
Future Generation Computer Systems 159 (2024) 444–458

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

X-OpenMP — eXtreme fine-grained tasking using lock-less work stealing
Poornima Nookala a,∗, Kyle Chard b, Ioan Raicu c

a Intel Corporation, 2501 NE Century Blvd, Hillsboro, OR, USA
b Department of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL, USA
c Department of Computer Science, Illinois Institute of Technology, 10 W 31st St, Chicago, IL, USA

A R T I C L E I N F O

Keywords:
Runtime
Parallel
Tasking
Task
Openmp
Lock-less
Lockfree
Locks
Atomics
Parallel computing
Workstealing
Open cilk
Onetbb

A B S T R A C T

Processors with 100s of threads of execution are among the state-of-the-art in high-end computing systems. This
transition to many-core computing has required the community to develop new algorithms to overcome sig-
nificant latency bottlenecks through massive concurrency. However, implementing efficient parallel runtimes
that can scale up to high concurrency levels with extremely fine-grained tasks remains a challenge. Existing
techniques do not scale to a large number of threads due to the high cost of synchronization in concurrent data
structures. We present a thorough analysis of various synchronization mechanisms including mutex, semaphore,
spinlock and atomic fetch-and-add that are typically used to build concurrent data structures in task-parallel
runtime systems. To overcome these limitations, in a recent work we proposed XQueue, a novel lock-less
concurrent queuing system with relaxed ordering semantics that is geared towards realizing scalability up to
hundreds of concurrent threads. In this work, we extend XQueue and present X-OpenMP, a library for enabling
extremely fine-grained parallelism on modern many-core systems with hundreds of cores. Work stealing is a
popular choice for load balancing in task-based runtime systems as it efficiently distributes the load across
worker threads; however, traditional approaches rely on synchronization primitives and thus work stealing can
incur overheads. Here we implement a lock-less algorithm for work stealing for total-store order (TSO) memory
architectures and evaluate the performance using micro and macro benchmarks. We compare the performance
of X-OpenMP with native LLVM OpenMP, GNU OpenMP, OpenCilk and oneTBB implementations using task-
based linear algebra routines from PLASMA numerical library, Strassen’s matrix multiplication from the BOTS
Benchmark Suite, and the Unbalanced Tree Search benchmark. Applications parallelized using OpenMP can run
without modification by simply linking against the X-OpenMP library. X-OpenMP achieves up to 40X speedup
compared to GNU OpenMP, up to 2X speedup compared to the native LLVM OpenMP, up to 6X speedup
compared to OpenCilk and up to 5X speedup compared to oneTBB implementations. The tasking overheads in
X-OpenMP are reduced by 50% compared to the native LLVM OpenMP.
1. Introduction

Modern many-core computing systems offer massive concurrency
levels on the order of hundreds on CPUs to thousands on GPUs. Extreme
on-node concurrency on the order of billions of concurrent tasks is
required to achieve exascale performance levels according to a recent
computing survey on the landscape of exascale research [1,2]. The
report further states that it is possible to achieve this performance
improvement by using lightweight tasking. However, it is crucial that
such capabilities are delivered via productive abstractions as scientific
productivity has been identified as one of the challenges today.

Task parallelism is an important type of parallelism in which com-
putation is broken down into a set of inter-dependent tasks which can
be executed concurrently on various cores. Data dependencies between
tasks are used to control the execution of tasks in the runtime system.

∗ Corresponding author.
E-mail address: nookala.poornima@gmail.com (P. Nookala).

Many parallel languages use task parallelism, eg. HPX, oneTBB, Legion,
Charm++, OpenCilk to name a few [3–9]. OpenMP [10] has evolved
to a task-centric model to enable parallelization of applications where
units of work is generated dynamically. When a task is created by some
thread, it is conceptually queued for execution by a future available
thread. To achieve strong scaling and high levels of parallelism, today’s
parallel languages and execution models are moving to tasks with finer
granularity. One reason for this is that as core counts per node increase,
applications need to support over-decomposition in order to improve
performance, hide latency caused by blocking operations, and achieve
maximum speedup. This and other drivers produce the same outcome:
tasks and their dependencies need to be managed at sub-microsecond
timescales.
vailable online 17 May 2024
167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.future.2024.05.019
Received 6 November 2023; Received in revised form 9 May 2024; Accepted 14 M
data mining, AI training, and similar technologies.

ay 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:nookala.poornima@gmail.com
https://doi.org/10.1016/j.future.2024.05.019
https://doi.org/10.1016/j.future.2024.05.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.05.019&domain=pdf

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.

d
c
B
s
t
m
a
T
m
s
o
e
d
b
i

q
u
W
a
t
T
o
h
w
a
i
f
a
a

t
m
f
p
W
e
l

i
I
S
d
T

Queues are an integral component of tasking runtime systems and
as task granularity decreases, execution performance is increasingly
dependent on queue performance. Of particular interest here are single
producer, single consumer (SPSC) and multiple producer, multiple
consumer (MPMC) concurrent queues. The queue itself contains tasks,
typically in the form of pointers (to task objects). Threads running
concurrently can interleave instructions in many ways and a shared
data structure needs to be carefully protected to avoid races. Con-
current SPSC and MPMC queues are no exception and require that
their state (e.g., head, tail and data) be protected with a synchroniza-
tion mechanisms, such as mutual exclusion locks (mutexes), spinlocks,
semaphores, or atomic primitives.

Another method for concurrent queues is to integrate race-
avoidance directly into the data structure, eliminating the need for
separate synchronization. This approach offers the advantage of pre-
venting common concurrency issues like deadlocks caused by misuse of
synchronization primitives. Lock-free data structures use atomic prim-
itives, such as Compare-and-Swap (CAS) and Fetch-and-Add (FAA),
to push the burden down to hardware and achieve synchronization
at a finer granularity. Several libraries internally use lock-free tech-
niques [11–13], but the literature has shown that it is difficult to
write correct lock-free code [14]. Even more compelling are lock-less
ata structures [15], which not only avoid the use of locks, but also
an avoid the need for atomic operations under certain conditions.
oth lock-free and lock-less programming are challenging due to in-
truction and memory access reordering imposed by the compiler and
he hardware, and the need to account for the memory consistency
odel supported by both. In our recent work [16], we have introduced
lock-less concurrent framework for task parallel runtime systems.

his framework enables extremely fine-grained task parallelism by
inimizing the overhead of concurrent data structures used in runtime

ystems. Through benchmarks on modern architectures with hundreds
f cores, we have shown significant performance enhancements. How-
ver, our framework uses a static round-robin load balancing strategy to
istribute work across processors. While this approach can somewhat
alance the load, it lacks dynamic load balancing, which can greatly
mpact performance of real-world workloads.

