
Ioan Raicu
Progress Report

Page 1 of 25

IInntteerrnnsshhiipp PPrrooggrreessss RReeppoorrtt::
SSuummmmeerr 22000011

Author: Ioan Raicu

Document Created:
6/25/2001

Last Date Modified:
9/17/2001

Ioan Raicu
Progress Report

Page 2 of 25

Table of Contents
Cover Page 1
Table of Contents 2
1.0 Introduction 3
2.0 Weekly Reports 4

2.1 1st WEEK (6/11/01 – 6/15/01) 4
2.2 2nd WEEK (6/18/01 – 6/22/01) 4
2.3 3rd WEEK (6/25/01 – 6/29/01) 4
2.4 4th WEEK (7/2/01 – 7/6/01) 4
2.5 5th WEEK (7/9/01 – 7/13/01) 5
2.6 6th WEEK (7/16/01 – 7/20/01) 5
2.7 7th WEEK (7/23/01 – 7/27/01) 5
2.8 8th WEEK (7/30/01 – 8/3/01) 6
2.9 9th WEEK (8/6/01 – 8/10/01) 6
2.10 10th WEEK (8/13/01 – 8/17/01) 8
2.11 11th WEEK (8/20/01 – 8/24/01) 9
2.12 12th WEEK (8/27/01 – 8/31/01) 10

3.0 Technical Details 11
3.1 Interpreting the data 13

4.0 Installation Instructions 15
4.1 Reading (listening) motes 15

4.1.1 JDK 1.3.1 15
4.1.2 COMMAPI 15
4.1.3 JBuilder 4 16

4.2 Writing (programming) motes 16
4.2.1 Cygwin (UNIX shell) 16
4.2.2 AVRGCC (C compiler) 17
4.2.4 TVICPORT (device driver for writing to parallel port) 17
4.2.3 TinyOS 17

5.0 Documentation Details 18
5.1 Important Files and Short Description 18
5.2 Example on adding sensors 20
5.3 Changing parameters on existing programs 22

5.3.1 Changing mote ID 22
5.3.2 Changing group ID 22
5.3.3 Changing frequency of packet transmission 22
5.3.4 Changing packet length 22
5.3.5 Adding variables to the header or trailer 23
5.3.6 Adding variables to the data portion 23
5.3.7 Changing resolution of data coming in (bit shifting) 23
5.3.8 Changing static route for Proximity Detector 24

6.0 Glossary 25

Ioan Raicu
Progress Report

Page 3 of 25

1.0 Introduction
…

Ioan Raicu
Progress Report

Page 4 of 25

2.0 Weekly Reports
In the sections to follow, I will be iterating my progress as the project matures. I will be
reporting my weekly report to Elisabeth Alben.

2.1 1st WEEK (6/11/01 – 6/15/01)
This first week, I pretty much just got acquainted with the Accenture Technology Labs, formerly
know as the CSTAR group. I was introduced to the main topics of the project, and thus just read
most of the rest of the week, trying to understand how the motes, sensors in general, the TinyOS,
and other related things work. I set up a folder in which I am keeping track of everything I am
reading so I can use it for future reference.

2.2 2nd WEEK (6/18/01 – 6/22/01)
I met Owen Richter, who introduced me to the hardware (the motes) and the software (TinyOS).
I set up my machine with Cygwin (a UNIX shell needed to program the motes), the TinyOS 4.3
(the OS that the motes run and understand, used to program the motes), and Sun’s Java JDK
1.3.1 (used to listen to the serial port for data coming from base station mote). I managed to get
the wireless network up and running to a limited degree. I have 3 motes and a programming
station (which has 1 parallel port as an input, and 1 serial port as an output). One mote needs to
be hooked up to the programming station and be set to be a base station. The other two, I was
able to set them up with simple functionality, such as number counting and transmitting the value
of the counter over the wireless network. The base station works as data can be received from
other motes (in HEX). Both Owen and I have spent a great deal of time trying to resolve a
compilation problem. At the moment, we are not able to compile and run the necessary
programs to be able to read the sensors and relay the information via RF.

2.3 3rd WEEK (6/25/01 – 6/29/01)
We solved the compilation problems that we were having last week. I managed to get the motes
working in terms of reading the light sensor and transmitting it over the RF. Much time was
spent investigating the code for the TinyOS and the sample applications in order to be able to
write my own applications. Some of my near future goals are to write a simple application that
can read the signal strength, and perhaps even the temperature sensor. I have done much reading
about the motes themselves and the TinyOS and I am still digging up the answers to some of the
questions that came up in last weeks meeting, such as the unique ID of each mote, etc…

2.4 4th WEEK (7/2/01 – 7/6/01)
This was relatively a short week, due to the 4th of July days off, including a personal day off on
the 6th of July. I kept working on finding out as much as I could about a way to uniquely identify
each mote. I have attempted to contact people like Jason Hill and some others from Berkeley,
and Northbrook.

Ioan Raicu
Progress Report

Page 5 of 25
2.5 5th WEEK (7/9/01 – 7/13/01)
I have been working on getting the temperature sensor, however, with no success. The only
person who has answered any of my cries for help on some of my questions has been Reena from
Northbrook. After talking to Reena, and looking through most of the source code for the
TinyOS, here is the breakdown of the known fields in the data that comes in. Each field is 2
bytes long.

• 1st – serial address (TOS_UART_ADDR); this is how the mote knows to send the packet
to the serial interface rather than as a broadcast over the radio.

• 2nd – type; I really don’t know what this is, but according to Northbrook, it is the handler
of the mote hopping, but I cannot verify this yet.

• 3rd – group ID (LOCAL_GROUP); only packets belonging to the group that the base
station belongs to will be allowed through; there is no authentication, but rather it is just
like switching channels.

