
Characterizing Storage Resources Performance in Accessing the
SDSS Dataset

Ioan Raicu
Date: 8-17-05

Table of Contents
Table of Contents...1
Table of Figures...1
1 Overview ...4
2 Experiment Description ...4

2.1 Data ...4
2.2 Access Methods..5
2.3 File Systems ..5
2.4 Client Code..5

2.4.1 JAVA Implementation...5
2.4.2 C Implementation ..6

2.5 Experiment Execution ...6
2.5.1 Single Client Access ..6
2.5.2 Multiple Concurrent Client Access..6

2.6 Testbed ..6
3 Empirical Results...7

3.1 Single Client Access..7
3.2 Multiple Concurrent Client Access ...15
3.3 Experimental Result’s Conclusions...26

4 Proposed Architecture ...28
4.1 Design based on TG GPFS (WAN)...28
4.2 Design based on GPFS (LAN) ..29
4.3 Design based on Local FS ...30

5 Bibliography ..32

Table of Figures
Figure 1: Median JAVA client performance overview spanning 30 different configurations; the error bars denote the
standard deviation of the data (comprising of 50~200 data points) ...8
Figure 2: Median C client performance overview spanning 10 different configurations ..8
Figure 3: Client speed-up: C vs. JAVA; any number above 1.0 means that the C client was faster than the JAVA
client, while any number bellow 1.0 means that the JAVA client outperformed the C client9

Summer 2005 Progress Report
Page 2 of 38

Figure 4: JAVA client speed-up for 1-crop vs. 10 crops ...10
Figure 5: C client speed-up for 1-crop vs. 10 crops...10
Figure 6: JAVA client performance distribution via a 5-number summary box-plot for the 1 crop experiments11
Figure 7: JAVA client performance distribution via a 5-number summary box-plot for the 10 crop experiments11
Figure 8: C client performance distribution via a 5-number summary box-plot for the 1 crop experiments...............12
Figure 9: C client performance distribution via a 5-number summary box-plot for the 10 crop experiments.............12
Figure 10: JAVA client work distribution ...13
Figure 11: C client work distribution...14
Figure 12: Time to complete O(100) crops from 1 client (both JAVA and C); log scale in seconds14
Figure 13: Summary of Concurrent FIT Client (both JAVA and C) Performance (Response Time); log scale in
milliseconds ...16
Figure 14: Summary of Concurrent FIT Client (both JAVA and C) Performance (Throughput, queries per second);
log scale ...16
Figure 15: Time to complete O(100K) crops using 100 clients (both JAVA and C); log scale in seconds.................17
Figure 16: FIT JAVA Client Performance over the ANL GPFS with 100 clients running on 50 dual processor nodes;
each image had 10 crops performed ..18
Figure 17: FIT JAVA Client Performance over the ANL GPFS with 100 clients running on 50 dual processor nodes;
each image had 1 crop performed..18
Figure 18: FIT C Client Performance over the ANL GPFS with 100 clients running on 50 dual processor nodes; each
image had 10 crops performed ..19
Figure 19: FIT C Client Performance over the ANL GPFS with 100 clients running on 50 dual processor nodes; each
image had 1 crop performed ..20
Figure 20: FIT JAVA Client Performance over the NFS with 100 clients running on 50 dual processor nodes; each
image had 10 crops performed ..20
Figure 21: FIT JAVA Client Performance over the ANL GPFS with 100 clients running on 50 dual processor nodes;
each image had 1 crop performed..21
Figure 22: FIT C Client Performance over the NFS with 100 clients running on 50 dual processor nodes; each image
had 10 crops performed ...21
Figure 23: FIT C Client Performance over the NFS with 100 clients running on 50 dual processor nodes; each image
had 1 crop performed...22
Figure 24: FIT JAVA Client Performance over the PVFS with 100 clients running on 50 dual processor nodes; each
image had 1 crop performed ..23
Figure 25: FIT JAVA Client Performance over the TG GPFS with 100 clients running on 50 dual processor nodes;
each image had 10 crops performed ..24
Figure 26: FIT JAVA Client Performance over the TG GPFS with 100 clients running on 50 dual processor nodes;
each image had 1 crop performed..24
Figure 27: FIT C Client Performance over the TG GPFS with 100 clients running on 50 dual processor nodes; each
image had 10 crops performed ..25
Figure 28: FIT C Client Performance over the TG GPFS with 100 clients running on 50 dual processor nodes; each
image had 1 crop performed ..26
Figure 29: Proposed system architecture based on TG GPFS (WAN) ..28
Figure 30: Proposed system architecture based on GPFS (LAN)..29

Summer 2005 Progress Report
Page 3 of 38

Figure 31: Proposed system architecture based on the Local FS...31

Summer 2005 Progress Report
Page 4 of 38

1 Overview
In this report, I will present my findings regarding my first goal:

“Determine what's involved in getting Szalay's code running efficiently on TeraGrid. We need to implement the
basic code, get it running, and measure its performance in a few different settings in terms of data and
compute location: per-node local disk, NFS-attached local disk, GPFS remote disk.”

I implemented a client in both C and JAVA that can read FIT images, crop a section of the image, and write it back
to disk in FIT format. I also took about 400 compressed images (2~3MB each) summing to about 1GB of images,
and made several copies on various file systems. These file systems include the local file system, NFS, PVFS, the
local GPFS, and the remote GPFS. The data is stored in a GZ compressed format; in order to cover the widest range
of performance tests, I created two data sets: the original compressed data (~1GB), and the decompressed data
(~3GB). To quantify the effects of caching of various experiments, I decided to run two different experiments, one
in which I only perform 1 crop per image, and one in which I perform 10 crops per image (in some cases this offered
significant speedup since the image was already in memory). As a summary, the total number of experiments I had
were 30 (5x3x2) in JAVA and 10 (5x2) in C, for a total of 40 different experiments. I have reduced all the results
from these 40 experiments from the single client to 14 graphs in section 3.1.

Section 3.2 covers a similar set of experiment but for concurrent client access. For these experiments, we worked
only with the uncompressed data; the file systems tested were NFS, PVFS, the local GPFS, and the remote GPFS;
the local file system results were extrapolated from the results of the single client performance from section 3.1. As
a summary, the total number of experiments I had were 8 (4x2) in JAVA and 8 (4x2) in C, for a total of 16 different
experiments. I have reduced all the results from these 16 experiments from the concurrent client access to 19 graphs
in section 3.2.

Overall, the performance of both the JAVA client and the C client running as one client at a time seemed good. The
performance degradation when accessing the data in the GZ format is very large, and I believe it should be avoided
at all costs. The compression ratio is only 3:1, so keeping the entire archive of 2TB in an uncompressed format
would only increase the storage requirement to 6TB, but yielding magnitudes order better performance.

On the other hand, the performance difference among the different FS seems to have grown significantly as we run
100 clients in parallel. Except in just a few cases, the performance difference between the JAVA and C client seems
to be almost negligible.

Based on the results in Section 3, the PVFS and NFS should be avoided if possible. Furthermore, there are
significant performance gains by keeping the data available in an uncompressed format. The TG GPFS should also
be avoided, unless the scalability of the system (concurrent clients accessing the data) will be larger than what can
be supported by the ANL GPFS. Therefore, if performance is important, then the potential FS are the local FS and
the ANL GPFS; in both of these cases, there were improvements in performance for the C client in comparison to
the JAVA client, so the C client would be preferable.

One of the driving motivations for using the TeraGrid for this application was to potentially get very quick turn-
around times on large number of operations that could potentially touch a large portion of the data set. Through the
experimental results we performed, we conclude that 100K operations (in our case crops) could be performed on the
order of 10s of seconds up to 1000s of seconds using 100 clients depending on the data access method.

2 Experiment Description
This section covers the data description, the access methods (i.e. compression, raw), file systems tested, and the
client code details.

2.1 Data
The entire data set is on the order of TB, which means that there are probably on the order of 100K to 1M images in
the entire database. Just to do some preliminary testing, I took about 400 compressed images (2~3MB each)
summing to about 1GB of images, and made several copies on various file systems. The data is originally stored in
a GZ compressed format; in order to cover the widest range of performance tests, I created two data sets: the original
compressed data (~1GB), and the decompressed data (~3GB).

