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Abstract 

DI-GRUBER is a distributed Grid brokering 
service, with multiple decision points. Previously, the 
membership relationship among the decision points 
was statically defined. This limited the deployment in 
a dynamic environment where VOs appear and vanish 
frequently. Here we report on the DI-GRUBER 
enhancements with support for WS-MDS Index 
Service that allow the scheduling infrastructure to 
operate in VO-centric more dynamic environments. 
The underlying mechanisms provide each decision 
point the necessary information regarding the location 
of other decision points.  

One interesting difference in this approach is that 
each decision point can have only a partial view of the 
brokering infrastructure, and hence the brokers’  
performance suffers to some degree. We also measure 
the trade off between the degree of connectivity in the 
mesh network, and the performance of the brokering 
infrastructure, and compare with previous results on 
the correlation between scheduling accuracy and the 
amount of partial knowledge.  

1. Introduction  

The motivating scenarios for our work are large 
grid environments in which virtual organizations 
(VOs) appear and vanish in a dynamic manner. Such 
VOs might be companies requiring outsourcing 
services, or scientific laboratories that want to 
participate temporarily in different collaborations with 
access to other resources.  

Thus, we distinguish between two types of entities 
participating in these scenarios: providers and 
consumers. They may be nested: a provider may 
function as a middleman, providing access to 
resources to which the provider has itself been granted 
access by some other provider. While sharing policies 
issues can arise at multiple levels in such scenarios, 
the dynamicity of such an environment is also a 
problem. Providers want to express (and enforce) 
various usage service level agreements (uSLAs) under 
which resources are made available to consumers. 
Consumers want to access and interpret uSLA 
statements published by providers, in order to monitor 
their agreements and guide their activities. Both 

providers and consumers want to verify that uSLAs 
are applied correctly.  

We extend here our work about constructing a 
scalable and dynamic resource management service 
that supports uSLA expression, publication, discovery, 
interpretation, enforcement, and verification in grid 
environments. This problem encompasses challenging 
and interrelated scheduling, information 
synchronization, and scalability issues. We build on 
much previous work concerning the specification and 
enforcement of local resource scheduling policies [1, 
2] the GRUBER broker [3], and the DI-GRUBER 
variation [4]. GRUBER addresses issues regarding 
how uSLAs can be stored, retrieved, and disseminated 
efficiently in a distributed environment, specifically 
grids. DI-GRUBER addresses also issues such as 
managing large grid environments and state 
maintenance among its decision points, which are in 
fact GRUBER instances that inter-communicate. DI-
GRUBER extends GRUBER by introducing support 
for multiple scheduling decision points, and loosely 
synchronizations via periodic information exchange.  

In this paper we present three major enhancements 
to the DI-GRUBER two layer brokering 
infrastructure. The improvements are: WS-MDS 
Index-based infrastructure discovery, support for 
uSLA automated reconciliation and decision point 
overload signaling. We believe that these 
improvements make DI-GRUBER capable working 
not only in large grid environments, but also in 
dynamic and heavily-loaded environments where 
automatic recovery becomes also a problem. Here, we 
prove our belief correct by means of measuring both 
the capability and performance of the extended DI-
GRUBER. We are also interested in gaining insights 
about uSLA reconciliation and dynamic management 
strategies for future work.  

The rest of this article is organized as follows. We 
first provide a more detailed description of the 
problem that we address. Next, we introduce some 
background information about the environment where 
DI-GRUBER is supposed to work. In section 3 we 
detail the enhancements performed on DI-GRUBER 
framework, while in section 4 we measure the 
performance of the new infrastructure and also 
compare with the previous results we achieved by 
using DI-GRUBER. The paper ends with related work 
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and our conclusions about the results and lessons we 
learnt. 

1.1.  Problem Statement  

This work targets grids that may comprise 
hundreds of institutions and thousands of individual 
investigators and various institutions with institutions 
and VOs arising and vanish often [5]. More, each 
individual investigator and institution may participate 
in, and contribute resources to, multiple collaborative 
projects that can vary widely in scale, lifetime, and 
formality. DI-GRUBER focuses on providing a 
brokering infrastructure for such an environment, 
providing also scalable and self-organizing services 
for such communities. Thus, we examine techniques 
for providing reliable support for resource brokering 
by means of DI-GRUBER. For example, an important 
problem mentioned before is how to determine 
dynamically the number of decision points required 
for such large grid scenarios [4].  