• 4th – data; light sensor, temperature sensor, etc…
• 5th – mote ID (TOS_LOCAL_ADDRESS); this will distinguish the mote from other

motes, however, uniqueness is not guaranteed since the assigning of mote IDs is done
manually at compile time.

2.6 6th WEEK (7/16/01 – 7/20/01)
I finally got the temperature sensor working. I also attempted to get the signal strength to work,
and while preliminary results looked positive when I first tried out the signal strength code, I was
unable to reproduce the varying signal strength. Since that was not a priority, I abandoned any
efforts for now until I have more time. I also tried to get more than 1 sensor working at one
time. Theoretically, I believe I understand it, but when it came to coding it, I was running into
compiling errors. I also gave up on this in the hopes of pursuing the mote hoping algorithms. I
also tried to install Visual Studio .NET with no success because of download errors.

2.7 7th WEEK (7/23/01 – 7/27/01)
I am attempting to continue the .NET installation in order to compile and run Lisa’s C# version
of the listen.java. After a day of installs, I managed to finish, and test “listen.cs”. It works
perfect. I found a new source of great up to date information, at http://sourceforge.net/. With the
help of this CVS repository, I was able to update my 5 month old TinyOS, which fixed many of
the problems I was having. As time was limited towards the end of the week, I only had time to
get the signal strength and CRC working. I incorporated the CRC algorithms into the files that
now supported the signal strength, and before I knew it, the CRC check was also working and
the base stations are now only outputting error-free packets. Please refer to the technical details
in section 3 for a complete break down of the data being transmitted. In the meantime, since I
was having such a hard time with batteries, I also attempted to solve the problem by powering
the motes by an AC/DC adapter. What I noticed was that the motes are really sensitive to having
about 3.2~3.3 volts of power, but only when being programmed. For regular operation, they can
work on even 2.7~2.8 volts, which is fine for most batteries. My problem was that most batteries
only had about 3.2~3.3 volts when fresh out of the box, and their voltage would quickly drop
below the needed voltage and thus I was going through batteries in under an hour. My solution

Ioan Raicu
Progress Report

Page 6 of 25
was to use a universal adapter, set on 3 volts, 300 mA, and a 100 OHM resistor. Without the
resistor, because of the very small load the motes would have caused the adapter, the voltage
would have been above the recommended limits of the hardware. The 100 OHM resistor
dropped the voltage to the 3.2 ~3.3 voltage area.

2.8 8th WEEK (7/30/01 – 8/3/01)
My next step was to get both the light sensor and the photo sensor working together, and again,
with the help of http://sourceforge.net/, I was able to accomplish it in no time. My last big feat
was to get the mote-hopping algorithms to work. By the end of the week, I managed to do it. I
now had 4 applications that I wrote, in which they all incorporated sensing both the photo and
temperature sensor at the same time, the signal strength, and are doing CRC. They go in pairs,
since two of them are meant for the motes as nodes, while the other two are meant as base
stations. One pair has simple communication between each mote and the base station, while the
other pair supports mote-hopping, in which it relays messages heard from other motes. Please
refer to the technical details in section 3 for a complete break down of the data being transmitted.
I also spent a little bit of time working on a visual representation of the motes; again, at
http://sourceforge.net/, I found a program called “Surge”, which was supposed to graphically
represent the network topology in conjunction with the program “connect.desc”. In order to
make it compatible with my applications, I had to modify it to suit my needs. Along with the
graphical interface, I also found an application that will forward any packets received from the
UART and send them over the wired network to any IP address. In essence, base stations could
be located throughout a building, and all send their readings back to a server, which collects all
the data and comes up with a unified view of all the base stations and all the motes at the same
time.

2.9 9th WEEK (8/6/01 – 8/10/01)
I spent a little bit of time updating this report, and cleaning up my source code. I am now
working on a proximity detector with Owen, specifically to be able to transmit the signal strength
from one mote to another as the mote hopping does its thing. I am also trying to see if motes
could have some dynamic reprogrammable parameters, such as the frequency at which it updates
the sensor readings. As for the proximity detector, I have made great progress in making another
program which is a hybrid between a base station and a sensor mote. I had to do this since when
I tried to read the signal strength from a mote to another mote, it was 0, and thus was not
supported in the architecture of the system. This hybrid mote was pretty much exactly like a
base station, however instead of forwarding its received data to the serial port, it is broadcasting
it over the radio. When I tried using motes that had mote hopping routing enabled, the system
would occasionally hear echoes of its own messages, and thus I decided to further simplify the
problem. In terms of a proximity detector, such as locating a person wearing a badge, that badge
should only have capabilities for simple communication between a base station and itself; it
should not forward other messages it hears since this will create a whole lot of traffic and even
echoes. On the next page, you will find a diagram in which you will find the description of the
current setup in terms of the proximity detection setup. The next few steps would include
involving some way to average out the signal strengths received and apply it to some math
functions to get a rough proximity estimator.

Ioan Raicu
Progress Report

Page 7 of 25

PC

Base Station (01):
Advertises to all other
Hybrid Base Stations
that it is the base
station; any messages
received will be
forwarded over the
serial line to the PC.

Mote (04):
Simply broadcasts its
information (sensor
readings, ID, etc…).

Hybrid Base Station
(02 and 03):
Advertises to all other
Hybrid Base Stations
that it is a base station;
any messages received
including the signal
strength from the
particular source of
transmission will be
forwarded via RF to
the Base Station (01).

01

02 03

04

Route Update Messages
generated by Base Stations

Broadcast Messages
generated by Motes.