Summer 2005 Progress Report
Page 5 of 38

2.2 Access Methods
I had three different ways to access the data:

• GZ – The client read the data in GZ compressed format directly and worked on the compressed images
• GUNZIP - I first decompressed the image, and then every subsequent operation on that image took place

on the uncompressed image
• FIT – The client read the data in the raw and decompressed FIT format directly

Note that only the JAVA client supports all 3 access methods, while the C client only supports the FIT access
method.

2.3 File Systems
These file systems include:

• LOCAL
o the local file system
o $TG_NODE_SCRATCH=/scratch/local

• NFS
o the network file system (NFS)
o serviced by 1 server on a LAN
o $HOME=/home

• PVFS
o the parallel virtual file system (PVFS)
o serviced by ? server on a ?AN
o $TG_CLUSTER_PVFS=/scratch/pvfs

• ANL GPFS
o the local general parallel file system (GPFS)
o serviced by 8 stripped servers on a LAN
o $TG_CLUSTER_GPFS=/disks/scratchgpfs1

• TG GPFS
o the remote general parallel file system (GPFS)
o serviced by 60+ servers on a WAN
o $TG_GPFS=/gpfs-wan

2.4 Client Code
I implemented a client in both C and JAVA that can read FIT images, crop a section of the image, and write it back
to disk in FIT format. Each client has about 1000 lines of code in each respective language and has ms accurate
timing mechanisms built in to the client code for accurate measurement of performance of individual operations.
The clients have also been prepared for use with DiPerF for future testing of the client performance while
concurrently accessing the data along with other clients.

In the next sub-sections, I will briefly describe the implementation in each language.

2.4.1 JAVA Implementation
The JAVA implementation relies on a JAVA FITS library (http://heasarc.gsfc.nasa.gov/docs/heasarc/fits/java/v0.9/).
[1] The full source code can be downloaded from http://heasarc.gsfc.nasa.gov/docs/heasarc/fits/java/v0.9/fits.jar.
The Java FITS library has been developed which provides efficient I/O for FITS images and binary tables. The Java
libraries support all basic FITS formats and gzip compressed files.

Currently the client is geared towards ease of performance testing. There are several arguments that allow the user
to control the experiment; among these arguments are:

• Input file list (the entire data set with relative paths)
• Input path
• Output path
• Number of pictures to process (randomly chosen from the list)

Summer 2005 Progress Report
Page 6 of 38

• Number of crops per image (done in a sequential order, and performed at random [x,y] coordinates in each
respective image)

• Size of the crop [width, height]

All the performance metrics from each task are stored in memory in order to easily compute entire run statistics.
The various performance metrics are:

• copy() – the time to read the GZ compressed image into memory, decompress it, and write it back to disk in
a raw decompressed FIT format

• read() – the time to read the entire image data into memory
• crop() – the time to crop out a rectangular sub-image from the original larger image that is in memory
• write() – the time to write the sub-image to disk
• TOTAL – the total time from the copy() stage to the write() stage

At the end of an experiment, the statistics that are computed for each metric are:
• Min – minimum value
• Q1 – 1st quartile value
• Aver – average value
• Med – median value
• Q3 – 3rd quartile value
• Max – maximum value
• StdDev – standard deviation for entire experiment

2.4.2 C Implementation
The C implementation relies on WCSTools libraries (http://tdc-www.cfa.harvard.edu/software/wcstools/). [2] The
full source can be downloaded from http://tdc-www.harvard.edu/software/wcstools/wcstools-3.6.1.tar.gz. The WCS
FITS library provides support for reading and writing primary images and reading extension data. It is quite
compact, requiring only four files in the distribution. The package is particularly complete in reading header
information, and of course in dealing with FITS World Coordinate System (WCS) information.

The C client has almost an identical overview, arguments, performance metrics, and statistics collected. The only
exception is that although the copy() metric exists in the C client, since C does not allow the easy reading of
compressed files into memory (such as was the case with the JAVA client), this feature was not implemented, and
hence all values for the copy() metric always report 0.

2.5 Experiment Execution

2.5.1 Single Client Access
Outside of the fact that we had many different experiments to run, 40 in total, I used simple scripts to run the
experiments in sequence. At the end of every experiment, the client saved the overall performance statistics in a file
for later analysis.

2.5.2 Multiple Concurrent Client Access
To run the experiment with multiple concurrent clients accessing the data, I used the existing DiPerF framework to
drive the experiments, collect the performance data, and plot the graphs. I used the TeraGrid to gain access to
multiple physical machines via the command “qsub” which allowed me to make reservations for predefined number
of machines and a predefined time period. During the period of the reservations, I had sole access to these
machines.

2.6 Testbed
I used the TeraGrid (TG) to run the experiments. The TG has 96 Visualization Intel IA-32/Xeon nodes and 62
Compute Intel IA-64/Madison nodes. The IA-32 nodes are dual 2.4GHz Intel Xeon processor machines, with
3.5GB RAM and 1Gb/s network connectivity. Each node on the TG had access to all the different file systems
through the normal Unix semantics.

Summer 2005 Progress Report
Page 7 of 38

3 Empirical Results
This section covers the empirical results obtained from running a single client (JAVA and C) accessing the data set
over various different file systems and access methods. Most of the graphs are depicted in log scale in order to
better capture the entire range of values which varies significantly depending on the testing configuration.

The following conventions will be used throughout the following graphs:
• File Systems:

o LOCAL: local FS
o NFS: network FS
o PVFS: parallel virtual FS
o ANL GPFS: local general parallel FS
o TG GPFS: TeraGrid GPFS

• Access Methods:
o GZ: working on GZ compressed images
o GUNZIP: decompressing the GZ images first, and then working on uncompressed FIT images
o FIT: working on uncompressed FIT images

• Implementation:
o JAVA: JAVA client
o C: C client

• Caching:
o 50x1: test involved 50 random images with 1 crop from each image
o 20x10: test involved 20 random images with 10 successive crops from each image
o Other: for some of the tests, namely for the tests on the PVFS in the JAVA client, the

performance was very poor and to cut down the length of time of the experiment, the experiment
size was reduced to either 3x1 or 3x2

3.1 Single Client Access
Figure 1 gives the overview of the median JAVA client performance spanning the 30 different configurations on a
log scale. Some of the obvious observations about the performance of the JAVA client are:

• In the GZ format, performing multiple crops per image yields very little benefit
• The PVFS file system seems to have very poor performance (100+ sec instead of 100+ ms) under the GZ

and GUNZIP format
• The GUNZIP.20x10 set of results seem to have the best performance, however the results a bit deceiving

since this graph represents the medians; for example, the averages between GUNZIP.20x10 and FIT.20x10
are almost identical, which implies that the techniques are actually very comparable; the better performance
here is attributed to the fact that to decompress the image data, it must all be read in memory, and hence
any subsequent access to any portion of the data can be served directly from memory

• The LOCAL FS offers the best performance in any access method, with the NFS and the ANL GPFS
trailing closely behind; at least for the FIT case, both PVFS and TG GPFS perform a few orders of
magnitude slower than the LOCAL FS; this might very well turn out to be the opposite when we run
multiple clients to access the data concurrently

• For the FIT format, a single crop can be done in <40 ms locally, and about 100ms over NFS or GPFS;
when multiple crops are invoked sequentially on the same image, times can be reduced to about 10ms
locally, <20ms for NFS, and <50ms for GPFS.

Figure 2 gives the overview of the median C client performance spanning the 10 different configuration on a log
scale. Some of the obvious observations about the performance of the C client are:

• The relative performance difference that we observed in the JAVA client hold true here as well
• It was odd that the PVFS results were significantly worse for the C client than that of the JAVA client,

2000+ ms vs. <300ms
• For the FIT format, a single crop can be done in <25 ms locally, and about 100ms over NFS or GPFS;

when multiple crops are invoked sequentially on the same image, times can be reduced to about 9ms
locally, <20ms for NFS, and <50ms for GPFS

Summer 2005 Progress Report
Page 8 of 38

JAVA Client Performance Overview

1

10

100

1000

10000

100000

GZ.50x1 GZ.20x10 GUNZIP.50x1 GUNZIP.20x10 FIT.50x1 FIT.20x10

Storage Method and Crops Numbers

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

LOCAL
NFS
PVFS
ANL GPFS
TG GPFS

Figure 1: Median JAVA client performance overview spanning 30 different configurations; the error bars

denote the standard deviation of the data (comprising of 50~200 data points)

C Client Performance Overview

1

10

100

1000

10000

100000

FIT.50x1 FIT.20x10

Storage Method and Crops Number

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

LOCAL
NFS
PVFS
ANL GPFS
TG GPFS

Figure 2: Median C client performance overview spanning 10 different configurations

Summer 2005 Progress Report
Page 9 of 38

Figure 3 shows the speed-up between the C client and the JAVA client. It was surprising that the speed-up was not
more consistent across the range of experiments. With the exception of PVFS, most of the other FS performed
either about the same or better in C than it did in JAVA. The greatest improvement in performance was on the
LOCAL file system and the TG GPFS when performing multiple crops per image.

