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A Study between Networks and General Purpose Systems  
for High Bandwidth Applications 

 

ABSTRACT 

The goal of this study is to investigate system bottlenecks for high bandwidth applications and how they shift from 

one component to another over time.  The model we built emphasizes the flow of bytes in each protocol; the model 

imitates how typical device drivers move bytes from the network card to memory, and how typical protocol 

implementations move bytes around memory.  Network speeds have been increasing at a very fast rate over the last 

decade.  100Mb/s sec network interfaces are virtually ubiquitous, 1 Gb/s interfaces are becoming standard and 

inexpensive, and 10 Gb/s interfaces are already commercially available.  As higher speed network data transfers 

have become possible high bandwidth applications are likely to become a driving factor in computer system design.  

Network interfaces are not the only piece of hardware involved in high bandwidth applications; processors, disks, 

and memory architecture all play equally important roles.  It is important to consider if these components can keep 

up with the increasing network speeds.  In order to gain insight in the performance of computer systems as 

individual components increase in performance at different rates, we evaluated some existing systems and built a 

simulator, called sysSIM that models the flow of bytes through the components of a system.  SysSIM is a discrete 

event driven simulator that allows us to investigate the roles and interactions of all of these components (CPU, 

memory, and network interfaces) to identify bottle necks.  We conclude our study with a 40 year view of how the 

bottleneck has shifted from the network (prior to 1995) to the processor (between 1995 and 2007), and to the 

memory (beyond 2007).   
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1 INTRODUCTION 

The goal of this study is to investigate system bottlenecks to satisfy high bandwidth applications and how they shift 

from one component to another over time.  The model we built emphasizes the flow of bytes in each protocol; the 

model imitates how typical device drivers move bytes from the network card to memory, and how typical protocol 

implementations move bytes around memory. 

Network speeds have been increasing at a rate of over 80% a year over the last decade.  100Mb/s sec network 

interfaces are virtually ubiquitous, 1 Gb/s interfaces are becoming standard and inexpensive, and 10 Gb/s interfaces 

are already commercially available.  As higher speed network data transfers have become possible high bandwidth 

applications are likely to become a driving factor in computer system design.   

Network interfaces are not the only piece of hardware involved in high bandwidth applications; processors, disks, 

and memory architecture all play equally important roles.  It is important to determine if these components can keep 

up with the increasing network speeds.  Unfortunately, investigation of network-oriented system design issues is 

hampered by a lack of suitable simulation tools, and real world empirical evaluations can only be performed on 

existing systems.  In order to gain insight in the performance of computer systems as individual components 

increase in performance at different rates, we evaluated some existing systems and built a simulator, called sysSIM 

that models the flow of bytes through the components of a system.   

SysSIM is a discrete event driven simulator that allows us to investigate the roles and interactions of all of these 

components (CPU, memory, and network interfaces) in hopes of achieving insight into bottle necks.   

We modeled two network protocols, UDP [12] and TCP [13] with unidirectional traffic; we modeled the behavior of 

TCP and UDP in the Linux kernel in terms of their interaction with the network and main memory.  In the case of 

TCP, when the network traffic stalls, it means that the kernel buffer is full, while for UDP, network traffic will be 

dropped.  We defined a set of benchmarks that give us different network traffic characteristics.  The benchmarks are 

based on video streaming with various levels of compression and different functionality.  To determine a reasonable 

set of characteristic with regard to dropped packets, out of order packets, and network overhead, we used the Iperf 

[10] program.  To keep the analysis simple, we modeled only local area network traffic where packet loss and out-

of-order delivery was virtually zero based on our Iperf results. 
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The rest of this report is organized as follows.  The remainder of section 1 covers the sysSIM overview, the 

motivation behind our work, and the timeline of the various parts of this project.  Section 2 deals with related work, 

covering both simulators and empirical studies, along with an overview of MPEG and network protocols.  Section 3 

covers the sysSIM simulator implementation, assumptions, analytical models, component models, benchmarks, and 

input & output of the simulator.  Section 4 covers the experimental results from both our empirical study and the 

validation of sysSIM.  We conclude with section 5 covers our conclusions and future work.  Section 6 covers our 

references, section 7 our list of figures, and section 8 our list of tables.       

1.1 SysSIM Overview 

Figure 1 below depicts the conceptual overview of sysSIM and its various components.  The five components of 

sysSIM are: CPU, BUS, NIC buffer, kernel buffer, and user buffer.  The interaction between the various components 

and the performance of the various components is derived from empirical results, theoretical results, and historical 

trends. 

B
U

S

 
Figure 1: SysSIM simulator overview 

A screen shot of sysSIM is depicted in Figure 2. 
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Figure 2: A screen shot of sysSIM 

1.2 Motivation: Historical Trends 

We collected historical data for the past 20 years regarding the performance gap between the various components.  

The components we investigated were: memory (latency and bandwidth), network cards (bandwidth), processors 

(speed and instruction latency), and communication busses (bandwidth).  We extrapolate this data to predict the 

performance of future systems.  We also use it to motivate our work. 
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Figure 3: Historical Trends and Future Prediction 
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Computer technology advances at a very dramatic rate. At first sight no harm can come from that. However, not all 

implementation technologies change at the same pace. For many years network technology improved slowly, but the 

increasing importance of networking has led to a faster progress. CPU performance improves about 35% per year 

while memory latency improves at only 5% per year and memory bandwidth about 20% per year.  Figure 3 shows 

the raw performance numbers for memory bandwidth, network bandwidth, I/O bus bandwidth, disk bandwidth, 

memory latency, and CPU latency.   