Load balancing is crucial to parallel applications as imbalances
uickly lead to sub-optimal execution times. Work stealing is typically
sed in most parallel runtimes and execution models for load balancing.
ork stealing involves stealing work from a random busy worker when
processor runs out of work. Traditional work stealing implementa-

ions use lock-based approaches to steal work from concurrent queues.
hese concurrent data structures do not scale up to hundreds of threads
n modern many-core architectures and exhibit significant overheads at
igh levels of concurrency. Acar et al. explored a lock-less approach for
ork stealing by implementing an algorithm that can steal work non-
tomically [17]. We extend their work on load balancing, integrating
t with our prior work to construct a lock-less concurrent parallel
ramework [16] and propose a dynamic lock-less load balancing mech-
nism that can provide notable performance improvements using real
pplication workloads.

The tasking model in OpenMP [18,19] enables efficient paralleliza-
ion of dynamic task graphs and recursive algorithms. Several imple-
entations of OpenMP exist: GNU OpenMP [20] is an implementation

or GCC as part of the GNU project, LLVM OpenMP [21] is a sub-
roject of LLVM, and Intel OpenMP is built using LLVM OpenMP.
e implement lock-less work stealing in LLVM OpenMP [21] thereby

nabling execution of unmodified OpenMP programs using our runtime
ibrary.

The main contributions of this paper are:

1. Provide a detailed performance evaluation of synchronization
primitives, including mutexes, semaphores, spinlocks, and
atomic fetch-and-add operations, on today’s largest shared-
445

memory systems from Intel, AMD, IBM, and ARM. Systems from
Table 1
Testbed for evaluation from the mystic system.

Machine Model Sockets-Cores/HT@Freq

skylake-192 Intel Xeon Gold 8160 8–192/384@2.1 GHz
skylake-48 Intel Xeon Gold 8160 2–48/96@2.1 GHz
skylake-32 Intel Xeon Gold 6130 2–32/64@2.1 GHz
skylake-16 Intel Xeon Silver 4110 2–16/32@2.1 GHz
phi-64 Intel Xeon Phi 7210 1–64/256@1.5 GHz
broadwell-16 Intel Xeon E5-2620 v4 2–16/32@2.1 GHz
haswell-12 Intel Xeon E5-2620 v3 2–12/24@2.4 GHz
epyc-64 AMD Naples 7501 2–64/128@2.0 GHz
theadripper-32 AMD Threadripper 2990WX 1–32/64@3.0 GHz
ryzen-8 AMD Ryzen 7 1700 1–8/16@3.0 GHz
opteron-48 AMD Opteron 6168 4–48/48@1.9 GHz
power9-40 POWER9 EP73 2–40/160@3.8 GHz
thunderx-96 ThunderX 88XX ARM v8 2–96/96@2.0 GHz

1 socket to 8 sockets, 1 to 8 NUMA zones, 8 cores to 192 cores,
16 hardware threads to 384 hardware threads, and frequencies
from 1.5 GHz to 3.8 GHz are included.

2. We introduce X-OpenMP by extending our prior work XQueue
and propose a work stealing algorithm that enables lightweight
tasking and dynamic load balancing using lock-less techniques.

3. We integrate our approach into LLVM’s OpenMP implementation
which allows existing applications written using OpenMP to
leverage the lightweight tasking proposed in this work.

4. We evaluate X-OpenMP using micro benchmarks, numerical ker-
nels and unbalanced trees and demonstrate significant perfor-
mance improvements using our approach.

2. Motivation

Concurrent data structures have to deal with data synchronization
and communication between threads. Synchronization mechanisms like
mutexes, semaphores, and spinlocks are known to have significant
overhead and can easily become the bottleneck to achieving high
performance. Many researchers have proposed better performing lock-
free data structures using atomic instructions supported by hardware.
Lock-free approaches using atomic operations are believed to be highly
efficient, but are hard to implement and maintain [22]. Over the
years, lock-free implementations of data structures like linked lists,
queues and stacks have been published, however their use is limited
in production software due to its complexity and difficulty to reason
about correctness. Architectures with relaxed memory consistency like
ARM and Power9 also typically require the use of memory fences to
ensure correctness in the implementation. Many libraries [11–13] and
programming languages like Java and C++ implement lock-free data
structures that take advantage of the hardware support for achieving
high-performance. However, as we move towards many-core architec-
tures with hundreds of cores, lock-free techniques do not scale well due
to mutual exclusion and high contention on the memory bus.

To quantify the overheads of synchronization on modern hardware,
we conduct a detailed performance study of synchronization mecha-
nisms: (1) mutexes, (2) semaphores, (3) spin locks, and (4) atomic
fetch-and-add operations. The evaluation is conducted on a testbed of
13 systems representing today’s largest shared-memory systems from
Intel, AMD, IBM, and ARM with up to 384 hardware threads.

2.1. Tesbed, software stack, and timing mechanisms

Testbed: Table 1 shows details of the testbed used for experiments
n this paper. The testbed covers latest many-core architectures from
ntel, AMD, IBM and ARM with processors such as Haswell, Broadwell,
kylake, Phi, Opteron, Ryzen, Threadripper, Epyc, Power9, and Thun-
erX. The smallest system is an 8-core single socket system from AMD.
he largest system is an 8-socket system with 24-core Intel CPUs, for a

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.

i
C
a
s
f
T
r
d
c
s
t
T
t
m
v
b
b
q
C
f
t

2

t
n
t
p
p
(
d
e
w
i
a
w
s

e
t
s
c
t
m
h
l
t

s
p

total of 192-cores and 384 hardware threads. The average system scale
is about 50-cores and 100 hardware threads.