Client Speed-up (FIT): C vs. JAVA

LOCAL
1.07

NFS
0.92

PVFS
0.16

ANL GPFS
1.07

TG GPFS
0.94

LOCAL
1.24

NFS
1.02

PVFS
0.18

ANL GPFS
0.80

TG GPFS
1.39

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

File System & Crops Number

Sp
ee

d-
up

1-crop
10-crop

Figure 3: Client speed-up: C vs. JAVA; any number above 1.0 means that the C client was faster than the

JAVA client, while any number bellow 1.0 means that the JAVA client outperformed the C client

Figure 4 and Figure 5 shows the speed-up due to the caching effect when performing multiple crops on the same
image. With the exception of some of the PVFS experiments, all the other experiments regardless of FS and access
methods showed improvement in performance. Both the C client and the JAVA client experience similar speed-ups
when working in the FIT access method.

Summer 2005 Progress Report
Page 10 of 38

JAVA Client Speed-up (ALL): 1-crop vs. 10-crops

LOCAL
1.17

LOCAL
91.67

LOCAL
3.45

NFS
1.12

NFS
45.33

NFS
6.06

PVFS
1.00

PVFS
1.00

ANL GPFS
1.21

ANL GPFS
116.33

ANL GPFS
2.52

TG GPFS
7.87

TG GPFS
566.57

TG GPFS
3.37

PVFS
0.95

0.10

1.00

10.00

100.00

1000.00

GZ GUNZIP FIT

File System & Storage Method

Sp
ee

d-
up

Figure 4: JAVA client speed-up for 1-crop vs. 10 crops

C Client Speed-up (FIT): 1-crop vs. 10-crops

LOCAL
4.01

NFS
6.75

PVFS
1.04

ANL GPFS
1.88

TG GPFS
4.98

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Sp
ee

d-
up

Figure 5: C client speed-up for 1-crop vs. 10 crops

Summer 2005 Progress Report
Page 11 of 38

Figure 6 and Figure 7 represent the 5-number summary depicted via box-plots for both the 1-crop per image and 10-
crop per image experiments for the JAVA client. It is interesting to note that Q1 and Q3 are very close in value to
the median in Figure 6 (which is depicted by the size of each corresponding box), which indicates that the majority
of the performance metrics collected were close to the median values. On the other hand, in Figure 7 the boxes are
significantly larger, and hence we see the much larger variance in performance due to caching and the randomness
that was built in the client.

JAVA Client Performance Distribution: 1 crop
Boxplot (min, q1, median, q3, max)

1

10

100

1000

10000

100000

LO
CAL.G

Z.J
AVA.50

x1

LO
CAL.G

UNZIP.JA
VA.50

x1

LO
CAL.F

IT.JA
VA.50

x1

NFS.G
Z.JA

VA.50
x1

NFS.G
UNZIP

.JA
VA.50

x1

NFS.FIT.JA
VA.50

x1

PVFS.G
Z.JA

VA.3x
1

PVFS.G
UNZIP

.JA
VA.3x

1

PVFS.FIT.JA
VA.50

x1

ANL_
GPFS.G

Z.JA
VA.50

x1

ANL_
GPFS.G

UNZIP
.JA

VA.50
x1

ANL_
GPFS.FIT.JA

VA.50
x1

TG_G
PFS.G

Z.JA
VA.50

x1

TG_G
PFS.G

UNZIP
.JA

VA.50
x1

TG_G
PFS.FIT.JA

VA.50
x1

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

Figure 6: JAVA client performance distribution via a 5-number summary box-plot for the 1 crop

experiments

JAVA Client Performance Distribution: 10 crops
Boxplot (min, q1, median, q3, max)

1

10

100

1000

10000

100000

LO
CAL.G

Z.JA
VA.20

x1
0

LO
CAL.G

UNZIP.JA
VA.20

x1
0

LO
CAL.F

IT.JA
VA.20

x1
0

NFS.G
Z.J

AVA.20
x1

0

NFS.G
UNZIP

.JA
VA.20

x1
0

NFS.FIT.
JA

VA.20
x1

0

PVFS.G
Z.JA

VA.1x
1

PVFS.G
UNZIP

.JA
VA.1x

1

PVFS.FIT.JA
VA.20

x1
0

ANL_
GPFS.G

Z.J
AVA.20

x1
0

ANL_
GPFS.G

UNZIP
.JA

VA.20
x1

0

ANL_
GPFS.FIT.

JA
VA.20

x1
0

TG_G
PFS.G

Z.JA
VA.20

x1
0

TG
_G

PFS.G
UNZIP

.JA
VA.20

x1
0

TG_G
PFS

.FIT.JA
VA.20

x1
0

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

Figure 7: JAVA client performance distribution via a 5-number summary box-plot for the 10 crop

experiments

Summer 2005 Progress Report
Page 12 of 38

Figure 8 and Figure 9 represent the 5-number summary depicted via box-plots for both the 1-crop per image and 10-
crop per image experiments for the C client. Here we see very similar (as in the JAVA client) differences between
the two figures. All these 4 graphs are excellent at seeing the performance distribution of a particular test case and
the difference among the various configurations.

C Client Performance Distribution: 1 crop
Boxplot (min, q1, median, q3, max)

1

10

100

1000

10000

100000

LOCAL.FIT.C.50x1 NFS.FIT.C.50x1 PVFS.FIT.C.50x1 ANL_GPFS.FIT.C.50x1 TG_GPFS.FIT.C.50x1

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

Figure 8: C client performance distribution via a 5-number summary box-plot for the 1 crop experiments

C Client Performance Distribution: 10 crops
Boxplot (min, q1, median, q3, max)

1

10

100

1000

10000

100000

LOCAL.FIT.C.20x10 NFS.FIT.C.20x10 PVFS.FIT.C.20x10 ANL_GPFS.FIT.C.20x10 TG_GPFS.FIT.C.20x10

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

Figure 9: C client performance distribution via a 5-number summary box-plot for the 10 crop experiments

Summer 2005 Progress Report
Page 13 of 38

Both Figure 10 and Figure 11 show the distribution of the work for each respective client.

JAVA Client Work Distribution (ALL)

1

10

100

1000

10000

100000

LO
CAL.G

Z.JA
VA.50

x1

LO
CAL.G

Z.JA
VA.20

x1
0

LO
CAL.G

UNZIP.JA
VA.50

x1

LO
CAL.G

UNZIP
.JA

VA.20
x1

0

LO
CAL.F

IT.JA
VA.50

x1

LO
CAL.F

IT.JA
VA.20

x1
0

NFS.G
Z.JA

VA.50
x1

NFS.G
Z.JA

VA.20
x1

0

NFS.G
UNZIP

.JA
VA.50

x1

NFS.G
UNZIP

.JA
VA.20

x1
0

NFS.FIT.JA
VA.50

x1

NFS.FIT.JA
VA.20

x1
0

PVFS.G
Z.JA

VA.3x
1

PVFS.G
Z.JA

VA.3x
1

PVFS.G
UNZIP

.JA
VA.3x

1

PVFS.G
UNZIP

.JA
VA.3x

1

PVFS.FIT.JA
VA.50

x1

PVFS.FIT.JA
VA.20

x1
0

ANL_
GPFS.G

Z.JA
VA.50

x1

ANL_
GPFS.G

Z.JA
VA.20

x1
0

ANL_
GPFS.G

UNZIP
.JA

VA.50
x1

ANL_
GPFS.G

UNZIP
.JA

VA.20
x1

0

ANL_
GPFS.FIT.JA

VA.50
x1

ANL_
GPFS.FIT.JA

VA.20
x1

0

TG_G
PFS.G

Z.JA
VA.50

x1

TG_G
PFS.G

Z.JA
VA.20

x1
0

TG_G
PFS.G

UNZIP.JA
VA.50

x1

TG_G
PFS.G

UNZIP
.JA

VA.20
x1

0

TG_G
PFS.FIT.JA

VA.50
x1

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

write()
crop()
read()
copy()

Figure 10: JAVA client work distribution

C Client Work Distribution (FIT)

1

10

100

1000

10000

100000

LO
CAL.5

0x
1

LO
CAL.2

0x
10

NFS.50
x1

NFS.20
x1

0

PVFS.50x
1

PVFS.20
x1

0

ANL G
PFS.50

x1

ANL G
PFS.20

x1
0

TG G
PFS.50

x1

TG G
PFS.20

x1
0

File System & Crops Number

Ti
m

e
(m

s)
 -

lo
g

sc
al

e

write()
crop()
read()
copy()

Summer 2005 Progress Report
Page 14 of 38

Figure 11: C client work distribution

The client normally has 3 stages, with a possible 4th in some experiments:
• copy() – read the GZ compressed image into memory, decompress it, and write it back to disk in a raw

decompressed FIT format; this is an optional stage, depending on the particular experiment
• read() – read the image data into memory
• crop() – crop out a rectangular sub-image from the original larger image
• write() – write the sub-image to disk

The most interesting result of Figure 10 and Figure 11 is that the client spends the majority of its time in either the
copy() stage (if it has one), or in the crop() stage.

