
 1

A Scalability and Performance Evaluation of a
Distributed Usage SLA-based Broker in Large Grid Environments

Catalin Dumitrescu*, Ian Foster*+, Ioan Raicu*

Abstract

Managing usage SLAs within large environments
that integrate participants and resources spanning
multiple physical institutions is a challenging problem.
Maintaining a single unified usage SLA management
decision point over hundreds to thousands of jobs and
sites can quickly become a problem in terms of
reliability as well as performance. Previous work
developed GRUBER, a distributed grid Usage SLA-
based resource broker that allows multiple decision
points to coexist and cooperate in real-time. GRUBER
ultimately addresses issues regarding how usage SLAs
can be stored, retrieved and disseminated efficiently in
a large distributed environment. The key question this
paper addresses is the scalability and performance of
GRUBER in large Grid environments. We conclude
that as little as three GRUBER decision points could
be enough in an environment with 300 sites and 60
VOs, an environment ten times larger than today’s
Grid3.

1. Introduction

The motivating scenario our work addresses
consists of providers wishing to grant consumers the
right to use certain resources for some agreed-upon
time period in a large grid environment. Providers
might be companies providing outsourcing services, or
scientific laboratories that provide different scientific
collaborations with access to their computers or other
resources.

Providers and consumers may be nested: a provider
may function as a middleman, providing access to
resources to which the provider has itself been granted
access by some other provider. Usage SLA issues can
arise at multiple levels in such scenarios. Providers
want to express (and enforce) the SLAs under which
resources are made available to consumers. Consumers
want to access and interpret SLA statements published

by providers, in order to monitor their agreements and
guide their activities. Both providers and consumers
want to verify that SLAs are applied correctly. In
summary, we address a technique for constructing a
scalable management service with support for usage
SLA expression, publication, discovery, interpretation,
enforcement, and verification [1]. This problem
encompasses challenging and interrelated scheduling,
information synchronizations and scalability issues.
We build on previous work concerning the
specification and enforcement of local resource
scheduling policies [2,3,4,5,6], the GRUBER broker
[7,8,9,25], and the scalability and performance
measurements of various grid services [13]. GRUBER
ultimately addresses issues regarding how SLAs can be
stored, retrieved and disseminated efficiently in a large
distributed environment. The key question this paper
addresses is the scalability and performance of
GRUBER in large Grid environments.

The rest of this article is organized as follows. We
first provide a more detailed description of the problem
that we address. We then discuss the background
information and related work. Section 3 describes
succinctly the initial model for resource and workload
management, namely GRUBER. The rest of the paper
focuses on the problem of constructing a scalable
framework infrastructure for usage SLA management,
with section 4 covering our experimental results, and
finally, with our conclusions.

1.1. Problem Statement

This work targets grids that may comprise of
hundreds of institutions and thousands of individual
investigators that collectively control tens or hundreds
of thousands of computers and associated storage
systems [11,12]. Each individual investigator and
institution may participate in, and contribute resources
to, multiple collaborative projects that can vary widely
in scale, lifetime, and formality. At one end of the
spectrum, two collaborating scientists may want to
pool resources for the purposes of a single analysis. At

*Computer Science Department
The University of Chicago

{cldumitr,iraicu}@cs.uchicago.edu

+Mathematics and Computer Science Division
Argonne National Laboratory

foster@mcs.anl.gov

the other extreme, the major physics collaborations
associated with the Large Hadron Collider encompass
thousands of physicists at hundreds of institutions, and
need to manage workloads comprising dynamic mixes
of work of varying priority, some requiring the
efficient aggregation of large quantities of computing
and storage.

In this paper we focus on techniques for
constructing a scalable service and measure its
performance. It is important to understand the
problems we face in order to come up with appropriate
solutions. We initially focus on performance issues and
on service reliability. In the end, we also discuss the
problem of privacy issues for usage SLA at the VO
level and beyond.

1.2. Performance Issues

We have performed several experiments using
DiPerF, a distributed performance-testing framework
designed to simplify and automate service performance
evaluation [13]. DiPerF coordinates a pool of machines
that test a target service, collects and aggregates
performance metrics, and generates performance
statistics. The aggregate data collected provide
information on a service throughput, on the service
‘fairness’ when serving multiple clients concurrently,
and on the impact of network latency on service
performance.