1.2.  Dynamic Decision Points Bootstrap 
Considerations 

DI-GRUBER is a distributed Grid brokering 
service, with multiple decision points. Previously, the 
membership relation among the decision points was 
statically defined by means of local configuration 
files. Such proved to be a limitation for deployment in 
dynamic environments where various entities (sites, 
VOs, or groups) may appear and vanish frequently. 
Our approach in solving this problem is the 
introduction of WS-MDS Index registration support 
that allows individual decision points and clients 
discover each other automatically without any human 
intervention. This underlying mechanism provides 
each DI-GRUBER decision point and client the 
necessary information regarding the existence of all 
the other decision points, as well as a generic view of 
the infrastructure and its instantaneous status.  

Thus WS-Index Service becomes the central point 
for joining or leaving the brokering network. One 
problem that we do consider is that the WS-Index 
Service becomes the bottle neck of the infrastructure; 
however our previous experiments proved that cannot 
be the case [6]. Figure 1 present the results of a 
performance measuring experiment performed on 
WS-Index Service in PlanetLab { Chun B., 3, July 
2003 #3617}  with 288 machines all over the world.  
This test was very interesting due to the fact that the 
throughput achieved while all 288 machines were 
concurrently accessing the WS-MDS Index was 
around 200 queries per second on average. Although 
the WS-MDS Index managed to service all the 288 
clients concurrently, its efficiency in terms of 

sustaining a high throughput clearly dropped over 200 
machines in a wide-are network [7]. 

 
WS-MDS Index WAN Tests:
288 machines, no security
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Figure 1: WS-MDS Index WAN Tests with no 

secur ity (288 clients running on 288 physical nodes 
in PlanetLab in a WAN connected via 10 Mb/s 
links); tunable parameters: utilized 288 concurrent 
clients, with each client star ting every 2 seconds; 
left axis – load, response time; r ight axis – 
throughput (GT4)  

1.3.  uSLA Management Issues  

Regarding uSLA management, one problem 
explored in this paper is the how the uSLAs should be 
exchanged in order to maintain a coherent view 
managed environment at each DI-GRUBER decision 
point. Several operations have to be considered, such 
us uSLA propagation, reconciliation and removal. 
These operations may occur whenever new DI-
GRUBER decision points join or leave the brokering 
network, brought up either by a new VO or resource 
provider.  

Another problem faced in practice is the necessity 
for privacy when sensitive computing resources are 
shared. In certain cases, some consumers (either users 
or VOs) can require various levels of privacies about 
their resources or work to be executed (job types and 
priorities, data movement and characteristics). Thus, 
the maintenance of a private DI-GRUBER decision 
point could be a necessity in such situations. This 
issue can be encountered from the VO level on down 
to individual users. The problem becomes even more 
sensible when dealing with commercial entities. The 
enhanced DI-GRUBER addresses this problem by 
providing the option for each decision point to either 
publish its local information or not to other decision 
points in the network. As a future refinement, such a 
private decision point can be enhanced to publish its 
local database only to a subset of peers that meet 
certain requirements.  



 

2. Background Information  

We now introduce the main concepts and tools 
used in this paper that are necessary for the 
experiments in this paper or required in a real 
deployment by DI-GRUBER in order to perform its 
functionalities.  

2.1.  DI -GRUBER Decision Point (GRUBER) 

GRUBER [3] is a prototype Grid V-PEP and S-
PEP infrastructure that implements the brokering 
functionalities required for steering workloads in a 
distributed environment based on uSLAs. GRUBER 
was the main component used before [3] for job 
scheduling over a real grid, namely the Grid3 
environment [8]. It is able to perform job scheduling 
based on notions such as VO, group VO, and USLAs 
at various levels. The main four principal components 
are described next and illustrated in Figure 2. 

 

 
Figure 2: GRUBER Architecture 

 
The GRUBER engine is the main component of the 

architecture. It implements various algorithms for 
detecting available resources and maintains a generic 
view of resource utilization in the grid.  

The GRUBER site monitor is a data provider for 
the GRUBER engine. This component is optional and 
can be replaced with various other grid monitoring 
components that provide similar information, such as 
MonaLisa or Grid Catalog.  

A GRUBER client represents a standard GT client 
that allows communication with other GRUBER 
components and the GRUBER engine, such as the 
GRUBER site selectors that we introduce next.  

GRUBER site selectors are tools that communicate 
with the GRUBER engine and provide answers to the 
question: “which is the best site at which I can run this 
job?” . Site selectors can implement various task 
assignment policies, such as round robin, least used, 
or least recently used task assignment policies.  

Finally, the GRUBER queue manager is a 
GRUBER client that resides on a submitting host. 
This component monitors VO policies and decides 
how many jobs to start and when. It interacts with the 
GRUBER engine to obtain site selection 
recommendations.  