Finally, Figure 12 shows an estimate of the time to complete about 100 crops on a single client for both JAVA and
C. This graph was motivated by an earlier email discussion:

“He wants to run a service that supports requests of the form "extract and return a small piece out of a
specified set of O(a few hundred at most) files from a large collection of O(10 TB)." The actual
computation is probably 10 secs if there are a lot of processors, so the key issue is being able to have the
data accessible and schedule the computation quickly on enough processors.”

It is very interesting to see that there are several configurations that can already satisfy the requirements from above
on a single client. In general, the best performance was when the data was accessed in its raw FIT format; LOCAL,
NFS, and ANL GPFS all are able to complete 100 crops in about 10 seconds or less, even without performing
multiple crops on images. It will be interesting to see how this graph changes as we start performing crops in
parallel, and how the time to complete 100 crops drops as we range the number of concurrent clients from 1 to 100
clients.

Time to complete O(100) Crops

1

10

100

1000

10000

LOCAL NFS PVFS ANL GPFS TG GPFS

File System

Ti
m

e
(s

ec
) -

 lo
g

sc
al

e

GZ.JAVA.50x1 GZ.JAVA.20x10 GUNZIP.JAVA.50x1 GUNZIP.JAVA.20x10 FIT.JAVA.50x1 FIT.JAVA.20x10 FIT.C.50x1 FIT.C.20x10

Figure 12: Time to complete O(100) crops from 1 client (both JAVA and C); log scale in seconds

Summer 2005 Progress Report
Page 15 of 38

3.2 Multiple Concurrent Client Access
To run the experiment with multiple concurrent clients accessing the data, I used the existing DiPerF framework to
drive the experiments, collect the performance data, and plot the graphs. I used the TeraGrid to gain access to
multiple physical machines via the command “qsub” which allowed me to make reservations for predefined number
of machines and a predefined time period. During the period of the reservations, I had sole access to these
machines.

Figure 16 through Figure 28 cover the individual performance runs for both the JAVA and C FIT client as the load
varied from 1 to 100 clients running on 50 dual processor nodes; the performance runs varied in the file systems
used (data access method), and the number of crops performed per image. The 1 crop per image represents the
worst case scenario, while the 10 crops per image represents the improvement we might expect due to caching if
multiple crops are performed on each image. The experiments on three file systems (ANL GPFS, TG GPFS, and
NFS) all went smoothly, but PVFS had reliability issues and has been down most of the previous past few weeks,
and hence I was only able to complete one of the four different performance runs on PVFS. Furthermore, the local
file system performance numbers presented in this section have been extrapolated from section 3.1 results based on
a single client running in series. A similar test as I performed with the other FS, but on the local FS would have
been difficult due to the requirement to replicate the data set (3GB data) over 50 physical nodes. Although this
would not have been impossible, but since in the actual experiment, each of the 50 nodes would have acted
completely independent of the other nodes, it would have been expected that the performance from 1 to 50 nodes
would have scaled linearly.

Figure 13 and Figure 14 attempts to summarize Figure 16 through Figure 28 by depicting the peak response time
and throughput achieved for 100 clients running concurrently, along with the standard deviation to better visualize
the spread of the performance results. Some interesting observations:

• Caching improves performance in the Local FS, TG GPFS, ANL GPFS, but in NFS it does not seem to
make much difference, and in PVFS we did not have all the results to be able to clearly say

• The Local FS clearly has the best performance, but any implementation based on this would be inherently
more complex and would most likely require more storage resources, but the results would be more
predictable since the performance would only be dependent on the node itself, and not on a larger
infrastructure that is affected in many ways

• The best next viable alternative which would make the implementation rather simple is the ANL GPFS;
even with 100 clients running concurrently, each crop can be served in 60 ~ 200 ms depending on how
many crops are performed per image; the achieved aggregate throughput is between 500 and 1500 crops
per second

• TG GPFS is the worst performed, mostly due to its high latencies incurred since the data physically resides
at another site, so the data is brought into ANL over a WAN link

• There is a very wide range of performance: response times range from 9 ms to over 3000 ms, and
throughput ranges from 25 crops per second to over 10,000 crops per second

• There are some performance differences between JAVA and C, but at this level, it is not very evident; the
biggest difference seems to be the standard deviation of the results

Summer 2005 Progress Report
Page 16 of 38

Summary FIT Client Performance
Response Time

1

10

100

1000

10000

Local ANL GPFS NFS PVFS TG GPFS

File System

R
es

po
ns

e
Ti

m
e

(m
s)

 -
lo

g
sc

al
e

JAVA 1crop
JAVA 10crops
C 1crop
C 10crops

Figure 13: Summary of Concurrent FIT Client (both JAVA and C) Performance (Response Time); log scale

in milliseconds

Summary FIT Client Performance
Throughput

1

10

100

1000

10000

Local ANL GPFS NFS PVFS TG GPFS

File System

Th
ro

ug
hp

ut
 (c

ro
ps

/s
ec

) -
 lo

g
sc

al
e

JAVA 1crop
JAVA 10crops
C 1crop
C 10crops

Figure 14: Summary of Concurrent FIT Client (both JAVA and C) Performance (Throughput, queries per

second); log scale

Summer 2005 Progress Report
Page 17 of 38

Back in Figure 12, I showed the estimated time to complete 100 crops on 1 node based on the results from section
3.1 (the performance of a single client); the performance of the better FS ranged in the 1 to 10 seconds while more
average results ranged in the 100 seconds area. Based on the results in Figure 13 and Figure 14 in which we had
100 clients accessing the data concurrently, Figure 15 shows the estimated time to complete 100K crops on 100
nodes; we see that in the best case scenario, we have the local FS which would take 10 to 30 seconds, depending on
how many crops per image there were on average, with more mediocre but practical results from the ANL GPFS
taking between 70 to 200 seconds. The worst was the TG GPFS with times as high as 3000 seconds (almost an
hour). Depending on the desired complexity of the system, we can conclude that 100 clients could potentially finish
100K crops on the order of 10~200 seconds utilizing 50 concurent nodes, which seems to be a vast improvement
over the sequential time it would take (between 0.3 and 30 hours) depending on the FS used.

Time to complete O(100K) Crops

1

10

100

1000

10000

LOCAL NFS PVFS ANL GPFS TG GPFS

File System

Ti
m

e
(s

ec
) -

 lo
g

sc
al

e

JAVA 1crop
JAVA 10crops
C 1crop
C 10crops

Figure 15: Time to complete O(100K) crops using 100 clients (both JAVA and C); log scale in seconds

Figure 16 through Figure 28 cover the individual performance runs that were depicted in Figure 13, Figure 14, and
Figure 15.

The most notable observation for Figure 16 and Figure 17, which represent the JAVA client performance on ANL
GPFS, is that the performance varied quite a bit; this could have been caused by much activity on ANL GPFS due to
other work at ANL and across the TG, or it could have been a results of the JAVA semantics on reading from files.
Only further experimentation can confirm which of the two scenarios is more likely. Furthermore, we saw very
minor improvements due to caching (multiple crops per image). We also saw the throughput flatten out at around
50 clients, although it is hard to really tell because of the large variations in the performance. If this is the case,
based on later experiments on the ANL GPFS, we can conclude that the JAVA clients are very CPU resource
intensive and that adding a second client on the same node does not yield better performance, despite the fact that all
the nodes were dual processor machines. These two tests would have to be redone to solidify any conclusion we
arrive about the performance of the JAVA FIT client over ANL GPFS.