We have used DiPerF to perform tests on service
instance creation in a GT3 service (similar to the
GRUBER implementation), and found a peak
throughput of about 14 requests per second. Average
service response time under ‘normal’ load was about
4s. Average service response time under ‘heavy’ load
was about 10 seconds. We also observed that under
heavy load the WS service does not allocate resources
evenly among clients [13]. The results of

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

(x
10

)
/ R

es
po

ns
e

T
im

e
(s

ec
)

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

Th
ro

ug
hp

ut
 (

Jo
bs

 /
S

ec
)

Throughput

Response Time

Load

Figure 1 show how the service response time increases
with the number of concurrent machines. As a

consequence, there is a real need to investigate other
ways of building and organizing a scheduling
infrastructure for large grids with many submitting
hosts, and to understand the implications this has for
performance, reliability and scheduling decision
accuracy.

GRUBER bypasses the OGSA service instance
creation latency by providing the possibility of using
generic and long term clients. One client is enough to
handle all jobs submissions from at least six
submission hosts. Unfortunately, in a large
environment with many submission hosts, the
performance problem still remains due to the high
number of GRUBER clients that can run in parallel.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

(x
10

)
/ R

es
po

ns
e

T
im

e
(s

ec
)

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

Th
ro

ug
hp

ut
 (

Jo
bs

 /
S

ec
)

Throughput

Response Time

Load

Figure 1: GT3.2 Service Instance Creation:
Response time, Throughput, and Load

1.3. Service Reliability Issues

Another problem faced often in large distributed
environments is the reliability and availability of a
service. The interactions place undue burden on usage
SLA service providers, who are forced to implement
the SLA decision points for various communities.
Furthermore, many interactions might be required as
every usage SLA alteration can require interaction with
the responsible decision point (also known as a VO
policy enforcement point). As a consequence, the cost
of maintaining a usage SLA and scheduling
infrastructure should not increase with the number of
resource providers and VOs participating in resource
sharing actions. Administration issues must be
bounded, essentially making the complexity
proportional with the number of VOs and resource
providers and not the size of the VOs [10].

Pearlman et al [10] address the scalability problem
by introducing a third party, a community
authorization service (CAS) that is responsible for
managing the SLAs that govern access to a
community’s resources. While such an approach is

suited from an authorization purpose, it does not match
the problem of resource scheduling and continuous
usage SLA enforcement when resources are over-
provided or contention occurs under more complex
scenarios [1]. On the other hand, we approach the
problem differently, leveraging from a peer-to-peer
approach [14], where only partial information is
exchanged among various decision points.

1.4. Privacy for Usage SLA Issues

Usage SLA specification, enforcement, negotiation,
and verification mechanisms arise at multiple levels
within VO-based environments. Resource providers
want to establish, modify, enforce, and instrument
usage SLAs concerning how their resources are made
available to different participants and/or for different
purposes.

In certain cases, users can require various privacy
issues for the availability of information about their
work (job types and priorities, data movement and
characteristics). Thus, the maintenance of a private
broker could be a better solution in such a situation.
This issue can be encountered from the VO level on
down to the individual scientists. The problem
becomes even more sensible when dealing with
commercial entities that have specific SLAs about their
information [15]. Privacy for usage SLA issues is
outside the scope of this paper; however it is
nevertheless a very important topic for usage SLAs.

2. Background Information

2.1. Related Work

The Maui scheduler [4] for clusters and
supercomputers is capable of enforcing complex SLA-
driven scheduling schemas. It operates as a SLA
engine for controlling resource allocations to jobs, and
concurrently optimizes the use of managed resources.
The scheduler manipulates several kinds of objects:
jobs, nodes, reservations, QoS structures, policies, and
composite objects.

The fair share scheduling strategies which were
studied in depth in the early 1980s in the context of
mainframe batch and timeshared systems, and then
brought into the UNIX environment, represent another
important body of work related to our problem. The
purpose of fair share scheduling is to control resource
distribution to allow greater predictability in process
execution process [20,21].