Software stack: All experiments in this paper are performed on
Ubuntu 18.04.3 and compiled using LLVM Clang version 11.0.0 with
O3 optimization level and −𝑚𝑎𝑟𝑐ℎ = 𝑛𝑎𝑡𝑖𝑣𝑒.

Fine-grained timing: On x86 architectures, latency is measured
n CPU cycles using RDTSCP instruction for start time and RDTSC +
PUID instruction for the end time. RDTSCP is a serializing instruction
nd it prevents instruction reordering around the call. CPUID is also a
erializing call and when it follows RDTSC instruction, it prevents any
uture instructions to be executed before timing information is read.
he combination of these two timing functions gives the most accurate
esults for latency. Timing on ARM and Power9 architectures is quite
ifferent from x86 architectures. ARM processor has a PMU cycle
ounter which is only accessible in privileged mode. The operating
ystem sets up a virtual counter which counts at the same frequency as
he physical counter and can be used for fine-grained measurements.
he ARM cycle counter ticks at a lower frequency than the frequency
hat cores are running at and hence calibration is required to get the
ultiplier that needs to be applied to the cycle count to get a precise

alue. Similar functionality exists in the Power9 architecture. Time
ase register counts cycles at a fixed lower frequency and needs to
e calibrated to convert the value to actual cycles at CPU clock fre-
uency. Throughput in all experiments in this paper is measured using
LOCK_MONOTONIC for start and end times. Throughput is calculated

or each thread individually and all the results are aggregated to get
he final throughput value for the experiment.

.2. Performance of synchronization mechanisms

In order to program for shared memory systems using multi-
hreading, threads need to be synchronized. Various thread synchro-
ization mechanisms exist which ensure that threads do not simul-
aneously execute a critical section of the program. Many languages
rovide high level abstractions for synchronization to ease parallel
rogramming. Common synchronization mechanisms include mutexes
mutual exclusion locks), semaphores, reader/writer locks and con-
ition variables. Mutex is a mutual exclusion lock which ensures
xclusive access to the shared resource. Spinlock is a type of lock which
aits in a busy loop if lock cannot be acquired. Atomic operations are

nstructions supported by hardware and they lock the memory bus to
ccess the shared resource. Semaphores is a type of mutual exclusion
here a thread can wait to get access to the critical section or do a post

o other threads can get access.
While it is essential to synchronize data between threads, it can

asily get very expensive at higher levels of concurrency. This is due to
he reason that only one thread can hold exclusive access to the critical
ection and all other threads are waiting to get the lock using up CPU
ycles. Lock-free methods utilizing atomic operations are considered
o be highly efficient, yet they pose challenges in implementation and
aintenance. Lock-free algorithms can be implemented by using special
ardware primitives such as CAS (compare and swap) and LL/SC (load-
ink/store conditional). Most implementations of mutexes are built on
op of atomic instructions supported by hardware.

The primary focus here is to analyze the cost of low-level thread
ynchronization mechanisms and for this purpose, we benchmarked
thread_mutex_lock/ pthread_mutex_unlock, sem_wait/

sem_post, fetch-and-add and spin_lock/spin_unlock to
measure latency. The implementation of spin_lock and spin_
unlock uses compare_and_swap atomic primitive. Fetch-and-add
is supported by x86 architectures using ‘lock xadd’ instruction. The
Power9 variant for fetch-and-add instruction is ‘lwarx/stwcx’ and
ARMv8 provides ‘ldxr/stxr’ which are load exclusive and store exclu-
sive instructions used for implementing atomic read, modify, write
operations. These benchmarks are obtained by running a tight loop of
446

1 billion operations and collecting the aggregate of the results. Each
iteration acquires the lock, increments a shared integer and releases the
lock, excluding fetch-and-add which performs an increment operation
atomically.

Figs. 1(a), 1(b), 1(c) and 1(d) show that all synchronization mech-
anisms exhibit higher latencies due to contention at higher levels of
concurrency. The latencies increase as the systems are over-provisioned
by increasing the number of threads. There are many factors that
impact the cycle counts like cache coherence, communication latency
between cores on same and different sockets, interrupts, cache misses,
etc. Hence, it is important to run multiple iterations of these bench-
marks and to compute the average number of CPU cycles to estimate
the latency of these operations. Latency of a single atomic increment
on a Skylake system with 192-cores and 384 hardware threads when
running on all threads concurrently is 33 592 cycles whereas on Intel
Xeon Phi Knights Landing with 64-cores and 256 hardware threads,
latency reaches 3868 cycles. Similar behavior is observed on other
architectures with latencies reaching up to thousands of CPU cycles
solely for acquiring the lock, incrementing a variable and releasing the
lock.

Although AMD, Intel, ARM and IBM have distinctly different ar-
chitectures, it is interesting to note that the increase in latency of
synchronization mechanisms on all the architectures as concurrency
increases is close to linear. For atomic instructions, most architectures
show a slow rise in the latency up to 8 threads and latency linearly
increases after 8 threads whereas for mutex, spinlock and semaphore,
latency steadily goes up as concurrency level increases. Intel Broadwell,
Haswell and Skylake processors exhibit similar performance curve as
threads are scaled up where as AMD Ryzen, AMD Threadripper and
AMD Epyc processors start with a slow increase in latency up to 8
threads for all four types of locks and then the latency rapidly grows
as level as concurrency increases.

Intel Xeon Phi Knights landing with 64-cores shows interesting
results. Although latency linearly increases up to 64 threads, the latency
remains constant as more threads are added. This behavior can be
attributed to the round robin hyper-threading implemented in Intel
Xeon Phi (which is different than all the other processor architectures
evaluated in this paper). In x86 architectures, hyper-threading allows
each physical processor to be perceived as two separate logical proces-
sors within the operating system by sharing the resources, which results
in both hyper-threads running simultaneously increasing contention on
each core. Whereas, in Intel Xeon Phi, every core alternates scheduling
hardware threads at each cycle thereby not increasing contention and
resulting in a better performance as threads are scaled up to more than
the number of cores [23].