Summer 2005 Progress Report
Page 18 of 38

FIT JAVA Client Performance
ANL GPFS, 100 clients on 50 nodes, 10 crops per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 33.3 785.4 177.6 10165.0 1429.4

Throughput 0.0 531.9 586.0 1285.0 417.2

Figure 16: FIT JAVA Client Performance over the ANL GPFS with 100 clients running on 50 dual processor

nodes; each image had 10 crops performed

FIT JAVA Client Performance
ANL GPFS, 100 clients on 50 nodes, 1 crop per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate
Throughput

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 74.8 652.2 161.3 13407.2 1960.9

Throughput 0.0 446.6 539.0 837.0 282.5

Response Time

Figure 17: FIT JAVA Client Performance over the ANL GPFS with 100 clients running on 50 dual processor

nodes; each image had 1 crop performed

Summer 2005 Progress Report
Page 19 of 38

On the other hand, the C client over the same FS (ANL GPFS) performed significantly better, almost tripling the
median throughput achieved. We see that the throughput increases significantly in the first 50 clients (when there
are only 1 client per node), but the performance keeps increasing at a slower pace all the way up to 100 clients. This
shows that the ANL GPFS is not saturated with 100 clients generating an aggregated 1500 crops per second. Note
that caching made a huge difference for the C client, as the performance increased 4 to 5 times. What is interesting
is that the response time remained relatively constant in both scenarios, with a median between 100 and 200 ms.

FIT C Client Performance
ANL GPFS, 100 clients on 50 nodes, 10 crops per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 53.7 128.3 64.9 2006.7 253.0

Throughput 0.0 1347.7 1459.0 1795.0 392.0

Figure 18: FIT C Client Performance over the ANL GPFS with 100 clients running on 50 dual processor

nodes; each image had 10 crops performed

FIT C Client Performance
ANL GPFS, 100 clients on 50 nodes, 1 crop per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Th

ro
ug

hp
ut

 (c
ro

ps
 /

se
c)

Lo

ad
*1

0
(#

 c
on

cu
re

nt
 c

lie
nt

s)

Aggregate
Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 96.8 1236.2 209.5 28841.6 4345.8

Throughput 0.0 326.2 334.5 834.0 263.3

Summer 2005 Progress Report
Page 20 of 38

Figure 19: FIT C Client Performance over the ANL GPFS with 100 clients running on 50 dual processor
nodes; each image had 1 crop performed

The NFS depicts very different characteristics when compared to the ANL GPFS in the previous 2 figures. Figure
20 and Figure 21 shows that the NFS gets saturated relatively early with only a few concurrent clients, and thereafter
maintains its performance throughout despite the increasing number of clients. Once again, the caching did not
seem to make any difference for the JAVA client.

FIT JAVA Client Performance
NFS, 100 clients on 50 nodes, 10 crops per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 179.0 922.4 810.6 4397.7 406.7

Throughput 0.0 166.2 169.0 325.0 83.2

Figure 20: FIT JAVA Client Performance over the NFS with 100 clients running on 50 dual processor nodes;

each image had 10 crops performed

Summer 2005 Progress Report
Page 21 of 38

FIT JAVA Client Performance
NFS, 100 clients on 50 nodes, 1 crop per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 508.0 712.2 626.6 1672.5 208.2

Throughput 31.0 176.4 193.0 262.0 49.9

Figure 21: FIT JAVA Client Performance over the ANL GPFS with 100 clients running on 50 dual processor

nodes; each image had 1 crop performed

In the case of the C client performance over NFS, there was no significant difference between the C client and the
JAVA client. Furthermore, there was no significant improvement based on the caching.

FIT C Client Performance
NFS, 100 clients on 50 nodes, 10 crops per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 467.8 643.6 640.7 921.3 56.9

Throughput 95.0 192.0 191.0 238.0 18.0

Figure 22: FIT C Client Performance over the NFS with 100 clients running on 50 dual processor nodes; each

image had 10 crops performed

Summer 2005 Progress Report
Page 22 of 38

FIT C Client Performance
NFS, 100 clients on 50 nodes, 1 crop per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 398.7 634.6 581.8 1448.6 182.5

Throughput 41.0 180.6 192.0 240.0 42.1

Figure 23: FIT C Client Performance over the NFS with 100 clients running on 50 dual processor nodes; each

image had 1 crop performed

Due to technical difficulties with the PVFS, I was not able to run all four experiments (JAVA client with 10 crops /
image, JAVA client with 1 crop / image, C client with 10 crops / image, and C client with 1 crop per image) as I did
for the other FS. However, I did manage to complete one test, namely the JAVA client with 1 crop per image; the
results are shown in Figure 24. We see that PVFS got saturated with just a few clients (similar to NFS), and reached
a peak throughput of less than 100 crops per second, which only half the performance of the same client running
over NFS. Out of all the alternatives, only the TG GPFS performed worse, but even TG GPFS could have
outperformed PVFS given enough clients.

Summer 2005 Progress Report
Page 23 of 38

FIT JAVA Client Performance
PVFS, 100 clients on 50 nodes, 1 crop per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 707.4 1010.7 951.5 4070.0 362.7

Throughput 0.0 90.1 94.0 137.0 23.1

Figure 24: FIT JAVA Client Performance over the PVFS with 100 clients running on 50 dual processor

nodes; each image had 1 crop performed

The final sets of experiments were over the TG GPFS (which is over a WAN, as compared to all the previous
experiments that were over a LAN). The advantage to the TG GPFS is that it is probably the most scalable due to
the many servers that serve TG GPFS requests, but the increased latency to access the data causes the performance
of the TG GPFS to suffer for a small number of clients; the more concurrent clients, the better the performance of
the TG GPFS will be, up to a certain point (which is surely higher than any of the other FS tested here, i.e. ANL
GPFS, NFS, PVFS).

Figure 25 and Figure 26 shows the performance of the JAVA client over TG GPFS. We see a huge improvement
with caching, and a solid increasing throughput as the number of clients increase. We certainly did not saturate the
TG GPFS with only 100 clients. The biggest drawback is that the peak achieved throughput ranged from 28 to 130
crops / sec, which is considerably lower than what we could achieve with the ANL GPFS, or even NFS. Also note
that it takes on the order of 1.5 seconds to perform one crop, which is almost 10 times larger than what we observed
for the ANL GPFS.

Summer 2005 Progress Report
Page 24 of 38

FIT JAVA Client Performance
TG GPFS, 100 clients on 50 nodes, 10 crops per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 821.2 1353.7 1360.3 1920.3 193.0

Throughput 31.0 132.3 131.0 199.0 23.0

Figure 25: FIT JAVA Client Performance over the TG GPFS with 100 clients running on 50 dual processor

nodes; each image had 10 crops performed

FIT JAVA Client Performance
TG GPFS, 100 clients on 50 nodes, 1 crop per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

 (#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 2844.8 3576.8 3562.9 4584.9 281.5

Throughput 7.0 28.2 28.0 59.0 5.0

Figure 26: FIT JAVA Client Performance over the TG GPFS with 100 clients running on 50 dual processor

nodes; each image had 1 crop performed

Summer 2005 Progress Report
Page 25 of 38

Figure 27 and Figure 28 shows the performance of the C client over TG GPFS. It is interesting that the performance
of the C client came out about 10% lower than that of the JAVA client for the same FS, but since the TG GPFS is a
production system, the difference in performance could have been from other usage of the TG GPFS. It would be
interesting to redo these two sets of experiments to get a firmer confirmation whether or not the JAVA client is
indeed faster over TG GPFS.