In et al. [22] proposed a framework for policy
based scheduling of grid-enabled resource allocations.
The framework provides scheduling strategies that (a)

control the request assignment to grid resources by
adjusting resource usage accounts or request priorities;
(b) manage efficiently resources assigning usage
quotas to intended users; and (c) supports reservation
based grid resource allocation. This framework is
incorporated as part of the SPHINX scheduling system
from University of Florida. The difference with our
approach consists in the fact that we do not assume a
centralized point of usage SLA specification.

The Grid Service Broker, developed as part of the
GridBus Project, mediates access to distributed
resources by (a) discovering suitable data sources for a
given analysis scenario, (b) suitable computational
resources, (c) optimally mapping analysis jobs to
resources, (d) deploying and monitoring job execution
on selected resources, (e) accessing data from local or
remote data source during job execution, and (f)
collating and presenting results. The broker supports a
declarative and dynamic parametric programming
model for creating grid applications [23]. GridBus
targets a higher degree of details about available
resources (machine level), jobs and files compared to
GRUBER, which inherently makes GRUBER more
scalable in large environments. Also, GridBus does not
take in account the notions of sites, submission hosts,
and virtual organizations, groups or priorities
associated with them.

Cremona is a project developed at IBM as a part of
the ETTK framework [9]. It is an implementation of
the WS-Agreement specification and its architecture
separates multiple layers of agreement management,
orthogonal to the agreement management functions:
the Agreement Protocol Role Management, the
Agreement Service Role Management, and the
Strategic Agreement Management. Cremona focuses
on advance reservations, automated SLA negotiation
and verification, as well as advanced agreement
management. GRUBER instead targets a completely
different environment model, where the main players
are VO and resource providers. They also base their
actions on usage SLAs and a more opportunistic
environment where free CPUs are acquired when
available. Furthermore, GRUBER introduces the
notion of adaptive usage SLAs, considering sites
autonomous, adjusting to instantaneous sharing
policies without triggering SLA violations when
detected.

2.2. DiPerF

Since we used the DiPerF framework to perform
the performance and scalability experiments in this
paper, we decided to give an overview of DiPerF to
outline its features.

DiPerF coordinates several machines in executing a
performance service client and collects various metrics
about the performance of the tested service. The
framework is composed of a controller/collector,
several submitter modules and a tester component. The
tester is responsible for running remotely the service
performance measurement clients and to report the
results back. The controller is responsible for
performing all the aggregation operations required and
presented in this paper [13]. Figure 2 depicts the
various components of the DiPerF framework and the
relationship among the controller, the tester, the client
code, and the service.

Figure 2: DiPerF framework overview

The client code distribution is automated as well as
performance metric collection and result computation.
Due to the time error rates seen in practice, DiPerF
handles the time synchronization with a centralized
time-stamp server that allows a time mapping to a
common base; with a common unified global time, the
framework is able to do metric aggregation accurately.
Figure 3 depicts the aggregate view of the controller
after the time has been synchronized at all testers.
Additionally, due to the controlled delay in starting
clients, DiPerF is able to report the maximum
throughput a service supports as well as service
response time as the load on the service varies.

Figure 3: Aggregate view at the controller

Originally, DiPerF only supported the testing of a
single service. An important improvement done to
DiPerF for this set of experiments was the ability to
test distributed services, such as the GRUBER
deployment presented in Figure 4. Practically, each
tester instantiates a GRUBER client with a specific
GRUBER engine address for access, while later uses
the site selectors and other GRUBER specific tools for
actual job submission.

3. Usage SLA Enforcement Details

We consider important to overview the problem
first at smaller sizes [1] and second to describe and
analyze our solution for a scalable usage SLA
management service.

3.1. Usage SLA Enforcement Model

The environment model which we used for our
evaluation and experimentation is depicted in Figure 4
[16,17]. The main elements of our work are the
decision points (previously known as policy
enforcement points or PEPs), which are responsible for
executing SLAs. They gather monitoring metrics and
other information relevant to their operations, and then
use this information to steer resource allocations as
specified by the usage SLAs [1].

Figure 4: VO-Level Architecture

We distinguish between two types of PEPs. Site
policy enforcement points (S-PEPs) reside at all sites
and enforce site-specific policies. In our experiments,
we did not take S-PEPs into consideration as they were
outside the scope of this paper, and assumed the
decision points have a total control over scheduling
decisions.