Broadcast Messages
generated by Motes. Route Update Messages

generated by Base Stations

Messages heard from
Mote 4 are forwarded
to base station 1.

Messages heard from
Mote 4 are forwarded
to base station 1.

Figure 2.1

Ioan Raicu
Progress Report

Page 8 of 25

2.10 10th WEEK (8/13/01 – 8/17/01)
I finally finished with Owen’s proximity detector in a state that works rather well. The program
was written in Java and pretty much analyzes the incoming data, keeps some history data of
everything, and comes up with decisions in which when a mote is closer to some other mote
instead of the one it was closest to. Please refer to Figure 1 for details on the setup of the motes
for such an example. Everything is being logged to a file which can be viewed at a later time for
closer examination. Below can be viewed a sample log file:

Figure 2.2

• Tue Aug 21 08:49:48 PDT 2001: NEW SESSION

o Time stamp: announcing that a new session started.

• Tue Aug 21 08:49:48 PDT 2001: ID TEMP LIGHT COUNTER
o Time stamp: specifying that the 1st field is the mote ID, the 2nd is the temperature,

the 3rd is the light, and the 4th is the packet counter.

• Tue Aug 21 08:49:48 PDT 2001: 15 65 105 3 : 15=> 256 @ 255
o Time stamp: ID TEMP LIGHT COUNTER : source mote ID is closest to

destination mote ID @ the particular signal strength.

• Tue Aug 21 08:49:48 PDT 2001: MOTE 15 => 256 @ 255*********************
o Time stamp: source mote ID is closest to destination mote ID @ the particular

signal strength; the “*********************” mean that this is a new location,
and therefore will only be displayed once until the system sees another change;
this is also the information that is being displayed on the graphical GUI.

• Tue Aug 21 08:49:48 PDT 2001: 126 8 34 0 15 65 105 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

o Time stamp: packet data as it came over the serial port; please see figure 3.2 for
further details on the arrangement of the data.

Tue Aug 21 08:49:48 PDT 2001: NEW SESSION
Tue Aug 21 08:49:48 PDT 2001: ID TEMP LIGHT COUNTER
Tue Aug 21 08:49:48 PDT 2001: 15 65 105 3 : 15=> 256 @ 255
Tue Aug 21 08:49:48 PDT 2001: MOTE 15 => 256 @ 255*********************
Tue Aug 21 08:49:48 PDT 2001: 126 8 34 0 15 65 105 3 0
Tue Aug 21 08:49:49 PDT 2001: 15 65 105 4 : 15=> 256 @ 255
Tue Aug 21 08:49:49 PDT 2001: 126 8 34 0 15 65 105 4 0
Tue Aug 21 08:49:56 PDT 2001: 15 65 105 5 : 15=> 256 @ 255
Tue Aug 21 08:49:56 PDT 2001: 126 8 34 0 15 65 105 5 0
Tue Aug 21 08:50:07 PDT 2001: 15 65 105 9 : 15=> 256 @ 255
Tue Aug 21 08:50:07 PDT 2001: 126 8 34 0 15 65 105 9 0
Tue Aug 21 08:50:13 PDT 2001: 15 65 105 10 : 15=> 256 @ 255
Tue Aug 21 08:50:13 PDT 2001: 126 8 34 0 15 65 105 10
Tue Aug 21 08:50:16 PDT 2001: 5 43 48 1 : 5 => 15 @ 70
Tue Aug 21 08:50:16 PDT 2001: MOTE 5 => 15 @ 70*********************
Tue Aug 21 08:50:16 PDT 2001: 126 8 34 1 5 43 48 1 70 15 65 105 10 255
48 70 0

Ioan Raicu
Progress Report

Page 9 of 25
2.11 11th WEEK (8/20/01 – 8/24/01)
Since my presentation is on Wed, I need to prepare some slides and my entire talk. I also wanted
to present the Proximity Detector, and thus I spent a few hours developing a simple application
that graphically represents who the mote is closest to, in full screen mode. Below you can see a
snap shot of the interface. The above white part means that mote with ID 5 was last closest to
mote with ID 15. This will only change if the system has some reason to believe otherwise.
Below that, you can see the background information that is coming in and being examined. Each
line starts out with a time stamp, after which there is the packet info (mote ID, temperature
reading, photo sensor reading, and packet number). After the colon, there is information
regarding where did this information come from, and at what signal strength it came at. For
example, for the first line, it states that mote 15 data came from mote 256 with a signal strength
of 255. Mote 256 is denoted as the computer itself, and therefore the signal strength of 255 is
justified because the signal travels through the serial port rather than the radio. Notice that there
is no way to exit the program unless Ctrl-c is used; the process will continue forever if not
terminated.

Figure 2.3

Ioan Raicu
Progress Report
Page 10 of 25

2.12 12th WEEK (8/27/01 – 8/31/01)
As this was the last week, I was frantically trying to wrap everything up, especially the
documentation. As for the proximity detector, I came up with a better looking interface rather
than the one depicted in Figure 2.3. The new interface is a graphic user interface designed in
JBuilder4. A screen shot of it can be seen in Figure 2.4.

Figure 2.4

In figure 2.4, the name Laptop indicates that I (tagged with a mote as well) am closest to the
location Laptop with an ID of 19. The temperature and light readings are indicating the
conditions at the displayed location. The temperature was calibrated for Fahrenheit degrees and
the light was calibrated to show percentages of light. The gauges will update along with the
digital numbers, and also change colors as the values change. For the temperature gauge, the
colors change from blue to red as the temperature rises from cold to hot. The light gauge also
changes colors from black to white as the light levels increase.