FIT C Client Performance
TG GPFS, 100 clients on 50 nodes, 10 crops per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Th
ro

ug
hp

ut
 (c

ro
ps

 /
se

c)

Lo
ad

*1
0

(#
 c

on
cu

re
nt

 c
lie

nt
s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 913.4 1616.9 1607.7 2400.4 235.8

Throughput 55.0 112.4 111.0 432.0 30.4

Figure 27: FIT C Client Performance over the TG GPFS with 100 clients running on 50 dual processor

nodes; each image had 10 crops performed

FIT C Client Performance
TG GPFS, 100 clients on 50 nodes, 1 crop per image

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (sec)

Ti
m

e
to

 c
om

pl
et

e
1

cr
op

 (m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Th

ro
ug

hp
ut

 (c
ro

ps
 /

se
c)

Lo

ad
*1

0
(#

 c
on

cu
re

nt
 c

lie
nt

s)

Aggregate Throughput

Response Time

Load*10

Peak Min Aver Med Max STDEV
ResponseTime 2707.0 3447.5 3445.3 4624.7 329.9

Throughput 14.0 24.4 25.0 34.0 4.5

Summer 2005 Progress Report
Page 26 of 38

Figure 28: FIT C Client Performance over the TG GPFS with 100 clients running on 50 dual processor
nodes; each image had 1 crop performed

3.3 Client Performance Profiling
In order to see the efficiency of the code that reads the FIT file from the various file systems (LAN GPFS, WAN
GPFS, and NFS), I performed some basic experiments that looked at the CPU utilization, observed network
throughput, and theoretical throughput (lower bound based on ROI size, and upper bound based on image size). The
numbers presented in the following figures are just a rough estimate, and if they seem interesting, a more detailed
analysis should be done.

The tables follow the following conventions:

• ROI size (maximum size is 1536x2048
o 10x10: 10 pixel by 10 pixel region of interest (ROI), where each pixel is a 16 bit short value
o 100x100: 100 by 100 pixel ROI; this is the size that I used in all my previous experiments
o 1000x1000: 1000 by 1000 pixel ROI

• ROI TP (ROI/s)
o ROI (of the corresponding size) cropped per second by a single client from the corresponding file

system (i.e. ANL GPFS, TG GPFS, or NFS)
 ANL GPFS: GPFS at ANL which is accessed over a LAN
 TG GPFS: GPFS at SDSC which is accessed over a WAN
 NFS: NFS at ANL which is accessed over a LAN

• CPU (%)
o CPU utilization (2 processor system) at the client side by having 1 client cropping out the needed

ROI from the corresponding FS
• Theoretical TP MIN (Mb/s)

o The minimum amount of data in Mb/s that would be needed to transfer in order to sustain the
achieved ROI TP according to the ROI size and the corresponding FS; for example, if the ROI
TP was 1 per second, and the ROI size was 10x10, then the minimum needed data needed to
perform the crop of the ROI would be: 10 pixels x 10 pixels x (16 bits / (8 bits/byte)) x 1 ROI/s
= 200 bytes / sec; the observed network usage should never be less that this theoretical lower
minimum

• Theoretical TP MAX (Mb/s)
o The maximum amount of data in Mb/s that should be needed to transfer (if all image data was

transferred regardless of the ROI size) in order to sustain the achieved ROI TP and the
corresponding FS; for example, if the ROI TP was 1 per second (for any ROI size), then the
maximum needed data needed to perform the crop of the ROI would be: 1536 pixels x 2048
pixels x (16 bits / (8 bits/byte)) x 1 ROI/s = 6 MB / sec; the observed network usage should
never exceed this theoretical upper maximum

• NET TP (Mb/s)
• COPY TP MAX (Mb/s)

o The maximum observable network throughput in Mb/s achievable on the corresponding FS by
copying a large (1000 files x 6.1 MB each = 6.1GB) set of files from/to the corresponding FS in
a single sequential thread; due to overhead in performing the ROI crop, the observed network
throughput (NET TP) should not exceed this value for a single client

In the ANL GPFS, we notice that the observed network throughput (NET TP) increases with larger ROI sizes, which
indicates that the read operation does not read the entire file, but only a subset. Further proof of this is the fact that
for ROI of 10x10 and 100x100, the NET TP is much lower (123 ~ 167 Mb/s) than the theoretical maximum
throughput (Theoretical TP MAX) of 567 ~ 841 Mb/s. We notice that for a 1000x1000 ROI size, the achieved
network throughput almost reaches the theoretical maximum throughput, indicating that in order to obtain a
1000x1000 ROI from a 1536x2048 image, almost the entire image is read into memory. We also see that the CPU
utilization is minimal (11%) when getting ROI of 100x100 or smaller, so we can actually have multiple concurrent
clients on the same physical machine without saturating the processor. It would be interesting to get some results
via DiPerF to see the performance increase with increasing concurrent clients on the same physical machine on the
various different file systems.

Summer 2005 Progress Report
Page 27 of 38

ROI size ROI TP (ROI/s) CPU (%) Theoretical TP MIN (Mb/s) NET TP (Mb/s) Theoretical TP MAX (Mb/s) COPY TP MAX (Mb/s)
10x10 17.2 11% 0.0 123.3 841.4 600

100x100 11.6 11% 1.8 167.5 567.4 600
1000x1000 6.1 39% 78.3 290.2 299.1 600

LAN GPFS

Figure 29: ANL (LAN) GPFS Performance

In the WAN GPFS, we see that the CPU % utilization was constant throughout the various ROI sizes; at the same
time, the observed network throughput (NET TP) also seemed to be relatively constant. This would indicate that the
high latency (~56 ms) is limiting the network throughput (due to the bandwidth delay product), and hence the
achieved throughput in terms of ROI/sec. The low CPU utilization indicates that dozens of concurrent clients could
possibly be run on a single machine, effectively getting throughput numbers similar to those observed on the LAN
GPFS. This needs to be investigated further.

ROI size ROI TP (ROI/s) CPU (%) Theoretical TP MIN (Mb/s) NET TP (Mb/s) Theoretical TP MAX (Mb/s) COPY TP MAX (Mb/s)
10x10 1.1 3% 0.0 34.4 53.8 160

100x100 1.1 3% 0.2 33.7 53.1 160
1000x1000 0.8 3% 8.4 33.0 36.7 160

WAN GPFS

Figure 30: WAN GPFS Performance

Finally, the NFS results are similar to those of the ANL GPFS.

ROI size ROI TP (ROI/s) CPU (%) Theoretical TP MIN (Mb/s) NET TP (Mb/s) Theoretical TP MAX (Mb/s) COPY TP MAX (Mb/s)
10x10 14.7 5% 0.0 31.7 717.6 320

100x100 12.0 12% 1.8 136.5 588.0 320
1000x1000 3.1 28% 46.1 151.2 152.3 320

NFS

Figure 31: ANL NFS

3.4 Experimental Result’s Conclusions
Overall, the performance of both the JAVA client and the C client running as one client at a time seemed good. The
performance degradation when accessing the data in the GZ format is very large, and I believe it should be avoided
at all costs. The compression ratio is only 3:1, so keeping the entire archive of 2TB in an uncompressed format
would only increase the storage requirement to 6TB, but yielding magnitudes order better performance.

On the other hand, the performance difference among the different FS seems to have grown significantly as we run
100 clients in parallel. Except in just a few cases, the performance difference between the JAVA and C client seems
to be almost negligible.

Based on the results in Section 3, the PVFS and NFS should be avoided if possible. Furthermore, there are
significant performance gains by keeping the data available in an uncompressed format. The TG GPFS should also
be avoided, unless the scalability of the system (concurrent clients accessing the data) will be larger than what can
be supported by the ANL GPFS. Therefore, if performance is important, then the potential FS are the local FS and
the ANL GPFS; in both of these cases, there were improvements in performance for the C client in comparison to
the JAVA client, so the C client would be preferable. The data should also be stored in a raw and uncompressed
format.

Regarding the conclusions we can draw from the client performance profiling, there seems to be quite a bit of
variation in the performance (perhaps due to the shared nature of the file systems); the good part is that with ROI of
100x100 in size, only 30~60% of the data is being transmitted in order to effectively perform the crop on the ROI.
This is much higher than what would be optimal (less than 1%), but at least we do not need to transfer the entire data
(100%) to obtain the ROI. One possible explanation is that the ROI does not form a contiguous region on the
remote file system storage, and hence is read in smaller chunks; these smaller chunks are usually relatively large
(several KB at least), and hence much unneeded data is often read when needing ROI of such small sizes (i.e.
100x100). Also, it seems promising that due to the low CPU utilization during a single client accessing the data, it
would seem worthwhile to investigate (via DiPerF) the upper limits of saturating the CPU and network resources at
a single physical machine.

Summer 2005 Progress Report
Page 28 of 38

4 Proposed Architecture
Due to my conclusions from the previous section, I have come up with three potential architectures, each with their
own merits on three axes: 1) simplicity of design 2) performance, and 3) scalability.

