detailed description is given in
Section 5. We used a 100-entry Index, which was
approximately 11.4KB in size. The queries were for
the full Index contents.

4.1.2 Results

Figure 6 shows both MDS4 throughput for the set
of index sizes and MDS2 for 100 entries. MDS4
performance is consistent and robust, as seen by the
flat throughput achieved once the service is saturated,
regardless of the number of concurrent clients. MDS2
on a small index outperforms MDS4, likely because of
its C implementation and smaller OpenLDAP
messages. (MDS4 is implemented in Java, and uses
SOAP over HTTP and XML.) However MDS2 shows
a much higher variance, especially for small numbers
of clients. MDS2 and MDS4 differences are discussed
in greater detail in Section 5.

Figure 7 shows response times, which for MDS4
are also stable and consistent once the service is
saturated. MDS2 outperforms MDS4, but has a higher
variance, especially for small numbers of clients.

8

1

10

100

1,000

10,000

100,000

0 100 200 300 400 500 600 700 800
Concurent Load (# of clients)

Th
ro

ug
hp

ut
 (q

ue
rie

s
/ m

in
)

Index Size = 1
Index Size = 100 (MDS2)
Index Size = 10
Index Size = 25
Index Size = 50
Index Size = 100
Index Size = 250
Index Size = 500

Figure 6: MDS4 Index service throughput performance. Larger values are better.

1

10

100

1,000

10,000

100,000

1,000,000

0 100 200 300 400 500 600 700 800
Concurent Load (# of clients)

R
es

po
ns

e
Ti

m
e

(m
s)

Index Size = 500
Index Size = 250
Index Size = 100
Index Size = 50
Index Size = 25
Index Size = 10
Index Size = 100 (MDS2)
Index Size = 1

Figure 7: MDS4 Index service response time performance. Smaller values are better.

9

4.2 Index Service Stability

To test service stability, we ran long-running
experiments against Indexes of different sizes on a
cluster of dual-processor Intel PIII 1133MHz
computers, each with 1.5GB of RAM and connected
on the same physical switch via Gigabit Ethernet. The
Indexes were populated as in the previous experiment.
In each case, multiple clients repeatedly queries the
Index, which is running on a separate machine.
Stability is excellent.

Table 2: Index service stability results.

Vers. Index

Size

Time
up

(Days)

Queries

Processed

Query

Per

Sec.

Round
-trip

Time
(ms)

4.0.1 25 66+ 81,701,925 14 69

4.0.1 50 66+ 49,306,104 8 115

4.0.1 100 33 14,686,638 5 194

4.0.0 1 14 93,890,248 76 13

4.0.0 1 96 623,395,877 74 13

4.3 Index Service Maximum Size

The MDS4 Index is currently maintained in
memory, and thus the maximum Index size is limited
by the Java heap size. To evaluate the practical
applications of this approach, we measured the
maximum number of sample entries that could be
stored for different heap sizes, Table 3 shows that the
number of entries scales linearly with available
memory. The maximum heap size on a most machines
is approximately 2GB due to address space limitations.
We are currently examining out-of-memory
approaches for larger indexes.

Table 3: Container heap size currently dictates the
number of entries in an MDS4 Index service.

Heap
Size

(MB)

Approx.
Max.

Index Entries

Index
Size

(MB)
64 600 1.0

128 1275 2.2
256 2650 4.5
512 5400 9.1

1024 10800 17.7

1536 16200 26.18
5. MDS4 vs MDS2: Other Factors

MDS2 was one of the first cross-administrative
domain grid monitoring systems, It was designed “to
support initial discovery and ongoing monitoring of
the existence and characteristics of resources, services,
computations, and other entities” [CFF+01]. It defined
the basic architecture for grid monitoring that we are
still using today – a set of distributed information
providers that communicate with a set of higher level
services that collect, manage, index and respond to the
data, with caching and soft-state registrations.