VO policy enforcement points (decision points),
associated with VOs, operate in a similar way to S-
PEPs. They make decisions on a per-job basis to
enforce usage SLAs regarding VO specifications for
resource allocations to VO groups or to types of work
executed by the VO. Decision points are invoked when
VO planners make job planning and scheduling
decisions to select which jobs to run, when to send
them to a site scheduler, and which sites to run them at.
Decision points interact with S-PEPs and schedulers to
enforce VO-level SLA specifications.

We have already developed GRUBER [24,25], a
prototype Grid decision point and S-PEP infrastructure
that implements the usage SLA management model
introduced before. GRUBER is composed of four
principal components, the Gruber engine, the
GRUBER site components, the GRUBER site
selectors, and the GRUBER queue manager. In the
GRUBER prototype, usage SLAs are specified through
a specialized interface. The main components that we
concentrate our performance measurements are the
engine and the site selectors, as they are the main
elements in providing adequate scheduling decisions
when resources are available.

3.2. Information Dissemination Strategies

An important issue for a decentralized service is
how usage SLAs and resource statuses are
disseminated among components. The complexity is
higher than for a file replica catalog, due to the
necessity to correctly aggregated partial information

gathered at several points; without the correct
aggregation of the partial information, wrong decisions
could generate workload starvations and resource
under-utilization.

The first approach could allow both resource
utilizations and usage SLAs to be exchanged among
deployed decision points. The second approach might
only allow utilizations to be exchanged among decision
points. As possible variations on these two
approaches, whenever new sites are detected in the
exchanged data, their status is incorporated locally,
assuming that each decision point has only a partial
view of the environment. The third approach is one in
which no usage information is exchanged and each
decision point relies only on its own mechanisms for
detecting the environment status, assuming the
capacity to acquire global information about the
environment.

For the experiments in this paper, we focused on
the second approach with the assumption that each
decision point has full “static” knowledge about
available resources for its users, but not the latest
resource utilizations. Practically, each decision point
relies on information exchanges for updating only its
view on the current utilizations. Another advantage of
this approach is that it simplifies the implementation
greatly, by avoiding the tracking of each usage SLA
and allocation apparition time, as well as the entity to
which it applies.

4. Experimental Results

4.1. Architecture Analyses

This section describes the performance analysis
study we conducted to evaluate various grid-wide
resource allocation models. In particular, we wanted to
determine whether CPU resources could be allocated in
a fair manner across multiple VOs, and multiple groups
within a VO, without requiring the centralized control
that is impractical in large grid environments. The way
in which information is communicated between
various decision points has a critical influence on the
way that information is used.

4.1.1. Evaluated Scenarios

Our study evaluates several ranges of service
distributions, from a single decision point, to many
multiple decision points. Figure 5 depicts in a generic
way the layout of the scenarios we use for our
performance measurements.

Figure 5: Multiple Unspecialized Decision

Points

In either the single or multiple decision point
(GRUBER) scenario, each decision point maintains a
full view of the resource usages and allocations in the
environment, by site monitoring and state exchanges
among decision points (VO level queues, group level
queues, and local usage SLAs).

We consider that for the scenario of one decision
point per VO, the performance and reliability of the
service is very similar to the case of generic decision
points, and therefore we did not perform any additional
tests for this case.

4.2. Empirical Results

We performed our tests on PlanetLab by deploying
GRUBER decision points on several nodes. The
complexity of the brokers’ network used in this set of
tests is specifically low in order to provide a simple
case scenario that can easily be followed and later
used.

GRUBER Infrastructure: We used one to ten
GRUBER decision points deployed on machines
around the world (mostly US and Europe). Each
decision point maintained a view of the configuration
of “simulated” global environment, while exchanging
information about instantaneous utilizations.

Workloads and Environment: We used composite
continuous workloads that overlay work for 60 VOs
and 10 VO groups. The submission interval was one
hour in all cases. Each submission site scheduled
randomly one job to one GRUBER decision point on
behalf of a pair (VO, group). The environment was
composed of 300 sites (ten times larger than what
Grid3 is today). The initial configurations were based
on the Grid3 configurations.