Currently, GRUBER is implemented as both an 
OGSI service and a WS (WS) service based on the 
Globus Toolkit (GT3 and respectively GT4). In the 
experiments performed for this paper, we have used 
the WS version of GRUBER engine and the site 
selectors, but not the queue manager. In this 
configuration, GRUBER might seem to operate as a 
site recommender because it does not enforce VO-
level uSLAs. However, we assume that all clients 
comply with the recommendations and that there is no 
need for enforcement. 

GRUBER does not itself perform job submission, 
but as shown in Figure 2 can be used in conjunction 
with various grid job submission infrastructures. 
Previously, we have interfaced GRUBER for real job 
executions with the Euryale planner [19] largely used 
on Grid3. We also believe that GRUBER would work 
with other similar grid planner, such Pegasus [8].  

2.2.  DI -GRUBER  

Managing uSLAs within environments that 
integrate participants and resources spanning many 
physical institutions can become a challenging 
problem. A single unified uSLA management decision 
point providing brokering decisions over hundreds to 
thousands of jobs and sites can easily become a 
bottleneck in terms of reliability as well as 
performance. DI-GRUBER, an extension to the 
GRUBER prototype, was developed as a distributed 
grid uSLA-based resource broker that allows multiple 
decision points to coexist and cooperate in real-time.  

 

 
Figure 3: DI-GRUBER Architecture  



 

DI-GRUBER targets to provide a scalable 
management service with the same functionalities as 
GRUBER but in a distributed approach [9, 4]. It is a 
two layer resource brokering service (Figure 3), 
capable of working over large grids, extending 
GRUBER with support for multiple scheduling 
decision points that cooperate by periodically 
exchanging various status information [4]. While this 
system has proved some strong improvements over 
the centralized approach provided by GRUBER, it still 
lacks a few important features that were later 
implemented and analyzed in this paper.  

2.3.  DI -GRUBER uSLA Semantics  

DI-GRUBER understands both a consumer and a 
provider as an entity that has certain characteristics 
and requirements. These consumers and providers are 
users and groups, and VOs and sites respectively, 
allowing either simple sharing rules similar to MAUI 
specifications or complex sharing rules as defined in 
the WS-Agreement. In the second approach 
allocations are expressed as WS-Agreement goals and 
requirements introducing a finer granularity for the 
rules’  specification. We based DI-GRUBER uSLA 
specification on a subset of WS-Agreement, taking 
advantage of the refined specification and the high-
level structure. [10, 11] 

2.4.  Information Dissemination Strategies 

An important issue for a decentralized brokering 
service is how uSLAs and utilization information are 
disseminated among decision points. We need to 
aggregate correctly partial information gathered at 
several points; without a correct aggregation of the 
partial information, wrong decisions can result in 
workload starvation and resource under-utilization.  

This problem can be addressed in several ways. In 
a first approach, both resource usage information and 
uSLAs are exchanged among decision points. In a 
second approach, only utilization information is 
exchanged. As a possible variation on these two 
approaches, whenever new sites are detected, their 
status is incorporated locally by each decision point, 
which means each decision point has only a partial 
view of the environment. In a third approach, no usage 
information is exchanged and each decision point 
relies only on its own mechanisms for detecting grid 
status.  

While the second approach was experimented with 
success before [4], we focus here on the first approach 
for information synchronization among the decision 
points. This analysis introduces additional 
complexities required for uSLA tracking and 
management correctly at each decision point.  

2.5.  Open Science Grid  

We envisage that DI-GRUBER can be used in real 
grid environments that are ten to hundreds times bigger 
than today Open Science Grid (OSG: previously 
known as Grid3 [8]). OSG is a multi-virtual 
organization environment that sustains production level 
services required by various physics experiments. The 
infrastructure comprises more than 50 sites and 4500 
CPUs, over 1300 simultaneous jobs and more than 2 
TB/day aggregate data traffic. The participating sites 
are the main resource providers under various 
conditions.  

Thus, we consider for the experiments in this paper 
an environment similar to OSG but ten times larger and 
with much higher rates of job scheduling. DI-
GRUBER provides the required uSLA-based solution 
for job scheduling decisions for environments similar 
to OSG, by providing a means for informed site 
selection at the job level and beyond. In a simpler case, 
it can act also as a monitoring infrastructure that offers 
more information than only current resource 
utilizations.  

2.6. PlanetLab Testbed  

PlanetLab [13] is a geographically distributed 
platform for deploying, evaluating, and accessing 
planetary-scale network services. PlanetLab is a shared 
community effort by a large international group of 
researchers, each of whom gets access to one or more 
isolated “slices”  of PlanetLab’s global resources via a 
concept called distributed virtualization. PlanetLab 
now comprised over 500 nodes (Linux-based PCs or 
servers connected to the PlanetLab overlay network) 
distributed worldwide. Almost all nodes are connected 
via 10 Mb/s network links (with 100Mb/s on several 
nodes), have processor speeds exceeding 1.0 GHz 
IA32 PIII class processor, and at least 512 MB RAM. 