Ioan Raicu
Progress Report
Page 11 of 25

3.0 Technical Details
The processor within the MCU (ATMEL 90LS8535), is an 8-bit Harvard architecture with 16-bit
addresses. It provides 32 8-bit general registers and runs at 4 MHz and 3.0 V. The system is very
memory constrained: it has 8 KB of flash as the program memory, and 512 bytes of SRAM as
the data memory. Additionally, the processor integrates a set of timers and counters which can
be configured to generate interrupts at regular time intervals.

The coprocessor represents a synchronous bit-level device with byte-level support. In this case, it
is a very limited MCU (AT90LS2343, with 2 KB flash instruction memory, 128 bytes of SRAM
and EEPROM) that uses I/O pins connected to an SPI controller. SPI is a synchronous serial data
link, providing high speed full-duplex connections (up to 1 Mbit) between various peripherals.
The coprocessor is connected in a way that allows it to reprogram the main microcontroller. The
sensor can be reprogrammed by transferring data from the network into the coprocessor's 256
KB EEPROM (24LC256). Alternatively the main processor can use the coprocessor as a
gateway to extra storage.

The radio is the most important component. It represents an asynchronous input/output device
with hard real time constraints. It consists of an RF Monolithics 916.50 MHz transceiver
(TR1000), antenna, and collection of discrete components to configure the physical layer
characteristics such as signal strength and sensitivity. It operates in an ON-OFF key mode at
speeds up to 19.2 Kbps, 115 Kbps using amplitude shift keying, but usually about 10 Kbps as
raw data; the speeds are as low as they are because of the bit-level processing, and the
conservation of the most valuable resource – battery life. Control signals configure the radio to
operate in either transmit, receive, or power-off mode. The radio contains no buffering so each
bit must be serviced by the controller on time. Additionally, the transmitted value is not latched
by the radio, so jitter at the radio input is propagated into the transmission signal. The task
scheduler is just a simple FIFO scheduler.

Commercial systems work in the 915 MHz to 2.8 GHz, thus having the motes transmit at higher
frequencies (such as 5.8 GHz), would make them much less susceptible to interference, and also
yield a higher throughput. However, the lower frequency is much less prone to problems
because of line of sight, which seems to be the main concern for the motes. The range of the
motes communication is 30 ft ~ 100 ft. The signal strength can be controlled through a digital
potentiometer (DS 1804) from 0 ~ 50 kOhms, however, there is no observable effects on power
usage; optimal setting seems to be around 10 kOhms. All the motes contend for a single channel
RF radio. They use carrier sense multiple access (CSMA) and have no collision detection
mechanism. Channel capacity is about 25 packets per second, so the wireless network can easily
get congested if too many sensors are in the vicinity.

Three LEDs represent outputs connected through general I/O ports; they may be used to display
digital values or status. The photo-sensor represents an analog input device. The input signal can
be directed to an internal ADC in continuous or sampled modes. The temperature sensor
(Analog Devices AD7418) represents a large class of digital sensors which have internal A/D
converters and interface over a standard chip-to-chip protocol. In this case, the synchronous,
two-wire I2C protocol is used with software on the microcontroller synthesizing the I2C master
over general I/O pins. In general, up to eight different I2C devices can be attached to this serial
bus, each with a unique ID. The protocol is rather different from conventional bus protocols, as
there is no explicit arbiter. Bus negotiations must be carried out by software on the

Ioan Raicu
Progress Report
Page 12 of 25

microcontroller. The serial port represents an important asynchronous bit-level device with byte-
level controller support. It uses I/O pins that are connected to an internal UART controller. In
transmit mode, the UART takes a byte of data and shifts it out serially at a specified interval. In
receive mode, it samples the input pin for a transition and shifts in bits at a specified interval
from the edge. Interrupts are triggered in the processor to signal completion events.

The type of battery that is feasible to use in motes is a watch size battery (Energizer CR2450
lithium battery @ 575 mAh). More noteworthy are the three sleep modes: idle, which just shuts
off the processor, power down, which shuts off everything but the watchdog and asynchronous
interrupt logic necessary for wake up, and power save, which is similar to the power down mode,
but leaves an asynchronous timer running. There are three modes of operation, which last
accordingly to the numbers below:

• Active – 30 hours
• Idle – 200 hours
• Inactive (Power down) – >1 year

Some of the voltage requirements that I have been able to find are:
• Atmel MCU – 6.6 volts max
• TR1000 radio transmitter and receiver – 4 volts max
• In order to program the motes, at least about 3.2 volts is needed
• Other components might have different voltage ratings, I still need to look into them.

In terms of security, there is some but not much. There is trusted communication with the bases;
it uses RC5 cryptography to secure data transmissions as it shares secret keys between bases and
each device. The overhead is minimal, as it only incurs less than 5 ms delay all the way from
key setup, authentication, and encryption. The data transmitted and received to and from the
motes adheres to the following standards:

• At the start of communication, <Base ID, 0, **>
• After parent has been established, each mote transmits <identity, depth, data>. The

identity is the parent or routing path; the depth is the depth in the tree that the mote is
situated. If a new parent comes along that has a lower depth that the current one, the
routing will change to the new better path.

Ioan Raicu
Progress Report
Page 13 of 25

3.1 Interpreting the data
As for the actual data that comes across the wireless network, here is a sample output for the
light sensor using the application “sens_to_rfm.desc”.

Figure 3.1

• 1st (7E) – serial address (TOS_UART_ADDR); this is how the mote knows to send the
packet to the serial interface rather than as a broadcast over the radio.

• 2nd (04) – type; I really don’t know what this is, but according to Northbrook, it is the
handler of the mote hopping, but I cannot verify this yet.

• 3rd (13) – group ID (LOCAL_GROUP); only packets belonging to the group that the base
station belongs to will be allowed through; there is no authentication, but rather it is just
like switching channels.