Usage SLA: For each virtual site, we used a similar
approach in usage SLA specification by using the
Grid3 policies as the initial configurations.

Job states: The workload executions are based on a
model where jobs pass through four states: 1)
submitted by a user to a submission host; 2) submitted
by a submission host to a site, but queued or held; 3)
running at a site; and 4) completed.

Evaluation Criteria / Measured metrics: We consider
several metrics to evaluate the effectiveness of
GRUBER in practice. We evaluate the effectiveness of
different decision point deployment infrastructures by
measuring Average Response Time (Response),
Average Throughput (Throughput), Queue Time
(QTime), Average Resource Utilization (Util), and
Average Scheduling Accuracy (Accuracy) as a function
of the environment complexity. All metrics are
important as a good infrastructure will maximize
delivered resources and meet owner intents.

We define Response as follows, with RTi being the
individual job time response:

Response = �i=1..N RTi / N

Throughput is defined as the number of requests
completed successfully by the service averaged over a
short time interval (per second or minute). We used in
our measurements a second as the interval of measure.

We define QTime for an entire VO as follows, with
RTi being the individual job time response:

QTime = �i=1..N RTi / N

The difference between Delay and QTime is in their
focus on different elements. While Delay measures the
service responsiveness, QTime measures how fast a
job is placed in execution after scheduling and provides
a measure of the service accuracy in providing *good*
scheduling decisions.

We define Util as the ratio of the CPU-resource
actually consumed by users (ETi) to the total CPU-
resources available. We compute this quantity as
follows:

Util = � (ETi) / (#cpus * �t)

The last metric used for analysis is Accuracy. We
first define scheduling accuracy (SAi) as the ratio of
percentage of free resources at the selected site to the
total percentage of free resources over the entire grid.
Furthermore, we introduce Accuracy as the aggregated
value of all scheduling accuracies measured for each
individual job (where N is the total number of jobs
scheduled in the considered period):

Accuracy = �i=1..N (SAi) / N

4.2.1. Infrastructure Scalability

By means of DiPerF we varied slowly the number
of clients for our performance and scalability study.
Figures below present Response, Throughput and
Load as measured by DiPerF. The overall
improvement in terms of throughput and response time
is two to three times when a three-decision point
infrastructure is deployed, while for the ten-decision
point infrastructure the throughput increased almost
five times.

The results of show service capacity decreases
with the number of concurrent machines. Throughput
increases immediately but does not go over a value of
two jobs per second when all testing machines (120)
are accessing the service in parallel. We also note the
service response time decreases, once the number of
machines decreases.

Figure 6: Centralized Scheduling Service

The results in show service capacity decreasing
with the number of concurrent machines later.
Throughput increases slowly and achieves a value of
6 job scheduling requests per second when all testing
machines are accessing the service. Response is also
smaller in average compared with the previous results.
Once the number of machines starts decreasing,
Response does not decrease in a symmetrical way, the
service remaining somehow in a state that impedes it to
answer as quickly as before. An explanation for this
behavior is the fact that once jobs were scheduled for
execution, they were considered long term running
jobs. Each job was considered running for a longer
time interval than the entire test time and the grid state
was different (monotonically decreasing) in terms of
free resources with each scheduled job.

Figure 7: Distributed Scheduling Service

with Three Decision Points

The results in are somehow different. The
distributed service provides a symmetrical behavior
with the number of concurrent machines independent
of the state of the grid (lightly or heavily loaded). This
result verifies the intuition that for a certain grid
configuration size, there is an appropriate number of
decision points that can serve the scheduling purposes
under an appropriate performance constraint. The
throughput achieved increases linearly with the number
of decision points.

Figure 8: Distributed Scheduling Service

with Ten Decision Points

While the performance of a service in answering
queries is important, the accuracy of a distributed
service in providing accurate scheduling decisions is
even more important. In the next two sub-sections, we
analyze the performance of our decision point’s
implementation, namely GRUBER, and the supporting
algorithms in providing accurate scheduling decisions
with both infrastructure complexity and
synchronization interval between decision points.

4.2.2. Infrastructure Performance

For scheduling decision performance analyses, we
use three of the metrics introduced before, QTime,
Util and Accuracy. In addition, we provide the total

number of requested operations and the actual total
number of served operations.