4.1 Design based on TG GPFS (WAN)
The upper bound of the performance of this system based on TG GPFS (WAN) would be between 25 to 100 crops
per second (aggregate throughput), which is the lowest performance of the three proposed architectures. It would
take on the order of low 1000s of seconds to complete 100K crops on 100 concurrent clients. The scalability of this
architecture will be dependent on how many servers are available to serve the TG GPFS (currently about 60
servers); the scalability would be better than the ANL GPFS, but not as good as using the Local FS. Out of the three
architectures, this one would be the simplest design due to the shared and global file system.

Figure 32 shows the proposed architecture that is based on the TG GPFS, a file system that runs over a WAN. In
this system, the Astro Portal (AP) is the gateway to access the compute nodes. For simplicity, the compute nodes
(irrespective of location) access the needed data from a common global file system, namely the TG GPFS;
depending where the compute node physically resides, the connection could either be over a LAN or a WAN. The
AP Manager’s duty is to keep the data set consistent between the TG GPFS and where the original data set resides
via protocols such as GridFTP, RFT, etc. It is the AP’s responsibility to send query requests to the nodes that have
the least expensive access to the TG GPFS; with only 8 sites, it would probably not be hard to build some static
models which then get updated based on real-time observed performance.

Figure 32: Proposed system architecture based on TG GPFS (WAN)

Summer 2005 Progress Report
Page 29 of 38

4.2 Design based on GPFS (LAN)
The upper bound of the performance of this system based on GPFS (LAN) would be between 400 to 1500 crops per
second (aggregate throughput), which offers the best performance while still maintaining a relatively low
complexity in the system architecture. It would take on the order of low 100s of seconds to complete 100K crops on
100 concurrent clients. The scalability of this architecture will be dependent on how many servers are available to
serve the local GPFS (currently about 8 servers at ANL, and probably something similar at each of the 8 sites); the
aggregate scalability if all sites would be used is probably similar to that of the TG GPFS, but not as good as using
the Local FS. Out of the three architectures, this one would be the middle one in terms of design complexity mainly
due to the shared site file system. The entire data set would be replicated (by the AP manager) across all
participating sites (about 8 of them), and hence the AP would be almost identical as to the one for the TG GPFS.
The AP’s responsibility in this case would be to make sure it is load balancing the queries uniformly across the
various sites.

Figure 33: Proposed system architecture based on GPFS (LAN)

Summer 2005 Progress Report
Page 30 of 38

4.3 Design based on Local FS
The upper bound of the performance of this system based on the Local FS would be between 1,500 to over 10,000
crops per second (aggregate throughput), which offers the absolute best performance, but increases the complexity
of the system architecture considerably. It would take on the order of low 10s of seconds to complete 100K crops
on 100 concurrent clients. In theory, the scalability of this architecture should be linear with each increasing client
with its biggest limitation coming from the AP Manager keeping all the data set replicas synchronized. This
architecture is by far the most complex due to the fact that partial data sets must reside at each node on local storage;
the entire data set on the order of TB is not feasible to store at each local node, but a subset of that on the order of
10s GB is certainly feasible with disk sizes commonly exceeding 100s of GB. Note that the AP Manager has an
index as well; this index keeps track of what node has what data, so that queries can then be directed directly at the
nodes that have the correct data. The AP’s responsibility in this architecture is to make sure it keeps the main index
synchronized and sending queries to the nodes that have the necessary data in their local FS. Outside of the fact that
the complexity of this architecture is significantly higher, there are two main drawbacks to this architecture: 1) a
data set that changes very frequently would cause a big overhead to keep the replicas synchronized, and 2) this
would require more aggregate storage since it is feasible that each piece of data would have to have multiple copies
for redundancy and robustness of the system.

Summer 2005 Progress Report
Page 31 of 38

Figure 34: Proposed system architecture based on the Local FS

Summer 2005 Progress Report
Page 32 of 38

4.4 Architecture Building Blocks
The target environment for this architecture is the TeraGrid, which gives us a rich array of both software and
hardware infrastructure in order to come up with an efficient and good implementation of the proposed architecture
without “re-inventing the wheel”. Specifically, the TeraGrid has the Globus Toolkit (GT) installed through the eight
different sites, giving us extra incentives to leverage components of the GT in the actual design of the system.

It is envisioned that the user would submit the queries via a web interface, and receive the results via the same web
interface. The web interface could be a wrapper around a web service client that would communicate with another
web service (WS), namely the Astro Portal (AP) WS. Advanced users could access the web service directly
bypassing the web interface in order to make automating the use of the AP system easier. The first two proposed
systems (Figure 32 and Figure 33) have quite a simple data location mechanism, but the third system (Figure 34)
requires a more sophisticated data location component due to the storage of the data across many local disks, rather
than some common globally accessible file system, such as GPFS. In this more complex system, the AP could use
RLS (Replica Location Service) to locate the data it needs to process the query. Once the data has been found (via
RLS or some other very simple mechanism), the AP could use GRAM (Grid Resource Allocation and Management)
to submit jobs in the TG across the compute nodes in order to process the queries. If GRAM is not used, then a web
service would have to be run at the compute nodes. The easy solution is to start up a pool of web services, and let
them sit idle until queries arrive. The problem with this approach is that it works great in an environment where
machine resources are shared among many users at the same time, and hence it could only offer best effort service.
On the other hand, the TG has local schedulers that are configured to allow only a certain number of concurrent jobs
on the same physical machine on the order of number of processors. This means that the machines where the web
service would be running would be significantly underutilized whenever the web service was idle. There would be a
need for a mechanisms to allow other jobs to be processed by these nodes, which could be suspended while the web
service had useful work to do. On the other hand, the solution involving GRAM to submit jobs to a pool of nodes
has its own limitations as GRAM is quite expensive and would slow down the performance of the system
considerably if the query size would not be large enough.

Summer 2005 Progress Report
Page 33 of 38

4.5 Single Site AstroPortal Architecture
In order to make Figure 35 and Figure 36 easier to understand, let me define the basic components and their
abbreviations:

• Site: A TeraGrid site, such as UC/ANL, SDSC, NCSA, PSC, ORNL, TACC, etc…

• User: user from the astronomy domain who wants to query the data set with a 5-tupple (path & file name,
x-coordinate, y-coordinate, height, and width)

• AstroPortal Web Service (AP WS): A WS that gives users an entry point into accessing TG resources to
process the user’s queries

• MDS4 Index: A standard MDS4 Index used for resource (AP WS) discovery by the users

• Compute Nodes - AstroClient (AC): dedicated nodes in TG that are reserved in advance to be used for
processing queries from the AP WS

• Data Repository: the original data set in compressed format that can be accessed via GridFTP

• AstroData (AD) Manager: A data resource manager that keeps the data set up to date between the data
repository, and the corresponding file systems (Local GPFS, TG GPFS, etc…); in the distributed version,
the AD Manager could also use RLS to manage data replication; the AD Manager also communicates with
the AP WS in order to keep the AP WS data set index updated with the latest data set location

• Local GPFS: Refers to site local GPFS accessed over a LAN

• TG GPFS: TeraGrid wide GPFS accessed over a WAN

• RFT: Used to update the working data set on GPFS from the data repository

• GRAM: Used to make advanced reservations of AC compute nodes by being scheduler independent

• RLS: used to keep track of the data replicas in the distributed AP architecture

The entire AP system would be based on various components (GRAM, MDS4, RFT, GridFTP, RLS, and WS) of the
GT4. In addition, some internal communication between various components of the system could be achieved using
network services in order to keep the communication as light weight as possible.

Once the AP WS is up through a basic bootstrapping mechanism (possibly via GRAM by the administrator of the
AP), the AP WS would register itself with a well known MDS4 Index. Users could later find where to access the
AP WS via the well known MDS4 Index.

The user would make a query against a database containing the meta-data information (i.e. give me all the quasars in
the solar system Omega), and would get back a list of tuples each indicating a quasar; this tuple would consist of: 1)
file path and name, 2) center of region of interest (in terms of x and y coordinate), and 3) the size of the region of
interest (in terms of height and width). Ideally, users could send an entire job (made up of multiple tuples, possibly
10s to 1000s of tuples) in one WS call in order to amortize the cost of the WS call itself.

Initially, the AP WS would make some advanced reservations (via GRAM) of some predefined set of resources
within the local site for a predefined duration; the set of resources and the length of the reservation should be kept
relatively small due to these resources being dedicated to the AP WS regardless if there is work to do or not.

