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Abstract 

Managing usage SLAs within large environments 
that integrate participants and resources spanning 
multiple physical institutions is a challenging problem. 
Maintaining a single unified usage SLA management 
decision point over hundreds to thousands of jobs and 
sites can quickly become a problem in terms of 
reliability as well as performance. Previous work 
developed GRUBER, a distributed grid Usage SLA-
based resource broker that allows multiple decision 
points to coexist and cooperate in real-time.  GRUBER 
ultimately addresses issues regarding how usage SLAs 
can be stored, retrieved and disseminated efficiently in 
a large distributed environment.  The key question this 
paper addresses is the scalability and performance of 
GRUBER in large Grid environments.  We conclude 
that as little as three GRUBER decision points could 
be enough in an environment with 300 sites and 60 
VOs, an environment ten times larger than today’s 
Grid3.  

 

1. Introduction  

The motivating scenario our work addresses 
consists of providers wishing to grant consumers the 
right to use certain resources for some agreed-upon 
time period in a large grid environment.  Providers 
might be companies providing outsourcing services, or 
scientific laboratories that provide different scientific 
collaborations with access to their computers or other 
resources.  

Providers and consumers may be nested: a provider 
may function as a middleman, providing access to 
resources to which the provider has itself been granted 
access by some other provider. Usage SLA issues can 
arise at multiple levels in such scenarios. Providers 
want to express (and enforce) the SLAs under which 
resources are made available to consumers. Consumers 
want to access and interpret SLA statements published 

by providers, in order to monitor their agreements and 
guide their activities. Both providers and consumers 
want to verify that SLAs are applied correctly. In 
summary, we address a technique for constructing a 
scalable management service with support for usage 
SLA expression, publication, discovery, interpretation, 
enforcement, and verification [1].  This problem 
encompasses challenging and interrelated scheduling, 
information synchronizations and scalability issues.  
We build on previous work concerning the 
specification and enforcement of local resource 
scheduling policies [2,3,4,5,6], the GRUBER broker 
[7,8,9,25], and the scalability and performance 
measurements of various grid services [13].  GRUBER 
ultimately addresses issues regarding how SLAs can be 
stored, retrieved and disseminated efficiently in a large 
distributed environment.  The key question this paper 
addresses is the scalability and performance of 
GRUBER in large Grid environments.   

The rest of this article is organized as follows. We 
first provide a more detailed description of the problem 
that we address.  We then discuss the background 
information and related work.  Section 3 describes 
succinctly the initial model for resource and workload 
management, namely GRUBER. The rest of the paper 
focuses on the problem of constructing a scalable 
framework infrastructure for usage SLA management, 
with section 4 covering our experimental results, and 
finally, with our conclusions. 

1.1.  Problem Statement 

This work targets grids that may comprise of 
hundreds of institutions and thousands of individual 
investigators that collectively control tens or hundreds 
of thousands of computers and associated storage 
systems [11,12]. Each individual investigator and 
institution may participate in, and contribute resources 
to, multiple collaborative projects that can vary widely 
in scale, lifetime, and formality. At one end of the 
spectrum, two collaborating scientists may want to 
pool resources for the purposes of a single analysis. At 
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the other extreme, the major physics collaborations 
associated with the Large Hadron Collider encompass 
thousands of physicists at hundreds of institutions, and 
need to manage workloads comprising dynamic mixes 
of work of varying priority, some requiring the 
efficient aggregation of large quantities of computing 
and storage.  

In this paper we focus on techniques for 
constructing a scalable service and measure its 
performance. It is important to understand the 
problems we face in order to come up with appropriate 
solutions. We initially focus on performance issues and 
on service reliability. In the end, we also discuss the 
problem of privacy issues for usage SLA at the VO 
level and beyond.  

1.2.  Performance Issues 

We have performed several experiments using 
DiPerF, a distributed performance-testing framework 
designed to simplify and automate service performance 
evaluation [13]. DiPerF coordinates a pool of machines 
that test a target service, collects and aggregates 
performance metrics, and generates performance 
statistics. The aggregate data collected provide 
information on a service throughput, on the service 
‘fairness’ when serving multiple clients concurrently, 
and on the impact of network latency on service 
performance.  