Yearly Performance Improvement
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Figure 4: Historical Trends and Future Prediction: Yearly Performance Improvement 

The trends show that network performance will soon exceed the performance of CPU and memory. Since the 

performance of the system is determined by the performance of the slowest component, there would be no reason to 

make faster network cards because the general purpose systems would not keep up with the network speeds.  Figure 

4 shows the improvement of the performance of the various components as an early percentage for a period of 40 

years, 1980 to 2020.  Note that up to 2004, we have actual numbers, and due to the consistent nature of the increase 

in performance per component over the last 20 years, we believe our extrapolation of the performance of these 
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components to be fairly accurate.  As we can see network bandwidth have not yet exceeded memory and I/O bus 

bandwidth, however, as network speeds grow faster, it becomes important to predict the bottlenecks that will arise. 

1.3 Timeline 

The timeline of the project progress is depicted in Figure 5.  We decided to include this outline in order to 

emphasize the various parts of the project and the amount of work that went into this project! 

 
Figure 5: Timeline of project progress and participation 
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2 RELATED WORK 

We have identified three different simulators, SimOS [2], M5 [4], and CSIM [3], that attempt to study the 

interaction between networks and computer system components.  We found many more simulators [7, 8] that would 

allow us to study system component performance (not including network components) and we also found other 

simulators [1] that allowed us to study network performance concentrating mainly on protocol performance.  We 

briefly describe SimOS, M5, and CSIM to better understand the extent to which the relationship between networks 

and computer systems has been studied. 

2.1 Simulators 

SimOS is a complete machine simulation environment designed for the efficient and accurate study of both 

uniprocessor and multiprocessor computer systems.  SimOS simulates computer hardware in enough detail to boot 

and run commercial operating systems.  SimOS currently provides CPU models of the MIPS R4000, MIPS R10000 

and Digital Alpha processor families. In addition to the CPU, SimOS simulate caches, multiprocessor memory 

busses, disk drives, network interfaces (Ethernet), consoles, and other devices commonly found on general purpose 

computer systems.   

M5 is a simulation system targeting network intensive workloads; it is capable of simulating multi-system networks 

within a single process.  Within each simulated system, M5 provides a detailed performance model of the I/O 

subsystem, including the bus timing and coherence effects of network DMA transfers.  M5 models system hardware 

well enough to run an unmodified commercial OS kernel. 

CSIM is a parallel process and diagrams simulator.  The CSIM environment consists of a set of tools for describing 

parallel systems, for running simulations, and for viewing simulation results.  CSIM is a discrete event simulator for 

describing parallel processor architectures and software mappings.  CSIM can describe the behavior of each type of 

device in a multi-device system in terms of time delays, functions, and interactions with other devices through 

designated ports.  It can also interconnect the devices according to arbitrarily described topologies and running 

discrete event simulations of the described system.  Of the simulators we examined, CSIM seems to match the goals 

of sysSIM best.    
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The primary disadvantage of these simulators is that they concentrate on simulating entire OSes which looses sight 

of the end goal to find bottlenecks due to its complexity.  We have not found any work that attempted to analyze the 

performance of the various components of a computer system and how they perform in relation to each other with 

the scope of identifying bottlenecks.  As we will see in the next section which discusses the empirical studies done, 

none of the studies examined all the components (CPU, memory and network) simultaneously.  

2.2 Empirical Studies 

We also found several papers which made real empirical performance measurements of the interaction between 

networks and system components, with Arpaci-Dusseau et al [5] being the most notable; the drawback of this work 

was that it attempted to examine the difference between cost and performance between uniprocessor systems, 

multiprocessor systems, and clusters of machines.  Another paper from Mellanox Technologies does a comparative 

I/O analysis between InfiniBand compared with PCI-X, Fiber Channel, Gigabit Ethernet, storage over IP, 

HyperTransport, and RapidIO [6]; the drawback of this paper was that it only addressed the I/O bus performance 

characteristics.  Finally, we found a useful presentation given by John R. Mashey entitled “Big Data ... and the Next 

Wave of InfraStress” which targets exactly the performance of computer systems as individual components increase 

in performance at different rates [9].  This presentation has no drawbacks other than it was done back in 1998, and it 

does not have many references to where the data was extracted from. 

2.3 Background Information 

This section covers the basic of MPEG video encoding and decoding and the basics of network protocols.  The 

network protocols overview is essential since our study involves not just networking hardware, but also software 

that makes the network complete, namely the protocol stacks of TCP/IP and UDP/IP.  The MPEG overview is also 

important to understand some of the benchmarks, namely the variable bit rate benchmarks. 

2.3.1 MPEG Overview 

MPEG [13] uses two types of compression methods to encode video data: inter-frame and intra-frame encoding. 

Inter-frame encoding is based upon both predictive coding and interpolative coding techniques.  Video streams 

running at 30 frames per second will typically have much similarity between adjacent frames. If a motion 

compression method is aware of this "temporal redundancy," then only the differences in information between the 
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frames is encoded. This approach results in greater compression ratios, with far less data needing to be encoded. 

This type of inter-frame encoding is called predictive encoding. 

A further reduction in data size may be achieved by the use of bi-directional prediction. Differential predictive 

encoding encodes only the differences between the current frame and the previous frame. Bi-directional prediction 

encodes the current frame based on the differences between the current, previous, and next frame of the video data. 

This type of inter-frame encoding is called motion-compensated interpolative encoding. 