While MDS4 and MDS2 have a similar
architecture, they differ significantly in their
implementations. MDS2 is primarily a set of C-coded
LDAP backend modules to the University of
Michigan’s OpenLDAP server. Published information
is modeled in the LDIF format, and information
providers are mostly shell scripts. While the tight
integration with the OpenLDAP server provided
certain advantages, in particular fast client query
response times, the MDS2 index’s caching ability was
hampered by the lack of a persistent query mechanism
and cache stability issues in large deployments.

In contrast, the MDS4 code is written in Java and
runs on top of the SOAP-over-HTTP protocol stack
used by the GT4 Java WSRF core, which allows
MDS4 to be closely integrated with core GT4
functionality. Unlike MDS2, MDS4 is designed as an
integral part of GT4 that leverages many of its features
including the communication protocols, shared code-
base, and WSRF-compatibility. In contrast, MDS2
system was a separate component with a more loosely-
coupled integration to the rest of the toolkit.

WSRF compliance provides MDS4 with standard,
well-defined interfaces. The MDS4 Index can, without
any modification, aggregate any data advertised as
resource properties by any service that supports any of
the query or subscription/notification operations
defined in the WS-ResourceProperties specification,
and any client application that supports the operations
described in that standard can query or receive
notifications from the MDS4 Index.

While the MDS2 protocols specified the use of
LDAP as a query language, the MDS4 standards allow
for the use of multiple query languages, with the name
of the query language specified as part of the query
request. Our current implementation supports only
XPath; however, the GT4 code base includes a plug-in
interface to support additional query languages.

MDS4 also benefits from added extensibility when
working with information providers. User-

10

customizable API and code mechanisms are provided
to make the task of data ingestion more flexible. The
Aggregator mechanism provides a facility through
which XML data can be ingested from a variety of
sources (including WSRF services, non-WSRF
services, and/or external programs or program
interfaces), and subsequently published as a single
aggregate resource property using the WS-
ServiceGroup paradigm. In addition to the Aggregator
component, MDS4 also provides a similar facility for
working with WS-Resource Properties, whereby data
can be collected from the same variety of potential
information sources as the Aggregator, but is published
as individual WS-Resource Properties rather than
Service Group entries.

In MDS2, the learning curve for writing
information providers was steep and often involved
more than simple working knowledge of the LDIF data
format, which could include such activities as
registering LDIF OID namespaces with a naming
authority and other complex information modeling
tasks in order for compliance with the LDIF data
format. The XML-based information model for data in
MDS4 is generally considered to be more flexible and
user-friendly than LDIF, and the process of writing
and/or integrating information providers into the
system is easier and less time-consuming. In fact, for
WSRF-compliant services, no special information
provider is required; if the service advertises resource
properties, the MDS4 services can aggregate those
properties without using specialized providers.
Common registration tasks are simplified, allowing for
easier construction of VOs. Furthermore, the addition
of the Trigger service allows for more sophisticated
monitoring configurations to be constructed, which in
MDS2 were not possible without extensive
customizations to the existing code.

MDS4 is also more reliable than MDS2. The MDS4
Index is able to sustain a heavy load for months
without significant impact on server performance. In
contrast, MDS2 servers experienced significant load
and memory usage problems when run for prolonged
periods without restarting. This difference is apparent
in the high MDS2 variance numbers, which we
attribute in part to concurrency issues that result in not
all homogenous clients receiving equal share of
resources. Thus, the time to answer a query can vary
by orders of magnitude across different clients.

6. Related Work

The MDS4 approach is not dissimilar to others used
in the field. Its primary advantage is the use of

standard interfaces, the flexibility of the information
provider infrastructure, the robust high-level services,
and notification of failures. It can, and does, interact
with many other tools in order to provide a standard
interface to a wide variety of data.

The most closely related project is Inca [SOE+04],
which is primarily used for software stack validation
and site certification. A central manager controls a set
of information providers (called reporters) that are run
at regular intervals, collecting data in an archive
(called the depot). It is currently deployed on TeraGrid
[TG], GEON [GEON], NGS [NGS], and DEISA
[DEI]. Inca does not gather cluster or queuing data for
resource selection data at this time.