3. DI-GRUBER Enhancements  

Maintaining a local and static view of all the 
decision points in brokering architecture might be a 
challenging problem and in most cases a cumbersome 
one. DI-GRUBER was developed as a distributed 
uSLA-based grid resource broker that allows multiple 
decision points to coexist and cooperate in real-time. 
The problem is that without a supporting mechanism 
for dynamic discovery of the brokering infrastructure, 
some of the advantages offered by this infrastructure 
may become impractical. The main problem arises 
from maintaining the list of decision points at each 
location in the infrastructure (both decision point and 
client locations).  



 

Next, we explore the capabilities and 
enhancements introduced to the WS-MDS Index 
based DI-GRUBER infrastructure.  

3.1.  Control Console  

Firstly, accurate monitoring is important if we are 
to understand how the framework actually performs in 
different situations (the verifiers concepts introduced 
in [9]). As a first step towards this goal, we have 
developed mechanisms for measuring how resources 
are used by each VO and by the grid, overall. 

The monitoring tool built for DI-GRUBER is a 
graphical interface able to present the current 
allocations and uSLAs at each decision point and over 
in the managed grid infrastructure. This interface 
connects to a decision point, collects the local or 
generic view and presents it in easy to visualize mode 
(Figure 4).  
 

 
Figure 4: Resource Allocation Example 

 
In order to avoid gathering large amount of 

information, we also introduced various summation 
operations for different metrics. Practically from a 
human verifier point of view, this interface answers 
the question “ Are uSLAs adequately enforced by each 
decision point?”  and “ What are the utilizations and 
allocations of different resource in the Grid?” .  

Also, the same graphical interface provides 
support for uSLA specification at group, VOs and site 
levels. The uSLAs can be entered and associated 
either with a site, a VO or a group. In another 
approach, various WS-Agreement like rules can be 
specified that are parsed when required to perform 
various job steering operations. Even though this 
element is important for managing a grid 
infrastructure for job allocations, we consider such an 
example beyond the scope of this paper, as being 
already presented elsewhere [3].  

Further, all uSLAs specified at a certain decision 
point are distributed to all other decision points if not 

marked as private. While this solution seems not very 
scalable (when going towards hundreds of decision 
points), we assume that for a grid one hundred times 
larger than today Grid3 is sufficient (as also presented 
in paragraph �4.2). As an additional note, uSLAs are 
associated with the decision point that distributed 
them and they can be deleted only by the same point 
of decision.  

3.2.  Decision Point Bootstrap Implementation 

As already described, the ability to bring up a 
decision point is important in a large and dynamic 
grid. While this problem was not addressed before [4], 
we address also this problem here. Our solution uses 
the functionalities offered by the WS-MDS Index 
Service for service registering and querying.  

In our implementation, each DI-GRUBER 
decision point registers with a predefined WS-MDS 
Index Service at startup, while it is automatically 
deleted when it vanishes. Further, all decision points 
and clients can use this registry to find information 
about the existing infrastructure and select the most 
appropriate point of contact. When we use the term 
“most appropriate” , we refer to metrics such as load 
and number of clients already connected. In Figure 5 
is presented such a view (achieved by means of the 
same graphical console). Now, whenever a new client 
boots (at a submission point), it can easily find which 
decision point is most appropriate. Also, whenever a 
decision point stops responding to a client, this client 
automatically queries the registry and selects a 
different point of contact.  
 

 
Figure 5: Decision Points View 

 
We consider that this approach is less error-prone 

than the static solution, and, additionally, it offers the 
support for dynamically bootstrapping new decision 
points whenever new ones register with WS-MDS 
Index Service. While we do not have implemented 



 

this facility yet [4], a human operator can easily 
perform such an operation (starting a new GT4 
container where a DI-GRUBER decision point was 
already developed). 

Additionally, if a pool of decision points are 
maintained in background and forced to register with 
the WS-MDS Index Service only when needed, the 
operation is 100% automated.  

3.3.  uSLAs Synchronization Approach 

The next problem we focus on is the uSLA 
synchronization and reconciliation among the DI-
GRUBER decision points. There are two main cases 
that we consider: uSLA decision point sets are 
disjunctive and uSLA decision points sets are not 
disjunctive.   