To support both inter-frame and intra-frame encoding, an MPEG data stream contains three types of coded frames: 

• I-frames (intra-frame encoded) 

• P-frames (predictive encoded) 

• B-frames (bi-directional encoded) 

Figure 6 depicts a pictorial representation of the dependence of I/P/B frames on each other.  An I-frame contains a 

single frame of video data that does not rely on the information in any other frame to be encoded or decoded.  A P-

frame is constructed by predicting the difference between the current frame and closest preceding I- or P-frame. A 

B-frame is constructed from the two closest I- or P-frames.  

 
Figure 6: A pictorial depiction of the dependence of I/P/B frames on each other 

A typical sequence of frames in an MPEG stream might look like IBBPBBPBBPBBPBBIBBPBBPBBPBBPBBI… 

where each I, B, P represents the corresponding type of frame. 
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2.3.2 Network Protocols Overview 

To explain the structure of the TCP/IP and UDP/IP protocol stack, we present the Open System Interconnection 

(OSI) model and its seven layers in Figure 7. 

 Layer 1: Application layer 
Layer 2: Presentation layer
Layer 3: Session layer  
Layer 4: Transport layer  
Layer 5: Network layer  
Layer 6: Data link layer 
Layer 7: Physical layer 

 
Figure 7: OSI Reference Model 

The application layer usually consists of the end-user application such as a web browser, a video stream application, 

etc.  The presentation and session layers are not used frequently in modern protocol stack implementations.   

The transport layer provides reliable, transparent data transfers between senders and receivers.  It provides an error 

recovery mechanism and flow control to throttle the sending rates.  It also fragments data into smaller pieces, and 

passes them down to the network layer.  Both TCP and UDP are found in the transport layer. 

The network layer in the OSI model allows heterogeneous networks to be connected.  It provides congestion control, 

it establishes, maintains, and tears down connections, and most important of all, it determines the route of packets 

transmitted.  The Internet Protocol (IP) is found in the network layer.  Finally, the data link and physical layer deals 

with the actual hardware of the network card. 

The TCP/IP and UDP/IP protocol stacks can be decomposed into its three layers, the transport layer, the network 

layer, and the physical/data link layer.  These layers and their corresponding header and payload sizes can be 

depicted in Figure 8 and Table 1.  These numbers are important for our processing overhead computation. 

Table 1: Packet breakdown and overhead incurred by header information for TCP/IP and UDP/IP 

TCP UDP
Transport Layer (TCP/UDP) Payload 1460 bytes 1472 bytes
Transport Layer (TCP/UDP) Header 20 bytes 8 bytes

Network Layer (IP) Payload 1480 bytes 1480 bytes
Network Layer (IP) Header 20 bytes 20 bytes

Physical/Data Link (Ethernet) Layer Header 14 bytes 14 bytes
Total Ethernet MTU 1514 bytes 1514 bytes

Overhead % 3.70% 2.85%  
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Figure 8: TCP/IP and UDP/IP protocol stack 

We use the loopback address in our empirical study quite extensively, and therefore it is appropriate to define what 

exactly the loopback address is.  The loopback address is a special IP number (127.0.0.1) that is designated for the 

software loopback interface of a machine. The loopback interface has no hardware associated with it, and it is not 

physically connected to a network.  Tests over the loopback address normally will go through the corresponding 

protocol stack twice, once from the application layer down to the data link layer, and then back up from the data link 

layer to the application layer.  The performance obtained over the loopback interface is primarily only bounded by 

the memory bandwidth and the CPU speed.   
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3 SYSSIM SIMULATOR IMPLEMENTATION 

SysSIM was implemented in JAVA and currently has about 1500 lines of code.  The simulator is light weight 

enough that we can run simulations in real time, but the rate of the simulation varies greatly depending on the packet 

size and the rate of the network speed. 

The SysSIM simulator has five main components:  network interface, CPU, kernel buffer memory, user buffer 

memory, and a user job.  Each component is a software data structure that models the behavior of the physical 

device it represents.  The components have configurable options, such as, size of data path width, clock cycle time, 

etc.  As the simulator runs, the state of each component changes as the bytes flow from component to component.  

The simulator monitors the state of each device and reports both the overall performance and the performance per 

device. 

The user code that describes the user’s job is written in java and runs in its own thread.  It makes simulated system 

calls to sysSIM when it requires network data or CPU processing.  For example, the packet sizes along with the 

frequency of the generated packets are all configurable through java code.  Since this project examines high 

bandwidth applications we are interested in network reads and writes.  Currently, the simulator only supports 

network reads ; as soon as the job starts, data starts moving from the network to the network interface and then to the 

kernel buffer.  The job determines when bytes are copied from the kernel buffer to the user buffer and when those 

bytes are to be freed, as well as how much CPU load will be required to process the data; furthermore, the user job 

can sleep if it finishes its job early.  We found this feature to be necessary to properly model our benchmarks.  Video 

streams maintain a maximum rate and if the components are moving too fast the user process must stall. 

There are two modes in which the simulator can be run: a GUI and a command line interface.  In the GUI interface 

mode, each component is displayed as a progress bar.  For the memory buffers, the progress bars grows as the 

buffers fills.  Similarly the internal network buffer displays the rate at which its buffer fills with a progress bar.  The 

CPU workload is displayed as a vertical progress bar displaying the current workload of the processor as a 

percentage of its capacity.  This mode is very useful as a pseudo-real time visualization tool.  Among other things, it 

shows interesting oscillations that are easier to comprehend in real time then in a post processed graph.  The 

command line tool runs the simulator and logs dropped packets and component stalls.  Based on the logs generated, 
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the output is then post-processed to obtain overall throughput, video stream quality, and other important application 

performance characteristics.  The rest of this section covers the assumptions and analytical models, component 

modeling, benchmark modeling, the various components of the simulator, the job profile, input to the simulator and 

output of the simulator. 