It is clear that having a single lock across all threads is not scalable
and severely limits parallelism across many threads. Fig. 2 shows the
comparison between latency of mutex, semaphore, spinlock and atomic
fetch-and-add on skylake-192 system. Latency of atomic fetch-and-add
is higher as compared to other mechanisms up to 12 threads and shows
slightly lower latencies at higher concurrency levels. If a mutex lock
or semaphore cannot be acquired, the thread is put to sleep. With a
spin lock, thread is running a busy loop continuously checking if the
lock is available. In case of atomic fetch-and-add, although the memory
bus is locked for the atomic operation, the thread is not put to sleep
and hence achieves lower latencies with more threads compared to the
other mechanisms.

Concurrent queues are commonly implemented using mutex locks
or other forms of synchronization to protect the queue operations.
We implement a single producer single consumer (SPSC) queue which
does not require synchronization for queue operations and a multiple
producer multiple consumer (MPMC) queue using mutexes. We analyze
the performance of these implementations on various architectures
by measuring latency and throughput of queue operations at varying
concurrency levels. For an SPSC queue, the latency of any operation on
queues takes between 29 and 68 cycles depending on the architecture

and clock frequency. Average throughput reaches 270 million ops/s on

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
Fig. 1. Average latency of different synchronization mechanisms for incrementing an
integer.

skylake-192 machine. Although these results are significant, showing
excellent single threaded performance, an SPSC queue is limited in
parallel runtime systems because it cannot alone be used to implement
parallelism and concurrency. On the other hand, our results for MPMC
queues indicate that latency can reach up to millions of cycles under
447
Fig. 2. Average latency of mutex, semaphore, spinlock and fetch-and-add on skylake-
192. This graph shows that all the synchronization mechanisms are expensive at higher
concurrency levels, atomic fetch-and-add exhibit lower latency as compared to other
mechanisms after 24 threads.

high contention, and throughput can drop down to as low as 300,000
operations per second. For the skylake-192 system, which had the
best single core performance at 270 million operations/s, the MPMC
approach yielded only 810 operations per second per thread at a 384-
thread scale (a 333,333 × loss of performance). The fastest MPMC
queue throughput at any scale reached just 5 million operations/s.

We were not surprised by these findings, as the fundamental prob-
lem stems from the cost of synchronization such as mutex, semaphores,
spinlock, and atomics. Use of such concurrent data structures in modern
parallel runtimes have significant overheads for managing extremely
fine-grained tasks. For example, when computing the 44th Fibonacci
number recursively using LLVM OpenMP, the runtime overhead dom-
inates the overall execution time by consuming over 90% of CPU
time for synchronization and scheduling. These findings motivated our
investigation into methods to eliminate synchronization mechanisms in
order to unleash the full performance of many-core architectures under
high concurrency.

In task-parallel runtimes, load imbalance is a significant perfor-
mance limiting factor. Several studies have shown the importance
of dynamic load balancing in multi-threaded applications [24,25].
Dynamic load balancing enables better distribution of work across pro-
cessors to achieve efficient performance. In a multi-threaded runtime,
typically tasks are executed by a fixed number of workers. Every worker
owns a task pool and executes tasks from their pool. Any subtasks that
are spawned are inserted into the worker’s own task pool. When a
worker runs out of tasks, it randomly picks workers to steal tasks from.
Workers can steal a random amount of work from the victim’s task
pool.

Fig. 3 shows the timeline plot of the Unbalanced Tree Search (UTS)
benchmark [26] executed using GNU’s implementation of OpenMP. The
green dots indicate effective CPU time and the black dots indicate idle
time. The plot shows a significant load imbalance for this application
where several workers (bottom of the figure) are idle for most of the
application run, and other workers are idle for a significant amount
of the time. The load imbalance results in a major slowdown in the
execution time of the application. The UTS benchmark is designed to
understand the efficiency of dynamic load balancing in parallel runtime
systems and this plot clearly highlights the imbalance in existing task-
based runtime systems. Processors are heavily under-utilized resulting
in poor overall performance.

One of the challenges of parallel execution models that use tradi-
tional work stealing is the potential need for a large number of steals
to achieve optimal load distribution. Upon initialization of a runtime
and the creation of workers, they begin searching for tasks to execute. If
there is no work available in the local task pool, the mechanism of work
stealing is triggered. Studies have shown that several steal requests

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.

w
a
p
t
p
a
f
i
t
w
a
a

A
p
i
s
c
c
o

1
1
1
1
1
1
1
1
2
2
2

are generated at the beginning and tail end of the execution [27].
Work stealing implemented using traditional synchronization-based
mechanisms tend to have huge overheads. Hence, work stealing should
be triggered sparingly and only when necessary to minimize overheads.

Work stealing and work sharing are commonly used scheduling
paradigms for redistributing work across processes for the purposes
of load balancing. In work sharing, workers attempt to migrate jobs
to other workers whereas in work stealing, idle workers try to steal
work from other workers. Both approaches have significant communi-
cation overheads. Traditional work stealing approaches use pull-based
approach for stealing work where the work is redistributed to other
workers by the process a worker stealing jobs. In this work, we explore
a push-based approach for distributing work across processes. The main
motivation behind this idea of pushing tasks comes from the behavior
of recursive applications like Fibonacci where the application starts
with a single task and can generate several millions tasks as the task
graph evolves. In a traditional runtime where work is locally produced
and locally consumed, work stealing has a significant overhead to re-
distribute the tasks across workers. In our prior work, the task-pushing
proved to be effective in several benchmarks that were evaluated. This
work makes a trade-off between task locality and migration costs that
proves to be performant for a number of use-cases.

3. XQueue— Lock-less queuing mechanism for task-parallel run-
time systems

In a recent work, we introduced XQueue [16], a novel lock-less
MPMC, out-of-order queuing mechanism that can scale up to hundreds
of threads. XQueue uses B-queue [28] as a building block. B-queue
is a concurrent SPSC lock-free queue designed for efficient core-to-
core communication. It is implemented without using any locks, atomic
operations, or barriers. The latency of queue operations in B-queue is
as low as 20 cycles. B-queue uses batching where both producer and
consumer detect a batch of available slots that are safe to use. Batching
avoids shared memory access and therefore improves performance.
Several fast SPSC queues have been proposed in recent years [29–31]
and we aim to demonstrate that XQueue can be built with any fast
and scalable SPSC queue. We describe XQueue design in detail in this
section which lays the foundation for the next section.