• 4th (6C) – data; light sensor, temperature sensor, etc…
• 5th (0F) – mote ID (TOS_LOCAL_ADDRESS); this will distinguish the mote from other

motes, however, uniqueness is not guaranteed since the assigning of mote IDs is done
manually at compile time.

For the applications I wrote, here is a summary:

• envmon_crc_signal.desc – program to be loaded on a mote that is to be used as a
network node for simple communication between each node and the base station; it’s
supported features are: photo sensor readings, temp sensor readings, signal strength
readings, and CRC checking implementation.

• envmon_crc_signal_base.desc – program to be loaded on the base station, in which it
simply waits for incoming packets, and as long as they adhere to the right group, they
will be forwarded to the UART; be aware that this application had to be given the support
of both the signal strength and CRC in order for it to work properly with the
“envmon_crc_signal.desc” application.

• envmon_crc_signal_router.desc – program to be loaded on a mote that is to be used as a
network node for communication between each node and the base station; it implements
mote hopping in which it relays any messages it hears from other nodes and includes
them in the same packet with its own data, and forwards it on to the base station. Besides
the mote hopping feature, it implements the same features as “envmon_crc_signal.desc”.

• envmon_crc_signal_router_base.desc – program to be loaded on the base station;
besides just waiting for incoming packets, and as long as they adhere to the right group,
they will be forwarded to the UART, it will also periodically send messages containing
routing update topologies; be aware that this application had to be given the support of
both the signal strength and CRC in order for it to work properly with the
“envmon_crc_signal_router.desc” application.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7E 04 13 6C 0F 00
7E 04 13 6F 0F 00
7E 04 13 75 0F 00

Ioan Raicu
Progress Report
Page 14 of 25

A sample output for these 4 programs is, using a 4 byte header, 30 bytes of data, and 4 byte
trailer:

Figure 3.2

• 1st – serial address (TOS_UART_ADDR); this is how the mote knows to send the packet
to the serial interface rather than as a broadcast over the radio.

• 2nd – type; the handler of the mote hopping.
• 3rd – group ID (LOCAL_GROUP); only packets belonging to this group will be heard by

the base station; there is no authentication, but rather it is just like switching channels.
• 4th – the depth of the tree that the data came from; a depth of 0 means that the message

came straight from a mote; a depth of 1 means that there is a message from a lower depth
that is attached to the message as well; a depth of 2 means that there are 2 messages
attached from lower levels, and so on…

• 5th ~ 9th – these 5 fields are the data of the mote; the next 6 sets of data, 10~14, 15~19,
20~24, and 25~29 are all identical in terms of the composition:

o 1st – mote ID, which will distinguish each mote from one another
o 2nd – the temperature data
o 3rd – the light sensor data
o 4th – packet counter, which could help in determining if a certain piece of data has

already been received or not.
o 5th – signal strength from received node

If the depth is 0, then these 5 fields will hold the data of the sending mote; if the depth is
1, then these 5 fields will hold the data of the forwarded packet, since the original data
from this packet was shifted down 5 fields; the original data from the sending mote will
always be found in the last 5 fields that are being used. This can easily be extracted since
we know the depth, we can just go to position “5+depth*5”, and we have found the
original data; with each level less, we get the next depth data, all the way till we reach the
depth of 0, in which it was the last set of data from the furthest level.

• 10th ~ 14th – please refer to 5th ~ 9th.
• 15th ~ 19th – please refer to 5th ~ 9th.
• 20th ~ 24th – please refer to 5th ~ 9th.
• 25th ~ 29th – please refer to 5th ~ 9th.
• 30th ~ 33rd – undecided.
• 34th ~ 35th – CRC values; used by lower layers to do error detection.
• 36th ~ 37th – signal strength reading

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
7E 08 22 00 19 02 DB 81 00
7E 08 22 00 19 02 E0 82 00
7E 08 22 01 0B 08 A0 CC 19 02 E0 82 00 45 A7 66 00
7E 08 22 00 19 03 E0 83 00
7E 08 22 01 0B 08 AA CD 19 03 E0 83 00 D8 8A 55 00
7E 08 22 01 0B 08 9B CE 19 03 E0 83 00 FF B1 5B 00
7E 08 22 00 19 03 E1 84 00
7E 08 22 02 13 05 9B 01 0B 08 9C CF 19 03 E0 84 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 23 51 2A 00
7E 08 22 02 13 05 9B 02 0B 08 9B D0 19 03 E1 85 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FA DB 2B 00

Ioan Raicu
Progress Report
Page 15 of 25

4.0 Installation Instructions

All necessary files can be found in \\paw\motes. The instructions bellow assume that you have
Windows 2000 Professional, however it should also work with Windows NT 4.0 with a late (3 or
above) service pack.

4.1 Reading (listening) motes
To be able to listen to base stations, all you need is a properly installed JAVA system. Doing the
following few steps can accomplish that.

4.1.1 JDK 1.3.1
Execute “\motes\install\jdk 1.3.1\j2sdk-1_3_1-win.exe”. Agree to all default options and
settings. Once installation is completed, open “\motes\install\jdk 1.3.1\path.txt” and added to the
CLASSPATH under System Properties, Environmental Variables, System Variables; in the same
place, also add “C:\jdk1.3.1\bin” to the PATH variable. To double check everything is good,
open up a new command prompt window and type “java”, which it should recognize it as a valid
program, and display a list of possible options. Do the same thing with “javac”, in which the
result should be similar. If it comes back with a message that the program is not recognized as
an internal or external command, operable program or batch file, then you do not have the path
set properly and it cannot find the compiler.