We have used DiPerF to perform tests on service 
instance creation in a GT3 service (similar to the 
GRUBER implementation), and found a peak 
throughput of about 14 requests per second. Average 
service response time under ‘normal’ load was about 
4s. Average service response time under ‘heavy’ load 
was about 10 seconds. We also observed that under 
heavy load the WS service does not allocate resources 
evenly among clients [13]. The results of 
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Figure 1 show how the service response time increases 
with the number of concurrent machines. As a 

consequence, there is a real need to investigate other 
ways of building and organizing a scheduling 
infrastructure for large grids with many submitting 
hosts, and to understand the implications this has for 
performance, reliability and scheduling decision 
accuracy.  

GRUBER bypasses the OGSA service instance 
creation latency by providing the possibility of using 
generic and long term clients. One client is enough to 
handle all jobs submissions from at least six 
submission hosts. Unfortunately, in a large 
environment with many submission hosts, the 
performance problem still remains due to the high 
number of GRUBER clients that can run in parallel.  
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Figure 1: GT3.2 Service Instance Creation: 
Response time, Throughput, and Load 

1.3.  Service Reliability Issues  

Another problem faced often in large distributed 
environments is the reliability and availability of a 
service. The interactions place undue burden on usage 
SLA service providers, who are forced to implement 
the SLA decision points for various communities. 
Furthermore, many interactions might be required as 
every usage SLA alteration can require interaction with 
the responsible decision point (also known as a VO 
policy enforcement point).  As a consequence, the cost 
of maintaining a usage SLA and scheduling 
infrastructure should not increase with the number of 
resource providers and VOs participating in resource 
sharing actions. Administration issues must be 
bounded, essentially making the complexity 
proportional with the number of VOs and resource 
providers and not the size of the VOs [10].  

Pearlman et al [10] address the scalability problem 
by introducing a third party,  a community 
authorization service (CAS) that is responsible for 
managing the SLAs that govern access to a 
community’s resources. While such an approach is 



 

suited from an authorization purpose, it does not match 
the problem of resource scheduling and continuous 
usage SLA enforcement when resources are over-
provided or contention occurs under more complex 
scenarios [1]. On the other hand, we approach the 
problem differently, leveraging from a peer-to-peer 
approach [14], where only partial information is 
exchanged among various decision points.  

1.4.  Privacy for Usage SLA Issues 

Usage SLA specification, enforcement, negotiation, 
and verification mechanisms arise at multiple levels 
within VO-based environments. Resource providers 
want to establish, modify, enforce, and instrument 
usage SLAs concerning how their resources are made 
available to different participants and/or for different 
purposes.  

In certain cases, users can require various privacy 
issues for the availability of information about their 
work (job types and priorities, data movement and 
characteristics). Thus, the maintenance of a private 
broker could be a better solution in such a situation. 
This issue can be encountered from the VO level on 
down to the individual scientists. The problem 
becomes even more sensible when dealing with 
commercial entities that have specific SLAs about their 
information [15]. Privacy for usage SLA issues is 
outside the scope of this paper; however it is 
nevertheless a very important topic for usage SLAs. 

2. Background Information 

2.1.  Related Work  

The Maui scheduler [4] for clusters and 
supercomputers is capable of enforcing complex SLA-
driven scheduling schemas. It operates as a SLA 
engine for controlling resource allocations to jobs, and 
concurrently optimizes the use of managed resources. 
The scheduler manipulates several kinds of objects: 
jobs, nodes, reservations, QoS structures, policies, and 
composite objects.  

The fair share scheduling strategies which were 
studied in depth in the early 1980s in the context of 
mainframe batch and timeshared systems, and then 
brought into the UNIX environment, represent another 
important body of work related to our problem. The 
purpose of fair share scheduling is to control resource 
distribution to allow  greater predictability in process 
execution process [20,21].  

In et al. [22] proposed a framework for policy 
based scheduling of grid-enabled resource allocations. 
The framework provides scheduling strategies that (a) 

control the request assignment to grid resources by 
adjusting resource usage accounts or request priorities; 
(b) manage efficiently resources assigning usage 
quotas to intended users; and (c) supports reservation 
based grid resource allocation. This framework is 
incorporated as part of the SPHINX scheduling system 
from University of Florida. The difference with our 
approach consists in the fact that we do not assume a 
centralized point of usage SLA specification.   