Fig. 4 shows the architectural diagram of XQueue on a 4-core
system. The key idea here is to have 𝑁 SPSC concurrent queues per

orker if there are 𝑁 workers. There is one master queue and 𝑁 − 1
uxiliary queues per worker, with 𝑁 (equal to number of workers)
roducers adding items into master queues. Every item is a void pointer
hat represents a task where a task could be a function pointer or data
ointer. One worker exists for dequeueing tasks from the master queue
s well as the auxiliary queues. A worker first tries to dequeue a task
rom the master queue. If a task is dequeued successfully, it is processed
mmediately. The item when processed can generate one or more items
o be enqueued into the auxiliary queues of the other CPU cores. Every
orker distributes work to auxiliary queues in a round-robin fashion
s shown in Fig. 4. A worker then tries to dequeue an item from its
uxiliary queues and dequeued items are processed immediately.

A simplified version of pseudocode for worker logic is outlined in
lgorithm 1. Since all queues in XQueue are concurrent SPSC queues,
roducer and consumer threads can act concurrently processing items
n the queues. The strategy of distributing work across queues (as
hown in Fig. 4) ensures that there is a only a single producer and single
onsumer for every queue at any point in time. Due to this design, locks
an be completely avoided thereby reducing the latencies of queue
448

perations and improving overall performance.
Algorithm 1 Worker logic
1: 𝑖𝑑 ← 𝑐𝑜𝑟𝑒𝐼𝑑;
2: 𝑛𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡𝐶𝑜𝑟𝑒𝐼𝑑;
3: while 1 do
4: 𝑟𝑒𝑡 ← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒𝐹 𝑟𝑜𝑚𝑀𝑎𝑠𝑡𝑒𝑟(𝑖𝑑, 𝑖𝑡𝑒𝑚);
5: if 𝑟𝑒𝑡 = 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 then
6: 𝑟𝑒𝑡𝐼𝑡𝑒𝑚 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑡𝑒𝑚(𝑖𝑡𝑒𝑚);
7: if 𝑟𝑒𝑡𝐼𝑡𝑒𝑚 ≠ 𝑁𝑈𝐿𝐿 then
8: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒𝑇 𝑜𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦(𝑛𝑒𝑥𝑡, 𝑟𝑒𝑡𝐼𝑡𝑒𝑚);
9: end if

10: end if
11: 𝑟𝑒𝑡 ← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒𝐹 𝑟𝑜𝑚𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦(𝑖𝑑, 𝑖𝑡𝑒𝑚);
2: if 𝑟𝑒𝑡 = 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 then
3: 𝑟𝑒𝑡𝐼𝑡𝑒𝑚 ← 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑡𝑒𝑚(𝑖𝑡𝑒𝑚);
4: if 𝑟𝑒𝑡𝐼𝑡𝑒𝑚 ≠ 𝑁𝑈𝐿𝐿 then
5: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒𝑇 𝑜𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦(𝑛𝑒𝑥𝑡, 𝑟𝑒𝑡𝐼𝑡𝑒𝑚);
6: end if
7: end if
8: 𝑛𝑒𝑥𝑡 ← (𝑛𝑒𝑥𝑡 + 1)%𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑠;
9: if 𝑛𝑒𝑥𝑡 == 𝑖𝑑 then
0: 𝑛𝑒𝑥𝑡++;
1: end if
2: end while

3.1. Static load balancing in XQueue

In most parallel programming systems, it is a common scenario
to use multiple queues, one per worker, with work produced and
consumed locally by the workers/threads. Load balancing is commonly
achieved by using techniques like work stealing [24,32]. While XQueue
also uses multiple queues, it balances load by the virtue of its design
with 𝑁 queues per core and consumer threads inserting items into
the auxiliary queues of all the other cores. This architecture enables
distribution of task graphs to multiple threads with minimal overhead
due to the lock-less design as compared to the state-of-the-art work
stealing techniques which primarily use locks or atomics to achieve
synchronization.

In a task-parallel program, tasks can be modeled as a Directed
Acyclic Graph (DAG) which can be traversed based on inter-
dependencies between the tasks. Task graphs have a pool of ready tasks
which can be processed by threads and subtasks can be generated. The
master and auxiliary queues and the communication between them is
modeled after the dynamic execution of a program where a task can
generate subtasks. In the case of XQueue with 𝑁 workers and 𝑁 queues
per worker, as shown in Fig. 4, we employ a ring buffer topology for
communicating between queues. Essentially, the consumer thread of
every set of queues acts as a producer thread of 𝑁 −1 auxiliary queues
of all the other threads. This pattern of task distribution ensures optimal
load balancing in terms of the number of tasks processed per worker.
However, this may not be the best fit for every scenario for various
reasons, such as data locality, task dependencies, and per task execution
time. Optimal allocation of work among various threads is known to
be NP-hard, but, in the case of XQueue, depending on the nature of
work, the topology of connections between queues and task distribution
strategy can be changed to achieve best performance.

The load balancing mechanism in XQueue can be considered as
a push-based mechanism as opposed to pull-based work stealing ap-
proach. This primary difference impacts how initially imbalanced work-
loads are handled. For example, consider the case of Fibonacci. Ex-
ecution starts with a single task which recursively unfolds the DAG
as execution progresses. In the work stealing approach, idle workers
randomly try to steal tasks from other workers. This results in several
failed steals and coupled with the cost of locking for every steal, incurs

significant overhead. On the other hand, the push-based approach

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.

e
p
W
p
s
t
r
s
t
t
t
c

t
o
c
b
i
s
h
q
i
t
g
u
o
a
e
n

a
u
t
i
w
t
m

4

c
X
f
i
l
t
l
t
t
s
t
c

4

i
a
m
l
c
e
w
T
i
a
i

m
‘
b
o
3
w
s
r
e
r
n
a
t
t
n
7
s
r
r
o
n
W
t
t

of XQueue handles this efficiently with its round-robin distribution
without the use of locks, thus incurring minimal overhead.