4.1.2 COMMAPI
This package is an add-on to the core classes for the JDK which will allow the reading of the
serial / parallel port with ease. The examples in this document assume that your JDK installation
is in “C:\jdk1.3.1” and that the COMMAPI is in “C:\commapi”.

• Copy win32com.dll to your <JDK>\bin directory.
o C:\>copy c:\commapi\win32com.dll to c:\jdk1.3.1\bin

• Copy comm.jar to your <JDK>\lib directory.
o C:\>copy c:\commapi\comm.jar c:\ jdk1.3.1\lib

• Copy javax.comm.properties to your <JDK>\lib directory.
o C:\>copy c:\commapi\javax.comm.properties c:\ jdk1.3.1\lib
o The javax.comm.properties file must be installed. If it is not, no ports will be

found by the system.

• Add comm.jar to your classpath:
o If you don't have a classpath defined:

� C:\>set CLASSPATH=c:\ jdk1.3.1\lib\comm.jar
o If you already have a classpath defined:

� C:\>set CLASSPATH=c:\ jdk1.3.1\lib\comm.jar;%classpath%

Ioan Raicu
Progress Report
Page 16 of 25

4.1.3 JBuilder 4
Execute “\motes\install\JBuilder4\install_windows.exe”. Select Full Installation, and agree to all
default options and settings. Once the installation is complete, start up JBuilder4 and do the
following actions:

• If prompted for serial number and authentication key, they are:
o Serial number: XA22-?XYXU-ZZT8X
o Authentication Key: HX6-TZY

• Go to the Project menu and select default project properties
o Screen “Default Project Properties”: Click on the … on the right side of JDK,

which will allow you to select a different JDK
o Screen “Select a JDK”: click on NEW at the bottom left corner
o Screen “New JDK Wizard”: click on the … on the right side of Existing JDK

home path
o Screen “Select Directory”: find the path of the SUN JDK 1.3.1, which should be

C:\jdk1.3.1 and select it, and confirm all the windows until you get back to the
screen “Default Project Properties”.

o Screen “Default Project Properties”: make sure that under User Home, you have
selected “java 1.3.1-B24”, and not “java 1.3.0-C”.

• You are now ready to make a new project or open an existing one.

4.2 Writing (programming) motes
To be able to program the motes, you need a UNIX shell, a C compiler, the Tiny OS, and device
drivers to write to the parallel port. Follow the following steps to accomplish that.

4.2.1 Cygwin (UNIX shell)
Execute “\motes\install\Cygwin\setup.exe”. Agree to all default options and settings unless
otherwise specified. The following are the exceptions to the default options:

• Screen “Cygwin setup”: select “Install from Local Directory”

• Screen “Cygwin setup”: under “Select Packages to Install”, select all packages under
SRC?

Once the installation is complete, restart the “\motes\install\Cygwin\setup.exe”, following the
same exact steps as the first time, however this time when you get to the part of selecting
packages to install, choose “Exp” instead of “Cur” at the top of the screen. Follow the same
steps in choosing all those packages as well and continue the install just like before.

In the event that things do not work as expected in terms of the functionality of the shell, please
copy the “\motes\c_drive\cygwin” directory over the fresh installed CYGWIN which should be
in “C:\cygwin”, overwriting all files.

Ioan Raicu
Progress Report
Page 17 of 25

4.2.2 AVRGCC (C compiler)
Execute “\motes\install\avrgcc\avrgcc20010211.exe”. Agree to all default options and settings.

In the event that things do not work as expected in terms of the functionality of the compiler,
please copy the “\motes\c_drive\avr-gcc” directory over the fresh installed AVRGCC which
should be in “C:\avr-gcc”, overwriting all files.

4.2.4 TVICPORT (device driver for writing to parallel port)
Execute “\motes\install\tvicport\install.exe”. Agree to all default options and settings.

4.2.3 TinyOS
Copy “\motes\c_drive\cygwin\tos4.3” and all its contents to your local Cygwin directory.

Ioan Raicu
Progress Report
Page 18 of 25

5.0 Documentation Details
Below you will find documentation on important files dealing with the TinyOS and the
Proximity Detector.

5.1 Important Files and Short Description

• c:\cygwin\tos4.3\Makefile
o File used to compile and upload the programs to the motes

o Procedure of compiling and uploading are as follows:
� make clean – cleans up any “.o” files; should always do this before

compiling in order to do fresh recompiles of all new code.
� make – compiles the specified program in the Makefile
� make install_windows.15 – uploads the compiled program up to the mote;

if the “.15” is omitted, then the mote will be assigned the default ID
specified in the “c:\cygwin\tos4.3\main.c”; if “.15” is specified, then the
corresponding decimal value will be assigned to the mode as its ID.

o To compile a simple mote, please comment all programs except for (note that
everything past a “#” on that line is considered commented out):

� DESC=apps/envmon_crc_signal.desc
� CFLAGS += -DMOTE

o To compile a simple base station, please comment all programs except for:
� DESC=apps/envmon_crc_signal_base.desc
� CFLAGS += -DBASE_STATION

o To compile a mote that will handle routing, please comment all programs except
for:

� DESC=apps/envmon_crc_signal_router.desc
� CFLAGS += -DMOTE

o To compile a base station that will handle routing, please comment all programs
except for:

� DESC=apps/envmon_crc_signal_router_base.desc
� CFLAGS += -DBASE_STATION

o In order to achieve the proximity detection properly, I also devised another
program which combines the functionality of a routing mote and a routing base
station; these are going to be the mote base stations, and they are going to be fixed
throughout the environment within range of the base station that is hooked up to
the main computer. At the moment, in order to avoid message echoes from
bouncing back and forth, I made the route static towards the base station, however
this should be dynamic and learned by the motes themselves. To compile a base
station that will handle routing, please comment all programs except for:

� DESC=apps/envmon_crc_signal_router_base.desc
� CFLAGS += -DBASE_STATION_MOTE

Ioan Raicu
Progress Report
Page 19 of 25

• c:\cygwin\tos4.3\apps\envmon_crc_signal.desc
o Simple mote program that implements CRC error detection, signal strength

reading, photo sensor, and temperature sensor, all at once; it periodically sends
packets out over the radio as a broadcast with all of the above data. For details on
the organization of the data contained in the packet, please refer to Figure 3.2.