In the first case, each decision point acquires the 
rest of the uSLAs during synchronization operations. 
These uSLAs are stored locally and used whenever a 
job decision is required. The advantage and simplicity 
of this solution consists in the fact that no 
reconciliation is necessary. However, this solution 
cannot be applied always in practice because some 
VOs might have several DI-GRUBER decision points 
that overlap partially one another in terms of brokered 
sites. In such situation, the next case has to be 
considered.  

In the second case, besides uSLAs exchanges, 
additional reconciliation operations have to be 
performed [12]. In our implementation, the uSLAs are 
merged. We do believe that simple merging operations 
are enough for the MAUI-like rules. In the WS-
Agreement-based cases, rules are instead parsed on 
the fly when needed and if all are satisfied then a set 
of available sites is generated.  

The algorithms used to handle the situations 
presented above are presented next (they are generic 
enough to cover both situations):  
 
procedure uSLA_combination  

 arguments uSLA_set[DPs] , local_uSLA 

returns local_uSLA 

1 foreach uSLA_set (S) in uSLA_set[DPs]  do  

2     if S already exists in local_uSLA then  

3          update/replace S in local_uSLA  

4     else  

5          add S to local_uSLA  

6     end // if  

7 end // foreach 

end 

procedure uSLA_parsing  

 arguments local_uSLA 

returns final_action 

1 foreach rule (R) in the local_uSLA do  

3     action = analyze (R) 

4     final_action = MIN (action, final_action)  

5 end // foreach 

end 

where:  

DP  = DI-GRUBER decision point  
Action = the action that to be performed according to 

the uSLA set R 

final_action = the action that is finally considered 

local_uSLA = uSLA set saved locally  

4. Empir ical Results  

Here we report on some previous results [4] as well 
as new results achieved through the WS-MDS Index 
Service infrastructure. We used between one and ten 
GT4 DI-GRUBER decision points deployed on 
PlanetLab nodes [13]. Each decision point maintained 
a view of the configuration of the global DI-GRUBER 
environment, via periodic exchanges (in the 
experiments that follow every three minutes) with 
other decision points of information about recent job 
dispatch operations. The decision points get 
information about their neighbors through a 
predefined Index Service running on a different 
computer.  

The three metrics used in this chapter are 
Throughput, Response and Accuracy, defined as 
follows.   

Response is defined by the following formula (with 
RTi being the individual job time response and N 
being the number of jobs processed during the 
execution period):  

Response = �i=1..N RT i / N 

Throughput is defined as the number of requests 
completed successfully by the service per unit time.  

Finally, we define the scheduling accuracy for a 
specific job (SAi) as the ratio of free resources at the 
selected site to the total free resources over the entire 
grid. Accuracy is then the aggregated value of all 
scheduling accuracies measured for each individual 
job:  

Accuracy = �i=1..N (SA i) / N 



 

4.1.  Previous Results  

In the previous experiments, we used composite 
workloads that overlay work for 60 VOs and 10 
groups per VO. The experiment duration was one hour 
in all cases, and jobs were submitted every second 
from a submission host. Each of a total of about 120 
submission hosts (“clients” ) maintained a connection 
with only one DI-GRUBER decision point, selected 
randomly in the beginning — thus simulating a 
scenario in which each submission site is associated 
statically with a single decision point.  

The emulated environment was composed of 300 
sites representing 40,000 nodes (a grid approximately 
ten times larger than OSG today). Each site is 
composed of one or more clusters. The emulated 
configuration was based on OSG configuration 
settings in terms of CPU counts, network connectivity, 
etc [4]. As an additional note, the previous results 
were achieved on a DI-GRUBER prototyped in a pre-
release of GT4.  

With three decision points, Throughput increases 
slowly to about 4 job scheduling requests per second 
when all testing machines are accessing the service in 
parallel. The service Response time is also smaller 
(about 26 seconds) on average compared with the 
previous results (about 84 seconds). With 10 decision 
points, the average service Response time decreased 
even further to about 13 seconds, and the achieved 
Throughput reached about 7.5 queries per second 
during the peak load period. [4] 
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Figure 6: DI-GRUBER Scalability Throughput (1, 

3, and 10 DI-GRUBER Decision Points) 

As can be observed in Figure 6 and Figure 7, the 
distributed service provides a symmetrical behavior 
with the number of concurrent machines that is 
independent of the state of the grid (lightly or heavily 
loaded). This result verifies the intuition that for a 
certain grid configuration size, there is an appropriate 
number of decision points that can serve the 

scheduling purposes under an appropriate 
performance constraint. The overall improvement in 
terms of throughput and response time is two to three 
times when a three-decision point infrastructure is 
deployed, while for the ten-decision point 
infrastructure the throughput increased almost five 
times relative to the centralized approach.  
 