3.1 Assumptions and Analytical Models 

This sub-section describes the simplifying assumptions made in designing the simulator.  The modeled 

characteristics of the various components and the benchmarks are discussed here as well.   

3.1.1 Component Modeling 

We have tested four different NICs, namely 10 Mb/s, 100 Mb/s, 1 Gb/s, and 10 Gb/s Ethernet.  We assume the NIC 

can sustain its full bandwidth capacity and that the processor overhead will be 0% for reading/writing the raw data 

from the network or writing it to the network, even though there is processing overhead depending on the network 

protocol and packet sizes.  Using Iperf [10] and the local loopback address, we computed these overheads with an 

empirical study. 

To test the memory, we used Cache Burst 32 [12] to measure the read, write, copy and latency of the entire memory 

subsystem, including L1 cache, L2 cache and main memory.  The results of our empirical study pertaining to the 

memory subsystem performance can be found in section 4.1.2.   

The processor is modeled according to the other components observations in terms of processing power needed to 

process a certain number of bytes.  For example, we have computed the byte per hertz of processing capacity for 

both TCP and UDP.  For MPEG-1 decoding, we have also computed the byte per hertz of processing capacity for 

MPEG-1 video streams.  Based on our empirical studies, we found that the OS consumed few resources (on the 

order of a few MHz) in its idle state, and hence we made the simplifying assumption that the OS does not consume 

any CPU resources.   

3.1.2 Benchmark Modeling: Network Protocols and MPEG-1 

We examined the Linux implementation source code of the TCP/IP and UDP/IP protocol stack and found that 

typically two copies are performed as a packet traverses the protocol stack, one from the network device to the 

kernel buffer, and then one from the kernel buffer to the user buffer.   
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We used Iperf to test TCP/UDP/IP’s performance through the loopback address, which means we are only testing 

the protocol stack and not the NIC.  The advantage of separating the testing of the network protocol stack and the 

NIC is that it yields the performance of the particular network protocol without dealing with an unpredictable real 

network.  Based on the results from these tests, we obtained several important metrics, such as how long does it take 

for packets (of various sizes) to traverse the stack, and throughput (achieved with the limited memory bandwidth of 

the system and limited computing resources).  These tests should give us a reasonable model regarding the network 

protocols and their performance on the particular hardware configuration we used for our tests.  Starting with these 

models as input to the simulator, we validated that the simulator produces reasonable results.  Since we observed a 

consistent trend in the performance of our testbed between the various machines, we assume that we can extrapolate 

the performance of future systems from the few empirical studies we made.   

We found the overview of Linux Device Drivers [16] and IP Networking [17] to be a very good source of 

information that discusses in great detail the Linux TCP/UDP/IP protocol stack, which serves as the basis of the 

models we generate for both TCP and UDP.  In modeling UDP, we assume that there are two copies of the network 

traffic in the UDP/IP protocol stack; one copy resides in kernel space, while the other resides in user space.  Data not 

consumed fast enough from the kernel buffer is overwritten, and hence dropped packets occur.  On the other hand, 

in modeling TCP, there are also two copies similar to UDP, but the model will be different in the fact that it requires 

more processing power and the fact that erroneous and lost packets must be retransmitted; based on our Iperf results, 

we found that no packets are lost or received out of order in the LAN environment we tested.  In contrast to UDP, 

for TCP, user applications consuming data from memory slow down the achieved throughput, as the OS buffer gets 

full, the window closes and the network transfer stops and waits for acknowledgements (ACKs).   

Our benchmark suite consists of applications that require high bandwidth video streaming, so it is important to 

gather empirical results regarding the performance of software MPEG decoding data stream characteristics.  We 

used MPEG Analyzer [11] to gather the required metrics and characteristics. 

For each benchmark, we profiled different video streams that have different compression characteristics.  We also 

varied the kernel and user buffers to see how the performance varies as these two buffer sizes are changed.  

However, the most interesting benchmark is perhaps the RAW benchmark since it pushes all the components to the 

limit as it tries to push as much data between each component as possible. 
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Our benchmark suite consists of the following three tests shown in Table 2: 

Table 2: The benchmark suite 

Benchmark Name Benchmark Description

MPEG_sw Real-time (UDP) MPEG-1 with software decoding with 
1:4:10 ratio between the I, P, and B frames

MPEG_hw Real-time (UDP) MPEG-1 with hardware decoding with 
1:4:10 ratio between the I, P, and B frames

RAW Real-time (UDP) RAW video with hardware decoding  

An overview of MPEG can be found in an earlier section 2.3.1. 

3.2 Components 

The simulator has five main components: kernel buffer memory, and user buffer memory, processor, network 

interface, and job profile.  We discussed each component’s configuration parameters in the next few sections.  The 

system bus is implied, and is assumed to be faster than any of the five components we modeled, in which case we 

are assuming that the system bus will not be the bottleneck. 

3.2.1 Memory 

The memory is split between two main areas: the kernel buffer and the user buffer.  The size of each buffer can 

affect the effective throughput achieved by bandwidth intensive application.  At this time configurable parameters 

include the size of the buffers, the number of bits that can be accessed at once, and the clock speed of the bus 

accessing the memory.  In the future, memory latency will be added to create a more comprehensive system. It was 

not pursued in this stage because it was determined to have little effect on the bandwidth of an entire application.  