The Grid Service Broker, developed as part of the 
GridBus Project, mediates access to distributed 
resources by (a) discovering suitable data sources for a 
given analysis scenario, (b) suitable computational 
resources, (c) optimally mapping analysis jobs to 
resources, (d) deploying and monitoring job execution 
on selected resources, (e) accessing data from local or 
remote data source during job execution, and (f) 
collating and presenting results. The broker supports a 
declarative and dynamic parametric programming 
model for creating grid applications [23]. GridBus 
targets a higher degree of details about available 
resources (machine level), jobs and files compared to 
GRUBER, which inherently makes GRUBER more 
scalable in large environments.  Also, GridBus does not 
take in account the notions of sites, submission hosts, 
and virtual organizations, groups or priorities 
associated with them.  

Cremona is a project developed at IBM as a part of 
the ETTK framework [9]. It is an implementation of 
the WS-Agreement specification and its architecture 
separates multiple layers of agreement management, 
orthogonal to the agreement management functions: 
the Agreement Protocol Role Management, the 
Agreement Service Role Management, and the 
Strategic Agreement Management. Cremona focuses 
on advance reservations, automated SLA negotiation 
and verification, as well as advanced agreement 
management. GRUBER instead targets a completely 
different environment model, where the main players 
are VO and resource providers. They also base their 
actions on usage SLAs and a more opportunistic 
environment where free CPUs are acquired when 
available. Furthermore, GRUBER introduces the 
notion of adaptive usage SLAs, considering sites 
autonomous, adjusting to instantaneous sharing 
policies without triggering SLA violations when 
detected.  

2.2.  DiPerF  

Since we used the DiPerF framework to perform 
the performance and scalability experiments in this 
paper, we decided to give an overview of DiPerF to 
outline its features.  



 

DiPerF coordinates several machines in executing a 
performance service client and collects various metrics 
about the performance of the tested service. The 
framework is composed of a controller/collector, 
several submitter modules and a tester component. The 
tester is responsible for running remotely the service 
performance measurement clients and to report the 
results back. The controller is responsible for 
performing all the aggregation operations required and 
presented in this paper [13].  Figure 2 depicts the 
various components of the DiPerF framework and the 
relationship among the controller, the tester, the client 
code, and the service. 
 

 
 

Figure 2: DiPerF framework overview 

The client code distribution is automated as well as 
performance metric collection and result computation. 
Due to the time error rates seen in practice, DiPerF 
handles the time synchronization with a centralized 
time-stamp server that allows a time mapping to a 
common base; with a common unified global time, the 
framework is able to do metric aggregation accurately.  
Figure 3 depicts the aggregate view of the controller 
after the time has been synchronized at all testers. 
Additionally, due to the controlled delay in starting 
clients, DiPerF is able to report the maximum 
throughput a service supports as well as service 
response time as the load on the service varies.  
 

 
Figure 3: Aggregate view at the controller 

Originally, DiPerF only supported the testing of a 
single service.  An important improvement done to 
DiPerF for this set of experiments was the ability to 
test distributed services, such as the GRUBER 
deployment presented in Figure 4. Practically, each 
tester instantiates a GRUBER client with a specific 
GRUBER engine address for access, while later uses 
the site selectors and other GRUBER specific tools for 
actual job submission.   

3. Usage SLA Enforcement Details 

We consider important to overview the problem 
first at smaller sizes [1] and second to describe and 
analyze our solution for a scalable usage SLA 
management service.   

3.1.  Usage SLA Enforcement Model  

The environment model which we used for our 
evaluation and experimentation is depicted in Figure 4 
[16,17]. The main elements of our work are the 
decision points (previously known as policy 
enforcement points or PEPs), which are responsible for 
executing SLAs. They gather monitoring metrics and 
other information relevant to their operations, and then 
use this information to steer resource allocations as 
specified by the usage SLAs [1].  

 



 

 
Figure 4: VO-Level Architecture  

We distinguish between two types of PEPs.  Site 
policy enforcement points (S-PEPs) reside at all sites 
and enforce site-specific policies.  In our experiments, 
we did not take S-PEPs into consideration as they were 
outside the scope of this paper, and assumed the 
decision points have a total control over scheduling 
decisions. 