DI-GRUBER GT4 Scalability: 
Response Time
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Figure 7: DI-GRUBER Scalability Response Time 

(1, 3, and 10 DI-GRUBER Decision Points) 

However, by means of simulations [4] we have 
previously concluded that a total of 5 decision points 
was enough for handling the workloads floating 
through the framework. The main issue remained 
here, was to achieve a DI-GRUBER implementation 
for dynamically detecting infrastructure decision 
points overloads.  

4.2.  New Results  

Here we report on new experiments we performed 
using DI-GRUBER on PlanetLab. We have to 
mention that we used this time a final GT4 release 
based implementation and at the same time, all peer 
discovery operations were performed by means of the 
WS-MDS Index Service running on a dedicated 
computer. In addition, the clients were configured to 
re-connect to an available decision point whenever an 
error occurred.  

Again, the composite workloads overlaid work for 
60 VOs and 10 groups per VO. The experiment 
duration was also one hour in all cases, and jobs were 
submitted every second from a submission host (120 
submission hosts again).  

4.2.1. Enhanced DI -GRUBER Scalability  

The environment was similar as in the previous 
experiments, the PlanetLab environment [13]. Also, 
the same set of nodes was used for tests, but 6 months 



 

later. The results show some improvement in terms of 
both Response and Throughput. Practically, the 
clients got a better repartition over the decision points, 
and achieved a more stable response time compared 
with the previous example. The Response metric’s 
value is always less than 30 seconds for 3 decision 
points, and less than 10 seconds for 10 decision 
points. The Throughput metric’s value shows even 
more improvements, reaching a constant value of 5 
queries per seconds for 3 decision points, while goes 
us up to 16 queries per second for 10 decision points.  
On average, we found the enhanced DI-GRUBER to 
offer modest improvements for 3 decision points (19% 
higher throughput and 8% lower response time) and 
significant improvements for 10 decision points (68% 
higher throughput and 70% lower response times). 
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Figure 8: Enhanced DI-GRUBER Scalability 

Throughput (3, 10 Decision Points) 

DI-GRUBER GT4 Scalability: 
Response Time
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Figure 9: Enhanced DI-GRUBER Scalability 

Response Time (3, 10 Decision Points) 

Next, we present a comparison in terms of the 
performance of handled jobs during the experiment 
time interval. The improvements show that practically 
more jobs were handled in the same time interval by 

the new DI-GRUBER, by a factor of 1.56 in the 3 DP 
case and 1.84 in the 10 DP case (see Table 1).  

While these results are encouraging from a 
performance point of view, the main gains are 
however the capacity of the infrastructure to 
automatically re-arrange whenever a decision point 
fails.  

 
Table 1: DI-GRUBER (GT 3.9.5) vs. MDS-based 

DI-GRUBER (GT 4.0) Per formance  

 
Jobs  

GT3.9.5 
3 DPs 

GT3.9.5 
10 DPs 

GT4 
3 DPs 

GT4 
10 DPs 

Handled 24048 37593 31762 69208 

Not 
Handled 

1893 2567 3505 10823 

Total 25941 40160 35267 80031 
 

4.2.2. Enhanced DI -GRUBER Tests  

In order to prove that WS-MDS Index Service-
based service is indeed scalable enough to support 
larger DI-GRUBER infrastructures than considered 
till now, we have tested the capacity of our framework 
with 120 decision points. In this case we have 
measured the regularities of the registrations to the 
WS-MDS Index Service, as well as, the load on the 
actual node running the WS-MDS Index Service. 
These results are presented in Figure 10.  
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Figure 10: Infrastructure Per formance 

We can observe here that the higher load on the 
node running the registration service was higher only 
during the initial registration of the DI-GRUBER 
decision points with the main WS-MDS Index 
Service. Once the registrations stopped, all load on the 
node dropped to “normal” . However, our tests started 
a new decision point every 60 seconds, case which can 
not occur in practice often. Also, the memory 



 

utilization increased fast, but once all the physical 
memory was allocated, the swap part increased much 
slower. As an additional note regarding this behavior, 
we have to note that in our implementation each 
decision points registers with the local WS-MDS 
Index Service, which performs further an up-stream 
registration with the central service. This approach is 
helpful in practice because it provides the possibility 
to duplicate the central registration point, and avoid 
possible bottlenecks. Of course, the drawback is the 
higher load on the node running the central WS-MDS 
Index Service.  