Initial investigations showed that it simply added an insignificant delay to the overall runtime, since the latency was 

completely hidden as the pipeline between components filled up.  However, further investigation is needed.  Note 

that caches can be implemented the same way as memory, but with different performance characteristics. 

3.2.2 Processor 

The processor has two settings.  The clock speed in Megahertz and the packets per second:  that is, the number of 

packets that it can process per second.  In our research we found a larger than expected dependency on the 

processor.  If the network load is straining the processor too heavily, packets will either be dropped (UDP) or the 

network transfer will stall (TCP).  
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3.2.3 Network Interface 

The network interface has two configurable parameters, the maximum bandwidth that it can sustain and the size of 

the internal buffer.  This internal buffer is typically of proprietary hardware and can be accessed at least as fast as 

the network and memory systems.  Its purpose is to allow the system to copy bytes from the device to the kernel 

memory since it cannot be placed there directly.  These buffers are typically about 64KB in size. 

3.2.4 User Job 

The user job determines the size of user buffers needed at any given time, and when data will be copied from the OS 

buffer to the user buffer.  This copy is very important because it affects the rate at which the network can proceed.  

In the case of UDP, if bytes are not removed fast enough they are lost, in TCP the sender will slow down its rate of 

transfer according to what free space remains in the OS buffer. 

The job description is done in java code.  The job has access to a read function, a free function, a sleep function, and 

a process function.  These are called in a way best suited to mimic the benchmark.  For example, in the MPEG video 

stream the process will read, then process the data it read, free the data and then sleep to ensure a constant frame 

rate.  This process repeats until the entire movie is transferred.  The user job runs in its own java thread, and calling 

into these functions results in a thread context switch which intentionally behaves similarly to real application 

making system calls and resulting in OS context switches. 

3.3 Input Data to Simulator 

This section covers the simulator input given.  Parameters controlling the characteristics of the devices modeled by 

the simulator are passed in via the command line.  The options are shown in Table 3. 

Table 3: The input options to the simulator 

Component Description
Bandwidth

Default user buffer size
kernel buffer size

Bandwidth
Card buffer size

CPU processor speed
TCP / UDP hertz per header byte of processing

MPEG hertz per byte of decoding

MEMORY

NIC

 

The job description has the configurable characteristics shown in Table 4. 
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Table 4: Job description configurable characteristics 

Option Name Option Description
Protocol: UDP / TCP Packet Size

Ratio of I:P:B frames
Video resolution, bit depth, and average compression of I/P/B frames

Video length
Video Type: MPEG / RAW

 

3.4 Output Data from Simulator 

This section covers the output the simulator produces.  The output of the simulator includes all the dropped packets, 

and which component caused them to be dropped.  The current reasons for a dropped packet are: 

• 100% CPU utilization 

• OS Buffer is full 

• NIC buffer is full 

All dropped packets are time stamped based on start of transfer, which is logged in the background along with the 

state of the system on each dropped packet.  The simulator also saves the state of each component every second 

regardless whether or not there were any dropped packets.  The simulator is based on cycles, which get translated 

into nanoseconds per cycle based on the speed of the bus, memory or CPU.  Table 5 shows each component logged: 

Table 5: Components being logged and the metric descriptions 

Component Description of metric
current amount used

average amount used since last reported value
current amount used

average amount used since last reported value
current load

average load since last reported value
current amount used

average amount used since last reported value
NIC Number of dropped packets since the last reported value

OS Buffer

NIC buffer

CPU

User Buffer

 

Based on the logs that the simulator generates, we can apply post-processing to obtain information relevant to our 

benchmarks, such as quality of the video stream, throughput, and latency. 
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4 EXPERIMENTAL RESULTS 

This section covers the specific benchmarks used to test sysSIM and covers the simulation results and bottlenecks 

that we discovered based on our simulation results and historical trends.   

4.1 Empirical Studies 

This sub-section addresses the empirical study we performed to help us build the benchmarks and define the 

component characteristics. 

4.1.1 Testbed Details 

We performed an empirical analysis on a testbed consisting of three different computer systems: e55 (Intel Celeron 

466 MHz), stealth (AMD K7 Athlon 1.3GHz), and diablo (AMD K7 Athlon 2.16 GHz).  The empirical results allow 

us to validate the simulator and extrapolate the performance of future components.  We used the results from this 

section to configure the simulator as realistically as possible as well as to define a set of benchmarks. 

Table 6 depicts the hardware characteristics for the three systems we tested. 

Table 6: Testbed hardware details  

Computer Name e55 stealth diablo
Year of Manufacturing 1999 2002 2003
Processor Family Intel Celeron AMD K7 Atlon AMD K7 Athlon
Processor Clock 466 MHz 1.3 GHz 2.16 GHz
L1 Cache Data/Code 16K / 16K 32K / 32K 32K / 32K
L2 Cache 128K 256K 256K
Front Side Bus (FSB) Intel GTL+ DEC Alpha EV6 DEC Alpha EV6
FSB Width 64-bit 64-bit 64-bit
FSB Clock 67 MHz 520 MHz 332 MHz
FSB Bandwidth 533 MB/s 4160 MB/s 2654 MB/s
Memory Size 512 MB 512 MB 512 MB
Memory Bus Type SDR SDRAM SDR SDRAM DDR SDRAM
Memory Width 64-bit 64-bit 64-bit
Memory Clock 66.6 MHz 133 MHz 332 MHz
Memory Bandwidth 533 MB/s 1064 MB/s 2654 MB/s
Chipset Bus Type PCI PCI Via V-Link
Chipset Bus Width 32-bit 32-bit 8-bit
Chipset Clock 66 MHz 87 MHz 531 MHz
Chipset Bandwidth 266 MB/s 347 MB/s 531 MB/s
Network Interface Card 3-COM 10/100 PCI NIC NetGear 10/100 PCI NICNetGear 10/100 PCI NIC
Operating System Linux RedHat 9 Linux RedHat 9 Linux RedHat 9  
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We performed tests on each system to evaluate the memory, network interface, and CPU.  We used three different 