R-GMA [CGM+03] is the other widely-deployed
monitoring framework, primarily because of its strong
ties to the EGEE project [EGEE]. R-GMA makes all
data that is publishes appear as if it were all resident in
a single, large, relational database. However, because
it does not use caching, it has had significant
performance problems [ZFS05].

There are many other tools that look at part of the
Grid monitoring and discovery space, these include
Nagios [NAG], Ganglia [MCC04], and MonaLisa
[Legrand03].

Similarly, there is a large body of work on resource
discovery in large-scale distributed systems, for
example pragmatic systems such as SWORD
[OAP+04], CAN [RFH+01] , CHORD [SMK+01] ,
PASTRY [RD01] and TAPESTRY [ZKJ01], and more
theoretical work, such as [HLL99].

Performance studies of Grid monitoring systems
include work on previous MDS versions. Smith et al.
[SWM+00] investigated MDS2 performance by
focusing on the effect of different versions of backend
LDAP and data distribution strategies. Aloisio et al.
[ACE+01] studied the capabilities and limitations of
MDS2 as well as the security effect on the
performance although their experiments were limited
to simple tests on the MDS2 Index (GIIS) only.

Keung et al. [KDJ+03, KDJ+03b] analyzed MDS2
performance with different back-end implementations
by varying information-gathering methods. This work
compliments our studies [ZS04] in which we examined
MDS2 behavior at a fine granularity by using
NetLogger technologies to instrument the server and
client codes, but did not compare this behavior to any
other system. Zhang et al. have examined the
performance of MDS2, R-GMA, and Hawkeye
[ZFS03, ZFS05].

Plale et al. [PJJ+04, PJL+03] benchmarked a
synthetic workload (queries and updates) against a non
realistic Grid information service implemented with
three different database platforms: relational

11

(MySQL), native XML (Xindice), and LDAP. In other
work, Plale et al. [PDvL02] discussed the pros and
cons of building a Grid Information service on a
hierarchical representation and a relational
representation; however, their approach was theoretical
not experimental.

7. Conclusions

We have described how monitoring and discovery

capabilities can be integrated into the design of a
distributed computing infrastructure so that any and
every resource and service can be monitored and
discovered in a uniform manner. Using Web service
standards that define the primitive interfaces and
behaviors, we have built the basis of a monitoring
system for Grid use. Our initial performance results
indicate that the basic performance is acceptable,
although further work is needed to understand
performance bottlenecks of the system.

Acknowledgments

We appreciate the help of Xuehai Zhang for

assistance with the experiments. This work was
supported in part by the Mathematical, Information,
and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of
Energy, under contract W-31-109-Eng-38. Additional
support was provided by NSF NMI Award SCI-
0438372.

References

[ACE+01] G. Aloisio, M. Cafaro, I. Epicoco, and S.
Fiore, “Analysis of the globus toolkit grid information
service”, GridLab technical report GridLab-10-D.1-
0001-GIS_Analysis, 2001.

[BBB+05] D. Bernholdt, S. Bharathi, D. Brown, K.
Chanchio, M. Chen, A. Chervenak, L. Cinquini, B.
Drach, I. Foster, P. Fox, J. Garcia, C. Kesselman, R.
Markel, D. Middleton, V. Nefedova, L. Pouchard, A.
Shoshani, A. Sim, G. Strand, and D. Williams, “The
Earth System Grid: Supporting the Next Generation of
Climate Modeling Research”, Proceedings of the
IEEE, 93 (3), p 485-495, 2005.

[CFF+01] K. Czajkowski, S. Fitzgerald, I. Foster, and
C. Kesselman, “Grid Information Services for
Distributed Resource Sharing“, Proceedings of the10th

IEEE International Symposium on High Performance
Distributed Computing, p 181-184, 2001.

[CGM+03] A. Cooke, A.Gray, L. Ma, W. Nutt, J.
Magowan, P. Taylor, R. Byrom, L. Field, S. Hicks, and
J. Leake, “R-GMA: An Information Integration
System for Grid Monitoring”, Proceedings of the 11th
International Conference on Cooperative Information
Systems, 2003.