As a side note, these metrics are even more
important in our context because the GRUBER site
selectors are able to provide a random solution
whenever they are unable to contact a decision point
service. Therefore, measuring the accuracy of the
scheduling decisions has a higher weight than the
previous analysis in order to capture what happens
when the infrastructure is overloaded or information
exchanges are not performed fast enough. As a
reminder, in all cases status information was
exchanged every ten minutes.

Table 1 depicts the overall performance of
GRUBER in diverse scenarios. While the values under
the “All Requests” section provide an overall view of
GRUBER’s performance, they do not reflect the actual
performance in scheduling jobs when the scheduling
workload is adaptable to the system capacity.

Table 1: Performance of decision points

 If we consider only jobs that were scheduled
through one of the GRUBER decision points, the
results look rather different. There are four notable
differences when comparing the performance between
the requests handled and those that were not handled
by GRUBER; 1) the accuracy shows significant
improvement; 2) higher resource utilization when
taking into consideration the percentage of requests
handled by GRUBER; 3) the QTime is orders of
magnitude better; and 4) the Normalized QTime is
noticeably improved between requests not handled by
GRUBER and all the requests. It is interesting to note
that the scenario with only 1 decision point has a very
small QTime; this is due to the fact that within the 1
hour the tests were performed, the number of requests
made was smaller than in the other cases due to lower
throughput. With less resources being used, it was
easier for the decision point to make good decisions,
and hence we small QTime. We computed the
normalized QTime in order to take into account both
the number of requests and the resource utilization; we
discovered that the deceivingly low QTime for the 1
decision point scenario now shows its worse
performance when compared to the other two
scenarios.

4.2.3. Scheduling Performance with
Synchronization

The other important dimension in our analysis is the
synchronization interval among decision points. We
performed several tests using DiPerF, where the
decision points were exchanging status information at
predefined time intervals, namely 1, 3, 10, and 30
minute intervals. The results are presented in Figure 9.
It is important to note that the higher frequency of
information exchanges has also a negative draw-back
for the GRUBER decision points, namely the lower
percentage of jobs handled by GRUBER. Practically,
each decision point spends some of its resources on
sending and receiving other data without necessarily
improving the performance in performing scheduling
operations. According to our observations, for a three
decision point infrastructure a 3 to 10 minutes
exchange interval should be sufficient for achieving a
95% Accuracy.

1
3

10
30

GRUBER % Jobs

Accuracy0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Interval Metric

Figure 9: Accuracy and percentage of jobs
handled by GRUBER as a function of the

Exchange Time Interval

5. Conclusions and Future Work

Managing usage SLAs within large virtual
organizations (VOs) that integrate participants and
resources spanning multiple physical institutions is a
challenging problem. Maintaining a single unified
decision point for usage SLA management is a
problem that arises when many users and sites need to
be managed. We provide a solution, namely GRUBER,
to address the question on how SLAs can be stored,
retrieved and disseminated efficiently in a large
distributed environment. The key question this paper
addressed was the scalability and performance of
GRUBER in large Grid environments. We evaluated a
distributed architecture and SLA model for scheduling
resources in large grid environments while satisfying
resource owner and VO SLAs.

We achieved results in two dimensions – how well
our proposed solution performed in practice and how
to measure the success of GRUBER. We also
introduced an enhancement to our GRUBER
framework, namely the distributed approach in
resource scheduling and usage SLA management.

There are certain issues that we did not address in
this paper. For instance, our analysis did not consider
certain methods of information dissemination among
decision points. Furthermore, validating our results
would involve performing tests on a considerably
larger grid than exists today in practice.

In future work, we plan to perform a more
extensive performance study in a wider range of
scenarios and information dissemination strategies.

Acknowledgements: We thank Robert Gardner, Ruth
Pordes, and Ian Fisk for insights, discussions, and
support. We also thank the Grid3 project. Michael Wilde,
Jens Voeckler, James Dobson, and Luiz Meyer provided
code examples and technical support that made the
results presented here possible. This work was supported
by the NSF Information Technology Research GriPhyN
project, under contract ITR-0086044.

6. References

1. Dumitrescu, C. and I. Foster, “Usage Policy-based CPU
Sharing in Virtual Organizations”, in 5th International
Workshop in Grid Computing, 2004, Pittsburg, PA.