utilities to make our measurements: Cache Burst 32 [12], Iperf [10], and MPEG Analyzer [11].  Cache Burst 32 tests 

the memory subsystem, including L1 cache, L2 cache, and main memory.  Iperf was used to test the network 

interface card along with the local loopback tests which tested the entire ensemble as the NIC interacted with the 

processor and the memory.  The MPEG Analyzer tested the performance of the MPEG decoding and allowed us to 

build our benchmarks.   

4.1.2 Memory Subsystem Performance 

As noted earlier, we used Cache Burst 32 to test the memory subsystem, including L1 cache, L2 cache, and main 

memory.  The memory subsystem performance of the testbed can be found in Figure 9, Figure 10, and Figure 11, 

while the summary of the results can be found below in Table 7. 

Table 7: Memory subsystem performance of 3 computer systems 

Machine Name e55 stealth diablo
Processor Speed 466 MHz 1300 MHz 2166 MHz

Memory Type
SDR SDRAM 

@ 66MHz
SDR SDRAM 
@ 133 MHz

DDR SDRAM 
@ 332 MHz

L1 Cache Copy Bandwidth 1167 MB/s 3936 MB/s 6452 MB/s
L2 Cache Copy Bandwidth 521 MB/s 1286 MB/s 2207 MB/s

Main Memory Copy Bandwidth 117 MB/s 246 MB/s 429 MB/s
L1 Cache Latency 3 cycles 3 cycles 3 cycles
L2 Cache Latency 11 cycles 20 cycles 21 cycles

Main Memory Latency 89 cycles 223 cycles 276 cycles
L1 Cache Latency 6.4 ns 2.3 ns 1.4 ns
L2 Cache Latency 23.6 ns 15.4 ns 9.7 ns

Main Memory Latency 189.6 ns 171.1 ns 127.4 ns  

In essence, we notice the bandwidth of the cache and the main memory essentially doubling from each system to the 

next.  It is interesting to note that the latency of the cache improves similarly as the memory bandwidth, but the main 

memory latency decreases much slower.   

The next three graphs depict the actual memory subsystem performance of the three systems; the metrics measured 

were copy throughput in MB/s and the latency in cycles.  The latency can be converted from cycles to nanoseconds 

by measuring the length of a cycle (for example, for a 466MHz processor, the length of the cycle is 1/466x106 

seconds).  
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Figure 9: Memory subsystem performance of e55, a 466 MHz processor with 66 MHz SDRAM  

 
Figure 10: Memory subsystem performance of stealth, a 1.3 GHz processor with 133 MHz SDRAM  
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Figure 11: Memory subsystem performance of diablo, a 2.1 GHz processor with 332 MHz DDRRAM  
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Figure 12: Main memory performance 



Page 23 of 37 

Figure 12 shows a comparison of the advertised memory bandwidth for a particular memory type and the achieved 

read, write and copy throughput.  Note that in the context of network protocol stacks, the most important metric 

from this graph is the memory copy throughput, since network buffers are copied twice, once from NIC buffer to 

kernel buffer, and again from kernel buffer to user buffer.  It is also interesting to note the poor utilization of the 

memory bandwidth of only 22%, 23%, and 16% utilization for the SD-RAM @ 66 MHz, SD-RAM @ 133 MHz, 

and the DDR-RAM @ 332 MHz respectively. 

4.1.3 Network Protocols Performance: TCP and UDP 

We used Iperf to measure the performance of the TCP/IP and UDP/IP protocol stack and how they interact with the 

memory subsystem and the CPU.  Since we did not have access to a 10Gb/s Ethernet network card interfaces, and 

the 1Gb/s Ethernet network card interfaces were still the bottleneck in the systems we tested (2GHz machines), we 

performed a series of tests over the local loopback address of the various machines in our testbed.  The summary of 

our findings can be found in Figure 13, Figure 14, and in Table 8. 
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Figure 13: TCP, UDP, and Memory Copy Performance 
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The achieved TCP and UDP throughput (metrics from Figure 13) was actual measured throughput over the loopback 

address.  The memory copy throughput was actual achieved throughput of main memory copy.  The theoretical TCP 

and UDP throughput is computed based on the processing power of the processor in packets / second multiplied by 

the maximum size of an Ethernet frame (MTU size of 1514 bytes) minus the TCP/UDP/IP/Ethernet header.  This 

theoretical maximum throughput represents the maximum performance in Mbit/s of the particular machine assuming 

a fast enough network medium (i.e. a NIC that is faster than the theoretical throughput).  This implies that the 

achieved and theoretical throughput is constrained by the CPU processing power. 
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Figure 14: TCP and UDP performance vs. processing power 