[DEI] DEISA: The Distributed European
Infrastructure for Supercomputing Applications,
http://www.deisa.org/ .

[DRR+04] C. Dumitrescu, I. Raicu, M. Ripeanu, and I.
Foster, “DiPerF: Automated DIstributed PERformance
Testing Framework”, Proceedings of the 5th
International Workshop in Grid Computing, 2004.

[EGEE] Enabling Grids for eScience Project,
http://public.eu-egee.org/ .

[Foster05] I. Foster, “A Globus Toolkit Primer”,
www.globus.org/primer, 2005.

[FCF+05] I. Foster, K. Czajkowski, D. Ferguson, J.
Frey, S. Graham, T. Maguire, D. Snelling, and S.
Tuecke, “Modeling and Managing State in Distributed
Systems: The Role of OGSI and WSRF”, Proceedings
of the IEEE, 93 (3). 604-612. 2005.

[GEON] GEON: Cyberinfrastructure of the
Geosciences, http://www.geongrid.org/ .

[GITS] Grid Integration test Service (GITS),
http://www.ngs.rl.ac.uk/sites/common/docs/gits14.html .

[GLUE] Glue Schema Specification,
www.hicb.org/glue/glue-schema/schema.html .

[GT03] D. Gunter and B. Tierney, “NetLogger: A
Toolkit for Distributed System Performance Tuning
and Debugging,” Proceedings of Integrated Network
Management 2003, 2003.

[Haw] Hawkeye,
http://www.cs.wisc.edu/condor/hawkeye.

[HLL99] Mor Harchol-Balter, Tom Leighton, Daniel
Lewin, “Resource Discovery in Distributed
Networks”, Proceedings of the 18th Annual ACM-
SIGACT/SIGOPS Symposium on Principles of
Distributed Computing, pp. 229-238, May 1999.

12

http://www.deisa.org/
http://public.eu-egee.org/
http://www.geongrid.org/
http://www.ngs.rl.ac.uk/sites/common/docs/gits14.html
http://www.hicb.org/glue/glue-schema/schema.html
http://www.cs.wisc.edu/condor/hawkeye

 [KDJ+03] H. N. Lim Choi Keung, J. R. D. Dyson, S.
A. Jarvis, and G. R. Nudd, “Performance evaluation of
a grid resource monitoring and discovery service”,
IEEE Proceedings: Software, vol. 150, pp. 243-251,
2003.

[KDJ+03b] H. N. Lim Choi Keung, J. R. D. Dyson, S.
A. Jarvis, and G. R. Nudd, “Predicting the
Performance of Globus Monitoring and Discovery
Service (MDS-2) Queries”, 4th International
Workshop on Grid Computing, 2003.

[Legrand03] Iosif Legrand, “MonaLisa: MONitoring
Agents using a Large Integrated Architecture”, talk
available from http://chep03.ucsd.edu/files/103.pdf .

[MCC04] Massie, M.L., Chun, B.N. and Culler, D.E,
“The Ganglia Distributed Monitoring System: Design,
Implementation, and Experience”, Parallel Computing,
30 (7), 2004.

[NAG] Nagios, http://www.nagios.org/ .

[NGS] The UK National Grid Service,
http://www.ngs.ac.uk/ .

[OAP+04] D. Oppenheimer, J. Albrecht, D. Patterson,
and A. Vahdat, “Distributed resource discovery on
PlanetLab with SWORD”, 1st Workshop on Real,
Large Distributed Systems, 2004.

[PDvL02] B. Plale, P. Dinda, and G. v. Laszewski,
“Key concepts and services of a grid information
service,” Proceedings of the 15th International
Conference on Parallel and Distributed Computing
Systmes (PDCS), 2002.

[PJJ+04] B. Plale, C. Jacobs, S. Jensen, Y. Liu, C.
Moad, R. Parab, and P. Vaidya, “Understanding Grid
Resource Information Management through a
Synthetic Database Benchmark/Workload”,
Proceedings of the 4th IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid2004), 2004.