VO policy enforcement points (decision points), 
associated with VOs, operate in a similar way to S-
PEPs. They make decisions on a per-job basis to 
enforce usage SLAs regarding VO specifications for 
resource allocations to VO groups or to types of work 
executed by the VO. Decision points are invoked when 
VO planners make job planning and scheduling 
decisions to select which jobs to run, when to send 
them to a site scheduler, and which sites to run them at. 
Decision points interact with S-PEPs and schedulers to 
enforce VO-level SLA specifications.  

We have already developed GRUBER [24,25], a 
prototype Grid decision point and S-PEP infrastructure 
that implements the usage SLA management model 
introduced before. GRUBER is composed of four 
principal components, the Gruber engine, the 
GRUBER site components, the GRUBER site 
selectors, and the GRUBER queue manager. In the 
GRUBER prototype, usage SLAs are specified through 
a specialized interface. The main components that we 
concentrate our performance measurements are the 
engine and the site selectors, as they are the main 
elements in providing adequate scheduling decisions 
when resources are available.  

3.2.  Information Dissemination Strategies  

An important issue for a decentralized service is 
how usage SLAs and resource statuses are 
disseminated among components. The complexity is 
higher than for a file replica catalog, due to the 
necessity to correctly aggregated partial information 

gathered at several points; without the correct 
aggregation of the partial information, wrong decisions 
could generate workload starvations and resource 
under-utilization.   

The first approach could allow both resource 
utilizations and usage SLAs to be exchanged among 
deployed decision points.  The second approach might 
only allow utilizations to be exchanged among decision 
points.  As possible variations on these two 
approaches, whenever new sites are detected in the 
exchanged data, their status is incorporated locally, 
assuming that each decision point has only a partial 
view of the environment. The third approach is one in 
which no usage information is exchanged and each 
decision point relies only on its own mechanisms for 
detecting the environment status, assuming the 
capacity to acquire global information about the 
environment.  

For the experiments in this paper, we focused on 
the second approach with the assumption that each 
decision point has full “static” knowledge about 
available resources for its users, but not the latest 
resource utilizations. Practically, each decision point 
relies on information exchanges for updating only its 
view on the current utilizations. Another advantage of 
this approach is that it simplifies the implementation 
greatly, by avoiding the tracking of each usage SLA 
and allocation apparition time, as well as the entity to 
which it applies.  

4. Experimental Results 

4.1.  Architecture Analyses  

This section describes the performance analysis 
study we conducted to evaluate various grid-wide 
resource allocation models.  In particular, we wanted to 
determine whether CPU resources could be allocated in 
a fair manner across multiple VOs, and multiple groups 
within a VO, without requiring the centralized control 
that is impractical in large grid environments.  The way 
in which information is communicated between 
various decision points has a critical influence on the 
way that information is used.  

4.1.1. Evaluated Scenarios  

Our study evaluates several ranges of service 
distributions, from a single decision point, to many 
multiple decision points. Figure 5 depicts in a generic 
way the layout of the scenarios we use for our 
performance measurements.  

 



 

 
Figure 5: Multiple Unspecialized Decision 

Points 

In either the single or multiple decision point 
(GRUBER) scenario, each decision point maintains a 
full view of the resource usages and allocations in the 
environment, by site monitoring and state exchanges 
among decision points (VO level queues, group level 
queues, and local usage SLAs).  

We consider that for the scenario of one decision 
point per VO, the performance and reliability of the 
service is very similar to the case of generic decision 
points, and therefore we did not perform any additional 
tests for this case.  

4.2.  Empirical Results  

We performed our tests on PlanetLab by deploying 
GRUBER decision points on several nodes. The 
complexity of the brokers’ network used in this set of 
tests is specifically low in order to provide a simple 
case scenario that can easily be followed and later 
used.  

GRUBER Infrastructure: We used one to ten 
GRUBER decision points deployed on machines 
around the world (mostly US and Europe). Each 
decision point maintained a view of the configuration 
of “simulated” global environment, while exchanging 
information about instantaneous utilizations.  

Workloads and Environment: We used composite 
continuous workloads that overlay work for 60 VOs 
and 10 VO groups. The submission interval was one 
hour in all cases. Each submission site scheduled 
randomly one job to one GRUBER decision point on 
behalf of a pair (VO, group). The environment was 
composed of 300 sites (ten times larger than what 
Grid3 is today). The initial configurations were based 
on the Grid3 configurations. 