In Figure 14, the processing power in packets/second is computed by setting the TCP payload size to one and 

sending packets of minimum size (55 bytes for TCP and 43 bytes for UDP) over the loopback address as fast as 

possible.  Since the actual payload transferred over the protocol stack is insignificant (a few hundred Kb/s), the 

majority of the time is spent in the protocol stack processing the TCP/UDP/IP/Ethernet frames.  The number of 

packets per second that could be processed is in essence the power of the processor to process network packets.  The 

cycle/byte metric summarized the number of CPU cycles needed to process a single byte of network packet header 
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information; note that this metric takes into consideration the processor speed, and hence if the systems are all 

identical, in an ideal case, the cycle/byte should remain relatively constant.  The doubled efficiency of the 2.1 GHz 

processor in relation to the slower and older processors could be explained by the fact that many newer x86 

processors are beginning to be implemented in a RISC like fashion with specialized hardware that translates 

complex x86 instructions into simple RISC instructions.  From a personal discussion with a TCP/IP protocol 

developer from Sun Microsystems, we concluded that RISC architectures can process about twice as much TCP/IP 

traffic in comparison to x86 architectures!  This would explain the nearly halved processing overhead in cycles per 

byte of processing. 

Table 8: Performance of TCP/IP and UDP/IP protocol stacks; * denotes that the theoretical network 
performance numbers computed are CPU bound 

Machine Name e55 stealth diablo
Processor Speed 466 MHz 1300 MHz 2166 MHz

TCP/IP/Ethernet Header Size 54 bytes 54 bytes 54 bytes
TCP Processing Power 34048 packets/sec 89050 packets/sec 274500 packets/sec

TCP Processing Overhead: Cycle/byte 265.8 283.5 153.2
TCP Throughput 310 Mb/s 676 Mb/s 2180 Mb/s

TCP Memory Utilization 33.12% 34.35% 63.52%
* Theoretical Maximum TCP Throughput 380 Mb/s 992 Mb/s 3058 Mb/s

* Theoretical Maximum TCP Memory Bandwidth Utilization 40.52% 50.40% 89.09%
UDP/IP/Ethernet Header Size 42 bytes 42 bytes 42 bytes

UDP Processing Power 42400 packets/sec 110500 packets/sec 352500 packets/sec
UDP Processing Overhead: Cycle/byte 274.4 293.7 153.4

UDP Throughput 354 Mb/s 704 Mb/s 2180 Mb/s
UDP Memory Utilization 37.82% 35.77% 63.52%

* Theoretical Maximum UDP Throughput 476 Mb/s 1241 Mb/s 3959 Mb/s
* Theoretical Maximum UDP Memory Bandwidth Utilization 50.87% 63.06% 115.35%

Memory Copy Bandwidth 117 MB/s 246 MB/s 429 MB/s
Memory Copy Bandwidth 936 Mb/s 1968 Mb/s 3432 Mb/s  

We also used Iperf to measure the throughput achieved using TCP and UDP as a function of buffer/packet size and 

CPU utilization.  While conducting the Iperf experiments, we also collected many performance metrics such as CPU 

load, and network card I/O throughput (which accounts for retransmissions on errors or lost packets, header 

overhead, etc…), and application I/O throughput.  We found that as we increase the buffer size, we quickly 

approach the near optimum (well over 90% utilization of available network bandwidth running TCP for 10/100/1000 

Mb/s networks) while the CPU and memory were not overloaded.  The fact that memory size requirements leveled 

off quickly in regard to OS buffer sizes encourages the idea that a fast L2 style cache used as a stream buffer 

between the NIC and the CPU could significantly help memory speed maintain pace with NIC speeds while 

maintaining realistic cost figures.  Solutions to bottlenecks will be discussed in further detail in section 5.  The 
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performance numbers we found for TCP and UDP running over 10/100/1000 Mb/s Ethernet can be found in Figure 

15 and Figure 16 below. 

The performance of TCP for a range of buffer sizes from 2KB to 4MB and UDP for a range of packet sizes from 

2KB to 64KB can be seen in Figure 15 and Figure 16.  Note the fact that the processor is still not the bottleneck in 

any of these experiments.  Also, the network bandwidth utilization is around 95% for all experiments with large 

enough network buffers. 
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Figure 15: Performance of TCP/IP between two computer systems (2GHz CPUs) running over a LAN 

It would have been very interesting to have a 10 Gb/s Ethernet NIC in order to replicate the same experiments we 

did with Iperf and see the achieved throughput over the network.  Although the loopback tests we performed give us 

an overview and approximation with respect to what we should expect to obtain over the 10 Gb/s network, but 

nothing can substitute real tests over a real network! 
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UDP/IP Performance
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Figure 16: Performance of UDP/IP between two computer systems (2GHz CPUs) running over a LAN 

4.1.4 MPEG Performance 

We used the MPEG Analyzer to take measurements of various MPEG streams to aid us in building the needed 

benchmarks to test the simulator.  Three of the four video streams we used represent the same video sequence of 

about 10 seconds and represents different levels of encoding and compression; the fourth video stream is a full 

length two hour video.   

The characteristics of the video streams can be found in Table 9 below. 
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Table 9: MPEG-1 video clips characteristics 

Video Clip Name Width Height
Frames / 
Second Bits/pixel

Video 
Format

Audio 
Format

video1.mpg 352 288 25 24 MPEG-1 NONE
video2.mpg 720 480 29.97 24 MPEG-1 NONE
video3.mpg 720 480 29.97 24 MPEG-1 NONE
video4.mpg 720 480 29.97 24 MPEG-1 NONE

Video Clip Name Rate (Mb/s)
Compression 

%
Compression 

Ratio

Average 
Frame 

Size (KB) Frame #s
Length 

(seconds)
video1.mpg 0.9 0.16% 625 4 146985 5879.4
video2.mpg 5.7 2.41% 41 24 301 10.04
video3.mpg 9.5 4.02% 25 41 331 11.04
video4.mpg 12.5 5.29% 19 54 330 11.01

Video Clip Name # I-frames
I-Frame size 

(KB) # P-frames
P-Frame 
size (KB) # B-frames

B-Frame 
size (KB)

video1.mpg 8743 19 41235 6 97007 2
video2.mpg 21 59 80 30 200 19
video3.mpg 23 58 88 50 220 35
video4.mpg 330 54 0 0 0 0  

The decode performance is shown in Figure 17 and Table 10.  The essence of our findings are that the decode 

performance in cycles per byte is relatively constant across all three machines.  The deciding factor in the actual 

performance is mostly the compression ratio since more compression translated into more expensive decoding.   