[PJL+03] B. Plale, C. Jacobs, Y. Liu, C. Moad, R.
Parab, and P. Vaidya, “Benchmark Details of Synthetic
Database Benchmark/Workload for Grid Resource
Information”, Indiana University Computer Science
Technical Report TR-583 Technical Report TR-583,
August 2003 2003.

[RD01] A. Rowstron and P. Druschel, “Pastry: Scalable,
Decentralized Object Location, and Routing for Large-

Scale Peer-to-Peer Systems”, in Proceedings of
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 2001, p. 329–350.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R.
Karp, and S. Shenker. “A Scalable Content
Addressable Network”, in Proceedings of ACM
SIGCOMM 2001, 2001.

[SMK+01] I. Stoica, R. Morris, D. Karger, F.
Kaashoek, and H. Balakrishnan, “Chord: A Scalable
Peer-To-Peer Lookup Service for Internet
Applications”, in Proceedings of the 2001 ACM
SIGCOMM Conference, 2001, p. 149–160.

[SOE+04] Shava Smallen, Catherine Olschanowsky,
Kate Ericson, Pete Beckman, and Jennifer Schopf,
“The Inca Test Harness and Reporting Framework”,
Proceedings of SuperComputing '04, November 2004.
Also available as SDSC Technical Report #SDSC-TR-
2004-3, http://www.sdsc.edu/TR/SDSC-TR-2004-3-
IncaTest.pdf.

[SWM+00] W. Smith, A. Waheed, D. Meyers, and J.
Yan, “An evaluation of alternative designs for a grid
information service”, Proceedings of the 9th IEEE
International Symposium on High Performance
Distributed Computing (HPDC-9), 2000.

[TG] TeraGrid, www.teragrid.org .

[UDDI] UDDI Standard, http://www.uddi.org .

[XPATH] XML Path Language (XPath) Version 1.0,
Nov. 1999, http://www.w3.org/TR/xpath .

[XSLT] XSL Transformations (XSLT) Version 1.0,
Nov. 1999, http://www.w3.org/TR/xslt .

[ZFS03] X. Zhang, J. Freschl, and J. M. Schopf, “A
performance study of monitoring and information
services for distributed systems,” Proceedings of the
12th IEEE International Symposium on High
Performance Distributed Computing (HPDC-12),
2003.

[ZFS05] Xuehai Zhang, Jeffrey L. Freschl, and
Jennifer M. Schopf, “A Scalability Analysis of Three
Monitoring and Information Systems: MDS2, R-GMA,
and Hawkeye”, ANL Tech Report, available from
www.mcs.anl.gov/~jms/jmspubs.html, 2005.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph, “Tapestry: An Infrastructure for Fault-tolerant

13

http://chep03.ucsd.edu/files/103.pdf
http://www.nagios.org/
http://www.ngs.ac.uk/
http://www.teragrid.org/
http://www.uddi.org/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

Wide-area Location and Routing”, Technical report,
UC Berkeley, April 2001, no UCB/CSD-01-1141.
[ZS04] X. Zhang and J. M. Schopf, “Performance
Analysis of the Globus Toolkit Monitoring and

Discovery Service, MDS2”, Proceedings of IEEE
IPCCC International Workshop on Middleware
Performance (IWMP 2004), 2004.

14

	1. Overview
	2. MDS4 Details
	2.1 Web Services Standards Used By MDS4
	2.2 MDS4 Services
	2.3 Aggregator Framework Implementation
	2.4 Information Providers
	2.5 User Interfaces

	3. Putting it All Together
	4. MDS4 Performance Results
	4.1 Index Performance
	4.1.1 Experimental Methodology
	4.1.2 Results

	4.2 Index Service Stability
	4.3 Index Service Maximum Size

	5. MDS4 vs MDS2: Other Factors
	6. Related Work
	7. Conclusions
	Acknowledgments
	References