On modern many-core architectures, it is common to have multiple
Non-uniform memory access (NUMA) zones which impact the latency
of memory operations from various cores. In XQueue, every worker
allocates queues in its respective NUMA zone. This ensures that any
memory reads and writes from various threads have the lowest latency
possible. However, when tasks propagate through auxiliary queues in
the system, the latency of memory read/write is higher across NUMA
zones. With XQueue’s ring buffer design across N cores with N queues,
some latency is unavoidable due to the underlying architecture.

In summary, there is a lot of flexibility for defining the topology for
task distribution statically and dynamically during program execution
with XQueue. If the nature of the DAG and data access patterns are
known, the task distribution can be tuned to achieve best performance
as compared to state-of-the-art work stealing approaches.

3.2. XQueue integration with the OpenMP runtime

In order to extend our research to real systems, we integrated
XQueue into OpenMP [21] to enable execution of unmodified OpenMP
programs using XQueue. OpenMP’s tasking model provides a way to
efficiently parallelize dynamic task graphs and recursive algorithms.
Broadly speaking, there are two implementations of OpenMP: GNU
OpenMP (for GCC) [20] and LLVM OpenMP [21]. We chose to inte-
grate XQueue into the LLVM OpenMP since it is open source and has
superior performance as compared to GNU OpenMP with fine-grained
tasks [33].

Implementation: In the LLVM OpenMP tasking implementation,
very thread owns a queue and the enqueue/dequeue operations are
rotected by locks implemented using Lamport’s bakery algorithm.
e replaced the task queues in OpenMP with multiple SPSC queues

er worker to model XQueue. OpenMP implements a work-stealing
cheduler. Every thread first checks its own queue for tasks. If no
asks are found, a thread is randomly chosen to steal a single task. We
eplaced the work stealing scheduler with the scheduler for XQueue as
hown in Algorithm 1. In our XQueue-enabled OpenMP implementa-
ion, every thread checks its own queue for tasks. If no tasks are found,
he scheduler checks all auxiliary queues. This process of checking
he master queue and auxiliary queues is repeated until a termination
ondition is satisfied.

Optimizations: We applied few optimizations to the XQueue sys-
em during integration with the OpenMP runtime. Since the core design
f XQueue is to have multiple queues per worker, at higher thread
ounts (hundreds), the latency of checking all auxiliary queues can
ecome significant and reduce the overall performance. To solve this
ssue, we implemented a hinting mechanism where every producer
tores the ID of the last queue to which the task was pushed. This
int can possibly be over-written by multiple threads writing to various
ueues, however this simple mechanism reduces the latency of check-
ng auxiliary queues many times. For the applications we evaluate,
his hinting mechanism gives better performance while maintaining
ood load balancing. Fibonacci benchmark performed 5X times faster
sing 192 threads on skylake-192 server due to the reduced overhead
f checking queues for every dequeue. We have used physical cores
vailable on the machine for this evaluation by setting OMP_PLACES
nvironment variable to ‘cores’ and OMP_PROC_BIND to ‘close’, since
ot all applications can benefit from using hardware threads.

Our prior study showed that XQueue-enabled OpenMP is able to
chieve up to 6× speedup compared to native LLVM OpenMP and
p to 4× speedup compared to GNU OpenMP in most cases. While
he results are promising, static load-balancing strategies fall short
n real application workloads with varying task execution times and
orkload patterns. The adaptability of a runtime to dynamically adjust

ask assignments based on workload characteristics becomes crucial for
449

aximizing performance and resource utilization.
. X-OpenMP — eXtreme fine-grained tasking runtime

We extend XQueue and implement dynamic load balancing to over-
ome the limitations of static round-robin load balancing. We introduce
-OpenMP with the goal of enabling extreme fine-grained parallelism

or task-parallel applications. Static round-robin load balancing is lim-
ted for dynamically unfolding task graphs due to the inability to
oad balance during the course of application execution. Most multi-
hreaded runtime systems [7,34,35] use load balancing mechanisms
ike work stealing and work sharing to reduce the overall execution
ime. Traditional work stealing mechanisms typically use synchroniza-
ion constructs to safely steal work from the victim’s queue. However,
ince XQueue uses SPSC queues where queue operations are not pro-
ected using locks, there is a need to design a lock-less algorithm that
an perform dynamic load balancing of tasks using work stealing.

.1. Lock-less work stealing using wait

A mechanism that does not use synchronization is required for
mplementing work stealing using XQueue. Intel’s x86 architecture has

memory model that supports Total Store Ordering (TSO) [36]. This
emory consistency model provides an opportunity to explore lock-

ess techniques on x86 architectures for implementing low overhead
oncurrent data structures and load balancing mechanisms. Muller
t al. proposed an algorithm that does not require atomic read–modify–
rite operations for shared memory work stealing [17] that works on
SO memory architectures like Intel’s x86. The details of the original

mplementation can be found in the technical report [17]. We employed
modified version of this algorithm for work stealing in X-OpenMP to

mplement dynamic load balancing.
Our implementation works as follows. The algorithm requires two

emory cells per worker where one cell holds a combination of 40-bit
‘round number’’ (representing the round of work stealing) and 24-
it identifier (ID of the worker) packed into a 64-bit word and the
ther memory cell holds a pointer to the stolen task. Algorithms 2 and
present the pseudocode for victim and stealer threads. To perform
ork stealing, an idle thread (stealer) randomly picks a victim. As

hown in Algorithm 3, the stealer first checks if the victim is accepting
equests. This is shown in line 3 where the 40-bit round number is
xtracted using bit operations and compared with the victim’s own
ound number. The steal request is valid only if the extracted round
umber is less than the victim’s round number. The stealer then takes
copy of victim’s round number and writes its identifier packed with

he round number into the victim’s 64-bit memory cell. The stealer
hread waits in a while loop until the copy of its round number does
ot match the victim’s round or a stolen task is not received. In lines
–9, the stealer writes the steal request to the victim again if needed
ince the stealer is still waiting, and it does so by comparing the local
ound number with the victim’s copy of the round number in the steal
equest memory cell. While waiting, it also writes a steal request to its
wn memory cell and leaves it unserved. This self query ensures that
o other steal requests come to this thread since it is idle (lines 12–15).
hen a stolen task is copied by the victim to the stealer’s memory cell,

he stealer immediately breaks out of the while loop and executes the
ask.