• c:\cygwin\tos4.3\apps\envmon_crc_signal_base.desc
o Simple base mote program that simply listens and any packets that come through

with the proper Group ID are forwarded along the UART. It implements the CRC
error checking, in which it throws out any bad packets; and also implements the
signal strength in which it calculates the strength based on the information
received from the mote.

• c:\cygwin\tos4.3\apps\envmon_crc_signal_router.desc
o The program is very similar to “c:\cygwin\tos4.3\apps\envmon_crc_signal.desc”,

however it also implements mote hoping. Besides doing the usual work load of
reading its sensors and sending them out, it also listens for messages coming from
other motes; if it does receive anything, it concatenates that data to its own data,
places it all in a packet, and forwards it along. It implements all the usual stuff,
such as CRC, signal strength, photo sensor, and temp sensor.

• c:\cygwin\tos4.3\apps\envmon_crc_signal_router_base.desc

o This program is similar to “c:\cygwin\tos4.3\apps\envmon_crc_signal_base.desc”
in functionality, however it also periodically advertises that it is the base station
so other motes can establish a routing path back to it. It also implements all the
usual stuff, such as CRC, signal strength, photo sensor, and temp sensor.

• c:\cygwin\tos4.3\env.c

o Take periodic samples (light and temp) at the same time, perform simple local
processing, and periodically emit data message

• c:\cygwin\tos4.3\env.comp
o Component file for “c:\cygwin\tos4.3\env.c”.

• c:\cygwin\tos4.3\env_router.c
o This module sends out the value of sensor readings to the radio. It periodically

samples the sensor values and then sends out a single radio packet. It also listens
to the radio and anything it hears, it places it in its own packet and forwards
everything along. Essentially, the received packet will include an immediate
history of all received messages that the mote heard.

• c:\cygwin\tos4.3\env_router.comp
o Component file for “c:\cygwin\tos4.3\env_router.c”.

• c:\cygwin\tos4.3\system\photo.c
o OS component abstraction of the analog photo sensor and associated A/D support.

It provides an asynchronous interface to the photo sensor.

Ioan Raicu
Progress Report
Page 20 of 25

• c:\cygwin\tos4.3\system\photo.comp
o This module encapsulates the PHOTO sensor. It automatically gives the correct

commands to the ADC and then returns the sensor reading to the application with
the DATA_READY event. It is partially implemented by the PHOTO.c file and
also the PHOTO.desc file. PHOTO.desc file includes the ADC and the wiring
between the ADC and the PHOTO component. Most sensor files will look very
similar except for names and channels and ports.

• c:\cygwin\tos4.3\system\photo.desc
o Description file for “c:\cygwin\tos4.3\photo.c”.

• c:\cygwin\tos4.3\system\temp.c
o OS component abstraction of the analog temp sensor and associated A/D support.

It provides an asynchronous interface to the temp sensor.

• c:\cygwin\tos4.3\system\temp.comp

o This module encapsulates the TEMP sensor. It automatically gives the correct
commands to the ADC and then returns the sensor reading to the application with
the DATA_READY event. It is partially implemented by the TEMP.c file and
also the TEMP.desc file. TEMP.desc file includes the ADC and the wiring
between the ADC and the TEMP component.

• c:\cygwin\tos4.3\system\temp.desc
o Description file for “c:\cygwin\tos4.3\temp.c”.

• c:\cygwin\tos4.3\system\include\basic.h
o Sensor information, such as channels and pin IDs

• c:\cygwin\tos4.3\system\include\msg.h
o Packet details, such as member variables, packet length, etc…

• c:\cygwin\tos4.3\system\include\hardware.h
o Specific to the Rene mote, it defines the hardware layout in terms of pin IDs,

ports, etc…

5.2 Example on adding sensors
Example on adding a third sensor, and for ease of explanation, lets say it is a humidity sensor:

• Define a series of files called “humidity.c”, “humidity.desc”, and “humidity.comp”.

• Start by importing all data from another sensor (“photo.*”)

• Replace anything that says photo with humidity within all variables in all 3 files

• Open “basic.h” and add (make sure you have connected the sensor to PW3 and ADC
channel 3; this can be done by referring to Figure 5.2 on the next page:

o ALIAS_PIN(HUMIDITY_CTL, PW3);

Ioan Raicu
Progress Report
Page 21 of 25

o #define HUMIDITY_CHANNEL 3

• Open “humidity.desc”, and change the port to the right one as defined in the “basic.h”, in
our case it would be 3.

Using the steps above, you will have the foundation to be able to read this new sensor. If you
open any existing application (“.desc”) from the “C:\cygwin\tos4.3\apps” directory, and just
replace either anything that contains say photo with humidity, the new application should read
the new sensor just like it used to read the old one.