Via the GRAM API, the AP WS would start up the AstroClients (AC) on the reserved set of resources; the AC
would all be idle until queries would be sent by the AP WS. The AP WS would maintain a queue of queries being
sent by users; queries would be taken from the queue and forwarded to the appropriate resource to process it. When
all the queries from one job (1 job could contain multiple queries from 1 user) are complete, the AP WS would
package the results (returned by the AC) into an archive, and send it back to the user.

In the meantime, the AP WS would have to maintain the set of available resources by dynamically increasing and
decreasing the advanced reservations; ideally, there would always be idle AC ready to process any query almost
instantaneous, yet there would never be more than a few idle AC for a prolonged period of time since that would
consume resources that would otherwise have been available to solve some other problems.

Summer 2005 Progress Report
Page 34 of 38

Que
ry

& Resp
on

se

Figure 35: Single Site AstroPortal Architecture

The AP WS could use RLS to maintain a coherent state between the replica location among the different layers
(LOCAL, LAN, WAN). Ideally, as the data gradually flows in (from WAN, to LAN, to LOCAL) as AC access the
data, queries would run faster and faster over time. This would be true if we were able to keep the reservations of
the worker resources indefinitely, which would mean that the data would be accessed more and more over the local
disk as the system was used more and more. The TG GPFS (WAN) and local GPFS (LAN) will be persistent
storage, but the LOCAL disk storage will be fairly dynamic (worker resources will start-up and terminate regularly
due to advanced reservation policies and the fact that the system should not waste resources). In a simple
implementation, if the advanced reservations are not long enough, then the LOCAL disk will never get to be
populated enough that the system gets a query that actually re-uses the LOCAL data, and hence the system would
read most of the data from the local GPFS (LAN).

In order to truly reach that best performance, there would be a need for a worker resource to transfer its state (work
queues and locally cached data) from one resource (i.e. node) to another. As time progresses, we could see this
transferring of state take longer and longer due to a growing local cache of data. For example, if we had 10TB of
data, and 100 clients (distributed over 100 nodes), then each client could potentially have up to 100GB of local
cache data, which would take around 15 minutes to transfer from one node to another over a 1Gb/s link. This is
high cost of transferring state is OK as long as it does not occur too often, but that means that the system will not be
very dynamic and will not be able to respond to "hot-spots" of large number of queries for a short period of time
without wasting many resources.

Summer 2005 Progress Report
Page 35 of 38

Furthermore, when the system is idle because of no new incoming work, the AP WS will eventually de-allocate all
the reserved resources except for a few. What happens to the state of all the resources that get de-allocated? If the
system actually purges the state as well, then we are back to the simple implementation that I started with, in which
most of the cached data will be deleted when the system is idle, and the performance of the entire site will really be
limited to the performance of the local GPFS (LAN).

Finally, the AD Manager would ensure (via RFT) that the data on the TG GPFS is up-to-date based on the data
repository. This is not a critical component since we can assume that the data does not change frequently.

4.6 Distributed (Multiple Site) AstroPortal Architecture
The distributed version of the AP WS becomes much more interesting with its added complexity, but also offers a
much more scalable solution! The majority of the intra-site communication remains unchanged, with the exception
that the MDS4 Index need not be specifically associated with any particular site. Each AP WS from each site would
register with the MDS4 Index; when users would query the MDS4 Index, users could pick a possible AP WS at
random, or based on some simple metrics (i.e. AP WS load, latency from the AP WS to the user, etc) that MDS4
exposes to the users about each AP WS.

Data
Repository

Que
ry

& R
es

ult
s

AstroPortal
WS

Site

TG GPFS
(WAN)

MDS4
/ RLS
Index

AP WS Lookup & Location

Que
ry

& R
es

po
ns

e

RFT

AD
Manager

GRAM – Advanced Reservations

Local GPFS
(LAN)

AstroClient
AC_1

AC_i AC_n

Compute
Nodes

Q
ue

ry
 &

 R
es

po
ns

e Q
uery & Response

USER

Query & Results

AstroPortal WS

Site
MDS4 Registration

Que
ry

& Res
pon

seGRAM – Advanced Reservations

Local GPFS
(LAN)

AstroClient
AC_1

AC_i AC_n

Compute
Nodes

Q
ue

ry
 &

 R
es

po
ns

e

Q
uery & R

esponse

M
D

S4 R
egistration

State Exchange

Query Forwarding

R
LS

 Q
ue

ry

RLS Query

Figure 36: Distributed (Multiple Site) AstroPortal Architecture

The distributed architecture gives us a more scalable system with higher performance. The key to the enhanced
performance is the ability to harness all the resources across various sites in the TG; the interaction between the
various AP WS from each of the various sites is critical. Each AP WS would get its share of queries, but depending
on what data is needed, and the load at the various sites, queries could be handled locally within the site, or they
could be forwarded to another site that could offer faster performance due to data locality, more available resources,
faster hardware, etc…

Finally, the AD Manager remains unchanged in the distributed architecture.

Summer 2005 Progress Report
Page 36 of 38

4.7 Open Research Problems
I believe that there are three main areas with open research problems that the architecture design in Figure 35 and
Figure 36 exposes:

1. cluster level advanced reservations, resource allocation, resource de-allocation (Figure 35)

o A TG site can be considered as a cluster, so we might be able to leverage from techniques used in
large clusters; depending on the problem we are addressing (workload characteristics, number of
users, data set size and distribution, computational intensive clients, I/O intensive clients, etc…),
different techniques and heuristics will apply for managing efficiently the set of resources

2. data management, location, and replication (Figure 36)

o There are some very interesting problems around data management, in which we have a very large
data set that we want to break up among various sites, but also do some level of replication among
the sites for improved performance; furthermore, doing data movement based on past workloads
and access patterns might prove to offer significant performance gains; a significant challenge will
be how to perform efficient state transfer among worker resources while maintaining a dynamic
system

3. Distributed resource management between various sites (Figure 36)

o The inter-site communication among the AP WS and its effects on the overall system performance
is very interesting; work can be performed at the local site, or it could be delegated to another site
that in theory could complete the work faster; the algorithms, the amount of state information, and
the frequency of state information exchanges all contribute to how well and evenly the workload is
spread across the various AP WS, which ultimately decides the response time that the user
observes

In my opinion, all three areas mentioned above seem to fit in the larger context of resource management. The
successful implementation the distributed AP WS and the optimization of the use of both the data storage and the
computational resources could lead to a scalable system supporting large numbers of concurrent users while
providing very fast response times in comparison to traditional single server implementations. The use of the GT4
throughout the architecture will allow the system to interoperate with other system easily, and provide a standard
method of accessing the system.

Although this system is geared towards an astronomy application, I believe that the exact same architecture and
optimization algorithms would be suitable for a wide range of applications that have the following characteristics: 1)
large data sets, 2) large number of users, and 3) large workloads that can be easily broken up into smaller workloads.
I believe that there are many applications that fall in this category; one such example is Computer Aided Diagnosis
(CAD) medical systems that are used to screen large number of patient images for cancers; the data set is very large
(millions of images of the human body), and each image can be processed independently of other images in the data
set (hence the ease of braking up large workloads into smaller ones). If analyzing a single image took on the order
of seconds, processing the entire data set on a single machine could take on the order of days, but parallelizing the
entire process to hundreds of worker nodes could provide speedups equal to the number of resources used.
Furthermore, there are medical centers throughout the whole country that perform these early screening for cancer,
and hence there are probably a large user base that would use such a system if it gave the doctors a faster way of
screening their patients. This problem from the medical field is just one example of another domain that could
benefit from such a system as the one described here.

Summer 2005 Progress Report
Page 37 of 38

5 Implemented Architecture
The current implementation is shown in Figure 37.

Query
 & Res

po
nse

 via
 TCP

Figure 37: Implemented AstroPortal Architecture

The key missing functional components are:

• AP WS location via MDS Index: User would use the MDS Index to find the AP WS

• Storage Hierarchy:

o L1: Local

o L2: GPFS (LAN)

o L3: GPFS (WAN)

• Automation of resource provisioning via GRAM

Summer 2005 Progress Report
Page 38 of 38

Figure 38: AstroPortal WS Implementation Overview

6 Bibliography
[1] JAVA FITS library: http://heasarc.gsfc.nasa.gov/docs/heasarc/fits/java/v0.9/

[2] WCSTools libraries: http://tdc-www.cfa.harvard.edu/software/wcstools/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