Algorithm 2 Work Stealing With Wait — Victim’s Logic
1: 𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 ← 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞;
2: 𝑟𝑜𝑢𝑛𝑑 ← 𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 &((1 << 40) − 1);
3: if 𝑟𝑜𝑢𝑛𝑑 == 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑟𝑜𝑢𝑛𝑑 then
4: 𝑟𝑒𝑡 ← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑, 𝑖𝑡𝑒𝑚);
5: if 𝑟𝑒𝑡 == 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 then
6: 𝑠𝑡𝑒𝑎𝑙𝑒𝑟_𝑖𝑑 ← 𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 >> 40;
7: 𝑡ℎ𝑟𝑒𝑎𝑑𝑠[𝑠𝑡𝑒𝑎𝑙𝑒𝑟_𝑖𝑑]− > 𝑠𝑡𝑜𝑙𝑒𝑛_𝑡𝑎𝑠𝑘 ← 𝑖𝑡𝑒𝑚;
8: end if𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑟𝑜𝑢𝑛𝑑 + +;
9: end if

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
Fig. 3. Load Imbalance in Unbalanced Tree Search using GNU OpenMP and 192
threads (green shows useful work and black shows idle time).

Fig. 4. Architecture of XQueue on a 4-core machine with 4 queues per consumer.

Algorithm 3 Work Stealing With Wait — Stealer’s Logic
1: 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠 = 𝑀𝐼𝑁_𝑇𝑅𝐼𝐸𝑆;
2: 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠 = 0;
3: if (𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞&((1 << 40) − 1) < 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑟𝑜𝑢𝑛𝑑) then
4: 𝑟𝑜𝑢𝑛𝑑 = 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑟𝑜𝑢𝑛𝑑;
5: 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 = 𝑟𝑜𝑢𝑛𝑑 + (𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 << 40);
6: while 𝑟𝑜𝑢𝑛𝑑 == 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑟𝑜𝑢𝑛𝑑||𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑠𝑡𝑜𝑙𝑒𝑛_𝑡𝑎𝑠𝑘 ≠ 𝑁𝑈𝐿𝐿

do
7: if (𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞&((1 << 40) − 1)) < 𝑟𝑜𝑢𝑛𝑑 then
8: 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 = 𝑟𝑜𝑢𝑛𝑑 + (𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 << 40);
9: end if

10: 𝑠𝑒𝑙𝑓 _𝑟 = 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑟𝑜𝑢𝑛𝑑;
11: 𝑠𝑒𝑙𝑓 _𝑞𝑢𝑒𝑟𝑦 = 𝑠𝑒𝑙𝑓 _𝑟 + 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 << 40;
12: if (𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞_𝑖𝑑 ≠ 𝑠𝑒𝑙𝑓 _𝑞𝑢𝑒𝑟𝑦) then
13: 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞_𝑖𝑑 = 𝑠𝑒𝑙𝑓 _𝑞𝑢𝑒𝑟𝑦 + 1;
14: 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑟𝑜𝑢𝑛𝑑 + +;
15: end if
16: if (+ + 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠 > 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠) then
17: if (𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑠𝑡𝑜𝑙𝑒𝑛_𝑡𝑎𝑠𝑘 ≠ 𝑁𝑈𝐿𝐿) then
18: if (𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠 > 𝑀𝐼𝑁_𝑇𝑅𝐼𝐸𝑆) then
19: 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠− = 𝑀𝐼𝑁_𝑇𝑅𝐼𝐸𝑆;
20: end if
21: return 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑠𝑡𝑜𝑙𝑒𝑛_𝑡𝑎𝑠𝑘;
22: break;
23: end if
24: end if
25: end while
26: if (𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠 < 𝑀𝐴𝑋_𝑇𝑅𝐼𝐸𝑆) then
27: 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠 ∗= 2;
28: else
29: 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑛𝑢𝑚_𝑡𝑟𝑖𝑒𝑠 = 𝑀𝐴𝑋_𝑇𝑅𝐼𝐸𝑆;
30: end if
31: return 𝑁𝑈𝐿𝐿;
32: end if
450
On the other hand, a busy victim looks at its memory cell during
a dequeue operation, as shown in Algorithm 2, extracts the round
number from the steal request and compares this round number with its
current round number. If it matches, the steal request is valid and the
victim dequeues a task from its queue and copies it to the stolen task
memory cell of the stealer. The victim increments its round number to
invalidate any incoming steal requests. The round is incremented in
2 scenarios: (1) when a steal request is served and a task is copied
to the stealer’s stolen task field; and (2) when victims’ queues are
empty. The pseudocode presents only the core logic leaving out the
complex implementation specific details. The omitted details are spe-
cific to the LLVM’s implementation for handling termination of the
application and handling of stolen tasks so they are correctly executed.
The algorithms presented here cover the bulk of the work stealing
functionality. This implementation works similarly to traditional work
stealing mechanisms where a stealer waits to steal a task from a victim.

The original algorithm in the technical report [17] is implemented
for stealing threads and waits forever in the while loop until a steal suc-
ceeds or is invalidated. However, in the implementation of X-OpenMP,
to ensure the application terminates after executing the DAG, the
worker breaks out of the loop after waiting for a certain amount of
time. The amount of time a worker waits to steal a task has a direct
impact on overall execution time. Due to the static load balancing,
a worker waiting to steal a task might get work from other workers
and the worker needs to return to executing tasks as soon as possible.
In order to achieve better performance, the time a worker waits to
steal a task is dynamically adjusted based on the recent activity. The
concept is similar to exponential backoff in computer networks where
feedback is used to multiplicatively decrease the rate of some process
in order to achieve an acceptable rate [37]. In our model, the wait
time is controlled by the number of loop iterations, starting with a very
small number 𝑀𝐼𝑁_𝑇𝑅𝐼𝐸𝑆 and doubling every time a steal request
fails until it reaches a certain limit set by 𝑀𝐴𝑋_𝑇𝑅𝐼𝐸𝑆 (lines 16–23
and 26–31 in Algorithm 3). If a steal request succeeds, the number
of iterations is decreased by a small amount in order to achieve the
ideal number of iterations required for stealing. Please note that line 1
in Algorithm 3 is only executed at the beginning of the program run
and the value is tuned based on the success or failure of steals as the
execution progresses. Effectively, the wait time increases exponentially
for failed requests and decreases linearly for successful requests with
the goal to achieve an optimal wait time. This approach minimizes the
number of failed steal requests while adjusting the wait time to achieve
better performance.