These four video clips were used to model the job profile as well as the processing overhead for the processor.  

Based on our findings, it appears that today’s processors could only decode in the range of about 100 Mbit/s worth 

of video, which would automatically vote the processor as the bottleneck for any software decoding.  A hardware 

decoder could be used to alleviate this bottleneck fairly easily, especially since hardware decoders are beginning to 

be widely available due to HDTV (High Definition Television) popularity.  

Table 10: MPEG-1 video streams performance 

Processor Speed 466 MHz 1300 MHz 2166 MHz 466 MHz 1300 MHz 2166 MHz

Video Clip Name Cycles/byte Cycles/byte Cycles/byte

Decode 
time 

(seconds)
Decode time 

(seconds)

Decode 
time 

(seconds)
video1.mpg 282.2 322.2 275.8 351.9664 144.0341 74.0056
video2.mpg 195.3 181.6 191.3 3.0004 1.0003 0.6325
video3.mpg 177.0 197.5 173.5 4.9999 1.9997 1.0541
video4.mpg 162.0 150.7 158.8 5.9994 2.0005 1.2650  
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Figure 17: Decode performance measured in cycles/byte of processing 

4.2 Benchmarks 

This section discusses the benchmarks we used to test the simulator; the benchmarks were first introduced in section 

3.1.2.  Some of the issues we addressed are workload characteristics and performance metrics collected.  Since we 

are investigating high bandwidth applications, our workload characteristics can be defined rather simply as trying to 

move as much data as possible between the memory and the network interface.  The performance metrics collected 

will include effective throughput and latency incurred per component, as well as quality of the MPEG video stream, 

in the case of the real time tests running over UDP.   

For example, assume for the MPEG_hw benchmark that the overall compression rate of 625:1 and has a 1:5:11 ratio 

of I:P:B frames.  Assume the average I-frame is 19KB, the average P-frame is 6KB and the average B-frame is 2KB, 

and the overall frame rate is 25 frames / second.  Note that these characteristics are those of the video1.mpg video 

stream.  The graphical representation of the variable throughput required as various frames of different sizes are 

transmitted over the network can be seen in Figure 18.      
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Figure 18: Video 1 required variable throughput requirement 

The MPEG_sw benchmark would look identical in terms of network traffic, but would incur extra processing 

overhead that will take away from the network processing capacity.  The last benchmark, RAW, would have a 

constant bit rate stream for the network throughput required and would require no processor cycles to decode the 

video stream.      

4.3 Simulator Validation  

The results obtained with sysSIM are pretty good on the three systems in our testbed.  We obtained results within 

6%, 18% and 20% of the actual achieved throughput for UDP for the 466 MHz, 1.3 GHz, and 2.1 GHz processors 

respectively.  It is important to note that the results obtained from sysSIM are always lower than the theoretical 

throughput and lower than the memory copy throughput.     
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Figure 19: sysSIM validation results 

      



Page 32 of 37 

5 CONCLUSION AND FUTURE WORK 

We conclude with a survey of the past 25 years and with a good estimate with what the future (15 years) holds for 

general purpose computer systems.  We have found that in the past, up to about 1995, the network was the main 

bottleneck.  Then, between 1995 and 2007, the processor remained the bottleneck, and beyond 2007, the memory is left 

as the final bottleneck.  Due to the steady increases in performance in all these components, there does not seem to be 

any change in trend, and therefore unless one of these components reaches a plateau in the future, the memory subsystem 

is likely to remain the bottleneck for many years to come.  Figure 20 shows these trends with the year 1995 and 2007 

highlighted in yellow.   
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Figure 20: Bottleneck shifting in time from 1980 to 2020 

The solutions we see feasible to alleviate some of the bottlenecks are depicted in Table 11.  
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Table 11: solutions to alleviate bottlenecks  

Technical Solution Aleviate bottleneck
Multiple memory banks memory bandwidth

TCP offloading / Network processors processor speed
Hardware threads memory latency

Multiple processors (SMP) memory latency and speed
Use high speed cache memory for buffers memory latency and bandwidth

0-copy scheme memory latency, bandwidth, and processor speed  

As a realistic solution to lower latency and higher throughput, smaller but faster memory seems viable.  From a 

software perspective, it is possible to reduce the number of copies of the buffers from two 2 down to zero.  Where 

we cannot eliminate a copy, we will explore ways to keep then in faster smaller areas of memory that may be better 

suited for keeping up with the network interfaces.  For instances where the processor is the bottleneck, we could 

explore various hardware solutions in which the network interface cards get more complex and smarter to offload 

processing from the general purpose processor.  This would have a two fold advantage, both from freeing up the 

processor for other tasks and minimizing the memory bandwidth needed across the system bus since some packets 

might either be dropped or sent back out into the network without consuming resources outside of the network 

interface card. 
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