4.2.3. Dynamic Bootstrap Signaling  

While dynamic DI-GRUBER decision point 
bootstrapping might be difficult to automate in a 
generic environment, the solution we have devised for 
such environments is semi-automatic. Every time a 
client fails to communicate or to connect with a 
decision point, it registers with the WS-MDS Index 
Service a request fault. These faults are then used by a 
human operator in order to bring up new DI-GRUBER 
instances and stabilize the brokering infrastructure 
whenever required.  

As future work, we envisage to fully automate such 
operations by means of Grid technologies where 
possible. Such faults can be consumed by a 
specialized entity that based on some simple policies 
can dynamically start new decision points by means of 
WS-GRAM service. For example, in the OSG 
scenarios considered here, whenever the condition for 
bringing up a new decision occurs, a special job is 
submitted to a site and a new container is started. In a 
more specialized context, a dedicated pool of nodes 
can be used for bringing up such decision points and 
really used only when necessary. For the remining 
time, the dedicated pool might be used for other grid 
specific operations.  

5. Accuracy with Mesh Connectivity  

In this section we focus on comparing the 
performance of the brokering infrastructure function 
of the connectivity of the decision point connectivity. 
The comparisons are done by means of the Accuracy 
metric, as defined before. Also, we consider a few 
cases, as follows: full connectivity (each of the DPs 
collects information from all the others), half 
connectivity (each of the DPs collects information 
only from half of all the others), and one-fourth 
connectivity (each of the DPs collects information 
only from a quarter of all the others).   

In order to achieve this connectivity, we used 
practically several WS-MDS Index Service 
registration points (1 in the first case, 2 in the second 

case and 3 in the third case). The DI-GRUBER 
decision points were configured to register to one WS-
MDS Index Service while obtaining the list of 
available peers from a different registration point is 
such a way to assure full connectivity in 1, 2 or 4, 
respectively, steps. The results we have obtained by 
measurement are presented next, after we review our 
previous results achieved before based on complete 
static configuration lists.  

5.1.1. Previous Results  

Next, we present our previous analyzes on the 
performance of the GT4 DI-GRUBER and its 
strategies for providing accurate scheduling decisions 
We present here only the results from an infrastructure 
complexity point of view, because our next analyze 
focuses on this problem. [4] 

Table 2 depicts the overall performance of GT4 
DI-GRUBER in the scenarios introduced in section �4. 
The values under the “All Requests”  section provide 
an overall view of the implementation’s performance 
(even though these results take in consideration also 
the 1 and 3 decision points based infrastructure).  

Table 2: GT4 DI-GRUBER Overall 
Performance 

 Decision 
Points 

% of 
Req 

# of 
Req 

QTime Norm 
QTime 

Util Accuracy 

1 53% 3852 0 0.000 3% 98% 
3 92% 24048 452 0.018 16% 90% 

Requests 
Handled by 
GRUBER  10 93% 37593 2501 0.066 35% 75% 

1 47% 3382 0 0.000 7% - 
3 8% 1893 36 0.019 4% - 

Requests 
NOT 
Handled by 
GRUBER  

10 7% 2567 220 0.085 6% - 

1 100% 7234 0 0.000 10% 94% 
3 100% 25941 660 0.025 20% 81% 

 
All Requests 

10 100% 40160 3017 0.075 41% 68% 
  

 

We note that the accuracy drops with the 
complexity of the infrastructure, while the number of 
jobs handled by the infrastructure increases substantial 
(one order from 1 to 10 decision points). [4] 

5.1.2. Enhanced DI -GRUBER Results  

Now, we present the new results achieved by means 
of the WS-MDS Index Service based DI-GRUBER 
and for two additional configurations where the 
decision points had only partial knowledge about the 
entire infrastructure. We achieved this by using one 
central WS-MDS Service where all decision points 
registered and which was queried by the clients (in 
order to achieve a good repartition of requests), while 
the decision points queried 2 (or 3) other services. In 
this way, the decision point did not have full 
knowledge about the existence of all the other points 
in the system. Achieved results are captured in Table 
3.  

 



 

Table 3: WS-MDS based DI-GRUBER 
Per formance 

 # of MDS Util Accuracy 
1 35% 75% 
2 27% 62% 

Requests 
Handled by 

GRUBER 3 20% 55% 
1 41% 68% 
2 30% 60% 

Total 
Request 

3 21% 50% 
 

We can observe that the performance of the 
scheduling brokering infrastructure drops substantially 
with the smaller connectivity of each individual 
decision point. As an additional note, the Util 
parameter is low because jobs do not start all in the 
beginning over the resources, but they are scheduled 
every second during the entire execution period. 
Figure 11 provides an intuitive way for realizing that 
the performance drops almost linearly with the 
number of WS-MDS Index Services. The relation 
between the DPs’  connectivity (Con) and the number 
of registry services is:  