2. Condor Project, Condor-G, www.cs.wisc.edu/condor/,
2002.

3. Altair Grid Technologies, LLC, A Batching Queuing
System, Software Project, Software Project, 2003.

4. Platform Computing Corporation, Administrator's Guide,
Version 4.1. February 2001.

5. Cluster Resources, Inc., Maui Scheduler, Software Project,
2001-2005.

6. Foster, I., et al., “End-to-End Quality of Service for High-
end Applications”, Computer Communications, 2004. 27
(14): p. 1375-1388.

7. S. Tuecke, et al., “Grid Service Specification”.
8. Dan, A., C. Dumitrescu, and M. Ripeanu, “Connecting

Client Objectives with Resource Capabilities: An Essential
Component for Grid Service Management Infrastructures”,
in ACM International Conference on Service Oriented
Computing (ICSOC'04). 2004. New York.

9. Ludwig, H., A. Dan, and B. Kearney, “Cremona: An
Architecture and Library for Creation and Monitoring WS-
Agreements”, in ACM International Conference on Service
Oriented Computing (ICSOC'04). 2004. New York.

10. Pearlman, L., et al., “A Community Authorization Service
for Group Collaboration”, in IEEE 3rd International
Workshop on Policies for Distributed Systems and
Networks. 2002.

11. Avery, P. and I. Foster, “The GriPhyN Project: Towards
Petascale Virtual Data Grids”, 2001.

12. Chervenak, A., et al., “The Data Grid: Towards an
Architecture for the Distributed Management and Analysis
of Large Scientific Data Sets”, J. Network and Computer
Applications, 2001(23): p. 187-200.

13. Dumitrescu, C., et al., “DiPerF: Automated DIstributed
PERformance testing Framework”, in 5th International
Workshop in Grid Computing, 2004, Pittsburg, PA.

14. Ripeanu, M. and I. Foster., “A Decentralized, Adaptive,
Replica Location Service”, in 11th IEEE International
Symposium on High Performance Distributed Computing.
2002. Edinburgh, Scotland: IEEE Computer Society Press.

15. Gimpel, H., et al., “PANDA: Specifying Policies for
Automated Negotiations of Service Contracts”, in the 1st
International Conference on Service Oriented Computing.
2003. Trento, Italy.

16. Ranganathan, K. and I. Foster, “Simulation Studies of
Computation and Data Scheduling Algorithms for Data
Grids”, Journal of Grid Computing, 2003, 1 (1).

17. Ranganathan, K. and I. Foster, “Decoupling Computation
and Data Scheduling in Distributed Data-Intensive
Applications”, in 11th IEEE International Symposium on
High Performance Distributed Computing. 2002.
Edinburgh, Scotland: IEEE Computer Society Press.

18. Foster, I., et al., “The Grid2003 Production Grid: Principles
and Practice”, in 13th International Symposium on High
Performance Distributed Computing. 2004.

19. Legrand, I.C., et al., “MonALISA: A Distributed
Monitoring Service Architecture”, in Computing in High
Energy Physics. 2003. La Jolla, CA.

20. Kay, J. and P. Lauder, “A Fair Share Scheduler”, University
of Sydney, AT&T Bell Labs, 1998.

21. Henry, G.J., “A Fair Share Scheduler”, AT&T Bell
Laboratory Technical Journal, October 1984, 3 (8).

22. I In, J., P. Avery, R. Cavanaugh, and S. Ranka, “Policy
Based Scheduling for Simple Quality of Service in Grid
Computing”, in International Parallel & Distributed
Processing Symposium (IPDPS). April '04. Santa Fe, New
Mexico.

23. Buyya, R., GridBus: “A Economy-based Grid Resource
Broker”, The University of Melbourne: Melbourne, 2004.

24. Dumitrescu, C. and I. Foster, "GangSim: A Simulator for
Grid Scheduling Studies", accepted for publication in
Cluster Computing and Grid (CCGrid), Cardiff, UK, May
2005.

25. Dumitrescu, C., Foster, I., “GRUBER: A Grid Resource
SLA Broker”, GriPhyN/iVDGL Technical Report, 2005.