If it is desired to make all sensors work at the same time, the process becomes much more
involved, however it can be figured out rather simple if some logic is used and one is familiar
with the TinyOS setup. Lets say I wanted to adapt the simple mote program
“c:\cygwin\tos4.3\apps\envmon_crc_signal.desc“ to read a third sensor humidity. Once the
foundation of “humidity.*” is laid, the files that will have to be modified are:

• c:\cygwin\tos4.3\apps\envmon_crc_signal.desc
• c:\cygwin\tos4.3\env.c
• c:\cygwin\tos4.3\env.comp

In these 3 files, you have to replicate the functionality of one of the old sensors (photo or temp)
and rename it to humidity.

Ioan Raicu
Progress Report
Page 22 of 25
Figure 5.2

5.3 Changing parameters on existing programs
I am going to use the “c:\cygwin\tos4.3\apps\envmon_crc_signal.desc” as my example. Be
aware that along with this application, there are many files that are associated with. The highest
level files are “env.c” and “env.comp”, which utilize the lower levels. Most things can be
customized simply by changing these few files.

5.3.1 Changing mote ID
At compile time, “make install_windows.15”, the 15 will represent the decimal representation of
the mote ID. If the 15 is omitted “make install_windows”, then the mote will be assigned the
default ID specified in the “c:\cygwin\tos4.3\main.c” by the variable
“TOS_LOCAL_ADDRESS”. There is not way to guarantee a unique ID, and therefore more
than one mote can have the same ID; the way this would behave in the network is that the data
coming from both motes will be viewed as coming from on mote, and data directed towards the
motes with the same ID will reach both motes as long as they are both within communication
range.

5.3.2 Changing group ID
Open the file ”c:\cygwin\tos4.3\Makefile” and edit the variable “LOCAL_GROUP” to the
desired HEX number. Be aware that only motes in the same group can communicate with each
other. If the group number does not match, then the packets will be rejected and they will never
reach the application layer.

5.3.3 Changing frequency of packet transmission
In our case, we need to look for “TOS_CALL_COMMAND(ENV_CLOCK_INIT)(tick2ps);” in
the “env.c” file. Once you find this, and it is usually at the beginning as the device initializes,
you can change the variable tick2ps (2 ticks per second) to whatever you want. The definition of
these (tick2ps) variables can be found in “c:\cygwin\tos4.3\system\include\hardware.h”. For
other files, the only thing that changes is instead of “ENV_CLOCK_INIT”, it would be
“ENV_ROUTER_CLOCK_INIT”. You could always do a search for “CLOCK_INIT”, or
“tick*ps” to find places where the rate of transmission is defined. By the way, these definition
will most always be found in “.c” files.

5.3.4 Changing packet length
To change packet length, open “c:\cygwin\tos4.3\system\include\msg.h” and change the variable
“DATA_LENGTH” to the desired length. Be aware the there is also a header and a trailer, that
are defined in “struct MSG_VALS{}”, and therefore the total length of the packet will always be
more than the “DATA_LENGTH”. Although the current “DATA_LENGTH” is only 30 bytes,
because of the header (3 bytes) and trailer (4 bytes), the total packet length is 37 bytes. Be aware
that the receiving application on the PC (the listen application written in JAVA) needs to know
how long packets are so it knows how to segment the incoming data and parse it properly.

Ioan Raicu
Progress Report
Page 23 of 25

5.3.5 Adding variables to the header or trailer
This can all be done in the file “c:\cygwin\tos4.3\system\include\msg.h”, however that merely
adds them to the structure and assembles it to send over the radio, however to make those new
variables useful, more work needs to be done depending on their functionality and what layer
they want to be utilized at.

5.3.6 Adding variables to the data portion
For out example, you would open file “c:\cygwin\tos4.3\env.c” and find the structure env_Msg.

By simply adding another variable here, or deleting one, you can change the layout of the data.
Be aware that the order of the variable is the same order that they will appear in the actual data
packet. Obviously, you still have to do something meaningful with the new added variable as the
above procedure only adds it to the data packet.

5.3.7 Changing resolution of data coming in (bit shifting)
The data as read from the sensors is recorder as a 10 bit number, however 2 bits are used for
internal processing and therefore only 8 bits are usable at most. By bit shifting operations on the
raw data, one can increase or decrease the sensitivity and granularity of the received data. In my
example, you would have to open file “c:\cygwin\tos4.3\env.c” and find
“TOS_TASK(ENV_send_sample) {}” and edit the following lines with the appropriate bit shift
operation:

• envMsg->photo = (char) (VAR(photoSum) >> 3) & 0xFF;
• envMsg->temp = (char) (VAR(tempSum) >> 3) & 0xFF;

Depending on the bit shift operation, the resulting values will either increase or decrease its
range of possible values. For example by bit shifting the light reading by 3, the total possible
range of the reading is 0 to 128. To increase or decrease this range, change the bit shift operation
up or down. At the extremes, the range will either be too small and it will not change enough to
differentiate the readings, or it will be too much and overflow will occur in which the data that is
read will not be reliable. The 0xFF is the bit value that will replace any unused bits after the bit
shift operation.

typedef struct
{

char level;
char src;
char temp;
char photo;
char msgNum;

} env_Msg;

Ioan Raicu
Progress Report
Page 24 of 25

5.3.8 Changing static route for base station motes that are used in the Proximity Detector
Open the file “C:\cygwin\tos4.3\env_router.c” and find the following:

By changing the “VAR(route) to whatever is needed, you can change the route that all messages
leave upon when this program transmits a message. To broadcast to everybody, use address
“TOS_BCAST_ADDR”.

#ifdef BASE_STATION_MOTE
VAR(route) = 0x0f;
VAR(set) = 12; // BS beacons every 12 seconds
VAR(level) = 1;
TOS_COMMAND(ENV_ROUTER_SUB_CLOCK_INIT)(tick1ps);

#endif

Ioan Raicu
Progress Report
Page 25 of 25

6.0 Glossary

1.