 
Con = ABS | D / M  | 

 
where D is the number of decision points in the 

system, while M is the number of WS-MDS Index 
Services used for registration.  
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Figure 11: DI-GRUBER Infrastructure 

Per formance based on decision points connectivity 

6. Related Work  

A policy based scheduling framework for grid-
enabled resource allocations is under development at 
the University of Florida [1]. This framework provides 
scheduling strategies that (a) control the request 
assignment to grid resources by adjusting resource 

usage accounts or request priorities; (b) manage 
efficiently resources assigning usage quotas to 
intended users; and (c) supports reservation based grid 
resource allocation. One important difference of DI-
GRUBER is the lack of an assumption of a centralized 
scheduling point.  

The Grid Service Broker, a part of the GridBus 
Project, mediates access to distributed resources by (a) 
discovering suitable data sources for a given analysis 
scenario, (b) suitable computational resources, (c) 
optimally mapping analysis jobs to resources, (d) 
deploying and monitoring job execution on selected 
resources, (e) accessing data from local or remote data 
source during job execution, and (f) collating and 
presenting results. The broker supports a declarative 
and dynamic parametric programming model for 
creating grid applications [14]. An important 
difference is that GridBus does not support the notions 
of sites, submission hosts, and virtual organizations or 
groups.  

Cremona is a project developed at IBM as a part of 
the ETTK framework [15, 16]. It is an implementation 
of the WS-Agreement specification and its 
architecture separates multiple layers of agreement 
management, orthogonal to the agreement 
management functions: the Agreement Protocol Role 
Management, the Agreement Service Role 
Management, and the Strategic Agreement 
Management. Cremona focuses on advance 
reservations, automated SLA negotiation and 
verification, as well as advanced agreement 
management. DI-GRUBER instead targets a different 
environment model, in which the main players are VO 
and resource providers with opportunistic needs (free 
resources are acquired when available). 

7. Conclusions and Future Work 

Managing uSLAs within large virtual organizations 
that integrate participants and resources spanning 
multiple physical institutions is a challenging 
problem. Maintaining a single unified decision point 
for uSLA management is a problem that arises when 
many users and sites need to be managed [5]. Also, 
when such environments are also dynamic, the 
problem becomes even more complex. We have 
provided here a solution for enhancing DI-GRUBER 
in order to address the question on how uSLAs can be 
stored, retrieved and disseminated efficiently in a 
large and dynamic distributed environment. The key 
question this paper addresses is the reconciliation and 
management of a brokering infrastructure, DI-
GRUBER in our case, in large and dynamic Grid 
environments.  

We note that DI-GRUBER is a complex service: a 
query to a decision point may include multiple 



 

message exchanges between the submitting client and 
the decision point, and multiple message exchanges 
between the decision points and the job manager in 
the grid environment. In a WAN environment with 
message latencies in the 100s of milliseconds, a single 
query can easily take multiple of seconds to serve. We 
expect that performance will be significantly better in 
a LAN environment. However, one of DI-GRUBER’s 
design goals was to offer resource brokering in a 
WAN environment such as grids.  

As previously stated, while the transaction rate for 
the DI-GRUBER service is fairly low compared to 
other transaction processing systems, this rate proved 
to be sufficient in the Grid3 context [17]; furthermore, 
these other transaction processing systems were 
designed to be deployed in a LAN environment. Also, 
the transaction speed increases linearly with the 
number of decision points deployed over a grid. DI-
GRUBER performance can be improved further by 
porting it to a C-based Web services core, such as is 
supported in GT4 [18]. The performance of DI-
GRUBER could also be enhanced further simply by 
deploying it in a different environment that would 
have a tighter coupling between the resource broker 
(DI-GRUBER) and the job manager (Euryale); this 
approach would reduce the complexity of the 
communication from two layers to one layer. 

Also, by increasing the number of decision points 
(cooperating brokers that communicate via a flooding 
protocol) the throughput climbs to approximately 70 
transactions/second with a low response time. This 
observation leads us to conclude that the required 
number of “decision”  nodes to ensure scalability in a 
two-layer scheduling system like DI-GRUBER is 
relatively small.  

The WS-MDS Index Service approach proved to 
improve the capabilities of the DI-GRUBER 
framework. The performance results presented in 
section 4 are encouraging and we also showed that DI-
GRUBER can scale up to hundreds of decision points, 
an infrastructure that can handle grids more than 1000 
larger than today’s OSG size. We also learnt that 
when each decision point has only a partial view of 
the brokering infrastructure the brokering 
infrastructure performance decrease almost linearly 
with the number of registry services used in the 
system.  
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