Usage SLA: For each virtual site, we used a similar 
approach in usage SLA specification by using the 
Grid3 policies as the initial configurations.  

Job states: The workload executions are based on a 
model where jobs pass through four states: 1) 
submitted by a user to a submission host; 2) submitted 
by a submission host to a site, but queued or held; 3) 
running at a site; and 4) completed.  

Evaluation Criteria / Measured metrics: We consider 
several metrics to evaluate the effectiveness of 
GRUBER in practice.  We evaluate the effectiveness of 
different decision point deployment infrastructures by 
measuring Average Response Time (Response), 
Average Throughput (Throughput), Queue Time 
(QTime), Average Resource Utilization (Util), and 
Average Scheduling Accuracy (Accuracy) as a function 
of the environment complexity. All metrics are 
important as a good infrastructure will maximize 
delivered resources and meet owner intents.  

We define Response as follows, with RTi being the 
individual job time response:  

Response = �i=1..N RTi / N 

Throughput is defined as the number of requests 
completed successfully by the service averaged over a 
short time interval (per second or minute). We used in 
our measurements a second as the interval of measure.  

We define QTime for an entire VO as follows, with 
RTi being the individual job time response:  

QTime = �i=1..N RTi / N 

The difference between Delay and QTime is in their 
focus on different elements. While Delay measures the 
service responsiveness, QTime measures how fast a 
job is placed in execution after scheduling and provides 
a measure of the service accuracy in providing *good* 
scheduling decisions.  

We define Util as the ratio of the CPU-resource 
actually consumed by users (ETi) to the total CPU-
resources available. We compute this quantity as 
follows:  

Util = � (ETi) / (#cpus * �t) 

The last metric used for analysis is Accuracy. We 
first define scheduling accuracy (SAi) as the ratio of 
percentage of free resources at the selected site to the 
total percentage of free resources over the entire grid. 
Furthermore, we introduce Accuracy as the aggregated 
value of all scheduling accuracies measured for each 
individual job (where N is the total number of jobs 
scheduled in the considered period):  

Accuracy = �i=1..N (SAi) / N  



 

4.2.1. Infrastructure Scalability   

By means of DiPerF we varied slowly the number 
of clients for our performance and scalability study.  
Figures below present Response, Throughput and 
Load as measured by DiPerF. The overall 
improvement in terms of throughput and response time 
is two to three times when a three-decision point 
infrastructure is deployed, while for the ten-decision 
point infrastructure the throughput increased almost 
five times.  

The results of  show service capacity decreases 
with the number of concurrent machines. Throughput 
increases immediately but does not go over a value of 
two jobs per second when all testing machines (120) 
are accessing the service in parallel. We also note the 
service response time decreases, once the number of 
machines decreases.  

 

 
Figure 6: Centralized Scheduling Service 

The results in  show service capacity decreasing 
with the number of concurrent machines later. 
Throughput increases slowly and achieves a value of 
6 job scheduling requests per second when all testing 
machines are accessing the service. Response is also 
smaller in average compared with the previous results. 
Once the number of machines starts decreasing, 
Response does not decrease in a symmetrical way, the 
service remaining somehow in a state that impedes it to 
answer as quickly as before. An explanation for this 
behavior is the fact that once jobs were scheduled for 
execution, they were considered long term running 
jobs. Each job was considered running for a longer 
time interval than the entire test time and the grid state 
was different (monotonically decreasing) in terms of 
free resources with each scheduled job.  

 

 
Figure 7: Distributed Scheduling Service 

with Three Decision Points 

The results in  are somehow different. The 
distributed service provides a symmetrical behavior 
with the number of concurrent machines independent 
of the state of the grid (lightly or heavily loaded). This 
result verifies the intuition that for a certain grid 
configuration size, there is an appropriate number of 
decision points that can serve the scheduling purposes 
under an appropriate performance constraint. The 
throughput achieved increases linearly with the number 
of decision points. 

 

 
Figure 8: Distributed Scheduling Service 

with Ten Decision Points 

While the performance of a service in answering 
queries is important, the accuracy of a distributed 
service in providing accurate scheduling decisions is 
even more important. In the next two sub-sections, we 
analyze the performance of our decision point’s 
implementation, namely GRUBER, and the supporting 
algorithms in providing accurate scheduling decisions 
with both infrastructure complexity and 
synchronization interval between decision points.  

4.2.2. Infrastructure Performance  

For scheduling decision performance analyses, we 
use three of the metrics introduced before, QTime, 
Util and Accuracy. In addition, we provide the total 



 

number of requested operations and the actual total 
number of served operations.  

As a side note, these metrics are even more 
important in our context because the GRUBER site 
selectors are able to provide a random solution 
whenever they are unable to contact a decision point 
service. Therefore, measuring the accuracy of the 
scheduling decisions has a higher weight than the 
previous analysis in order to capture what happens 
when the infrastructure is overloaded or information 
exchanges are not performed fast enough. As a 
reminder, in all cases status information was 
exchanged every ten minutes. 

Table 1 depicts the overall performance of 
GRUBER in diverse scenarios.  While the values under 
the “All Requests” section provide an overall view of 
GRUBER’s performance, they do not reflect the actual 
performance in scheduling jobs when the scheduling 
workload is adaptable to the system capacity.   

Table 1: Performance of decision points 

 
 If we consider only jobs that were scheduled 
through one of the GRUBER decision points, the 
results look rather different.  There are four notable 
differences when comparing the performance between 
the requests handled and those that were not handled 
by GRUBER; 1) the accuracy shows significant 
improvement; 2) higher resource utilization when 
taking into consideration the percentage of requests 
handled by GRUBER; 3) the QTime is orders of 
magnitude better; and 4) the Normalized QTime is 
noticeably improved between requests not handled by 
GRUBER and all the requests.  It is interesting to note 
that the scenario with only 1 decision point has a very 
small QTime; this is due to the fact that within the 1 
hour the tests were performed, the number of requests 
made was smaller than in the other cases due to lower 
throughput.  With less resources being used, it was 
easier for the decision point to make good decisions, 
and hence we small QTime.  We computed the 
normalized QTime in order to take into account both 
the number of requests and the resource utilization; we 
discovered that the deceivingly low QTime for the 1 
decision point scenario now shows its worse 
performance when compared to the other two 
scenarios.  

4.2.3. Scheduling Performance with 
Synchronization  

The other important dimension in our analysis is the 
synchronization interval among decision points. We 
performed several tests using DiPerF, where the 
decision points were exchanging status information at 
predefined time intervals, namely 1, 3, 10, and 30 
minute intervals.  The results are presented in Figure 9. 
It is important to note that the higher frequency of 
information exchanges has also a negative draw-back 
for the GRUBER decision points, namely the lower 
percentage of jobs handled by GRUBER.  Practically, 
each decision point spends some of its resources on 
sending and receiving other data without necessarily 
improving the performance in performing scheduling 
operations. According to our observations, for a three 
decision point infrastructure a 3 to 10 minutes 
exchange interval should be sufficient for achieving a 
95% Accuracy.  
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Figure 9: Accuracy and percentage of jobs 
handled by GRUBER as a function of the 

Exchange Time Interval 

5. Conclusions and Future Work 

Managing usage SLAs within large virtual 
organizations (VOs) that integrate participants and 
resources spanning multiple physical institutions is a 
challenging problem. Maintaining a single unified 
decision point for usage SLA management is a 
problem that arises when many users and sites need to 
be managed. We provide a solution, namely GRUBER, 
to address the question on how SLAs can be stored, 
retrieved and disseminated efficiently in a large 
distributed environment.  The key question this paper 
addressed was the scalability and performance of 
GRUBER in large Grid environments.  We evaluated a 
distributed architecture and SLA model for scheduling 
resources in large grid environments while satisfying 
resource owner and VO SLAs.  



 

We achieved results in two dimensions – how well 
our proposed solution performed in practice and how 
to measure the success of GRUBER.  We also 
introduced an enhancement to our GRUBER 
framework, namely the distributed approach in 
resource scheduling and usage SLA management. 

There are certain issues that we did not address in 
this paper.  For instance, our analysis did not consider 
certain methods of information dissemination among 
decision points.  Furthermore, validating our results 
would involve performing tests on a considerably 
larger grid than exists today in practice.   

In future work, we plan to perform a more 
extensive performance study in a wider range of 
scenarios and information dissemination strategies. 
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