4.2. Lock-less work stealing without wait (no-wait)

While the above algorithm using dynamic wait time works like tra-
ditional work stealing algorithms, the communication between workers
in XQueue using SPSC queues can be used to implement work stealing
without waiting. The benefit of this approach is that it eliminates the
wait time while enabling load balancing using steal requests and queue
operations. As shown in Algorithm 5, it starts off with the stealer
submitting a steal request to a random victim thread by writing a 64-bit
word in the victim’s memory cell. Instead of waiting in a while loop to
receive a task from the victim, the stealer immediately returns to the
scheduler and checks its own queues for tasks. If no tasks are found, it
picks another random worker to submit a steal request.

On the victim’s side, if a steal request is received, the victim can take
action in both enqueue and dequeue operations. Algorithm 4 shows the
pseudocode of the dequeue operation. If the victim is trying to dequeue
a task and a steal request is received, the victim checks all its queues
for a task, and it enqueues the task into the stealer’s auxiliary queue
instead of copying it to the stealer’s stolen task memory cell. In case of
an enqueue operation, if a steal request is received, instead of following

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
a round-robin order for distributing tasks, it enqueues the task into the
auxiliary queue of the stealer. If no steal request is found, the enqueue
continues in a round-robin fashion across all the workers. This approach
of work stealing leverages the existing connections between queues and
workers for enqueue and dequeue and does not require sophisticated
waiting logic to ensure termination of the application.

Algorithm 4 No-Wait Work Stealing — Victim’s Logic
1: 𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 ← 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞;
2: 𝑟𝑜𝑢𝑛𝑑 ← 𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞&((1𝑈𝐿𝐿 << 40) − 1);
3: if 𝑟𝑜𝑢𝑛𝑑 == 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑟𝑜𝑢𝑛𝑑 then
4: 𝑟𝑒𝑡 ← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑, 𝑖𝑡𝑒𝑚);
5: if 𝑟𝑒𝑡 == 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 then
6: 𝑠𝑡𝑒𝑎𝑙𝑒𝑟_𝑖𝑑 ← 𝑙𝑜𝑐𝑎𝑙_𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 >> 40;
7: 𝑡ℎ𝑟𝑒𝑎𝑑𝑠[𝑠𝑡𝑒𝑎𝑙𝑒𝑟_𝑖𝑑]− > 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑖𝑡𝑒𝑚); 𝑡ℎ𝑟𝑒𝑎𝑑− > 𝑟𝑜𝑢𝑛𝑑 + +;
8: end if
9: end if

Algorithm 5 No-Wait Work Stealing — Stealer’s Logic
1: if (𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞&((1 << 40) − 1) < 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑟𝑜𝑢𝑛𝑑) then
2: 𝑟𝑜𝑢𝑛𝑑 = 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑟𝑜𝑢𝑛𝑑;
3: 𝑣𝑖𝑐𝑡𝑖𝑚− > 𝑠𝑡𝑒𝑎𝑙_𝑟𝑒𝑞 = 𝑟𝑜𝑢𝑛𝑑 + (𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 << 40);
4: return NULL;
5: end if

It is worth noting that the no-wait work stealing algorithm results
in many more steal requests being submitted than the wait-based
approach, thereby resulting in more successful steals and better load
balancing in terms of the number of tasks. A significant difference
between the traditional work stealing approach and the lock-less ap-
proaches described above is that in the traditional approach, an idle
worker is doing all the work for stealing a task. However, in the case
of the lock-less approach, a busy worker is facilitating work stealing by
checking its queues and pushing a task to the stealer. This approach
may slightly increase the overhead of tasking, however it is not sig-
nificant as we will show in the evaluation section. During a dequeue
operation, the worker is checking all the queues to dequeue tasks. In the
case of dequeue with no steal requests, one task needs to be removed,
whereas if there is a steal request, two tasks need to be removed from
the queues, one for executing by itself and the other for handing over
to the stealer.

The no-wait lock-less work stealing algorithm is shown in Fig. 5.
For simplicity, we show two threads and two queues per thread where
thread T0 can enqueue into queue Q2 of thread T1 and T1 can enqueue
into queue Q2 of T0. In Fig. 5-A, the stealer thread T0 checks its own
queues for tasks during dequeue operation. If no tasks are found, T0
writes a steal request into T1’s memory cell as shown by the dotted
red line. After putting a steal request, T0 checks if the termination
condition for the runtime is satisfied and if not, returns back to the
dequeue operation which is shown by the dotted red loop for dequeue.
Victim thread T1 checks for incoming steal requests during a dequeue
operation. If a request is received, thread T1 checks its queues for
two tasks, one for executing itself and the other for fulfilling the steal
request. Only the stealing part is shown in the figure. Thread T1
dequeues an item and enqueues it to queue Q2 of thread T0. It then
increments its round value to allow other incoming steal requests. Also,
thread T0 writes a self query using its own round number incremented
by one into its own steal request memory cell. This tells the other
workers that steal requests are not currently being accepted by this
worker (as shown in Algorithm 3).
451
Fig. 5. No-wait work stealing in action.

4.3. Scheduling logic

Our scheduling logic is similar to XQueue with some additional
logic for tracking the last successful victim. The worker first checks
its own queues for tasks. If no tasks are found, it randomly chooses a
victim thread to steal work from. A steal request is submitted to the
victim and if the steal is successful, the runtime tracks the victim’s
ID for future steals. If the steal fails, the saved victim ID is reset and
the scheduler randomly picks another victim to steal from. This is an
optimization from the native LLVM OpenMP implementation that we
adopt for X-OpenMP. This optimization enables efficient work stealing
from an overloaded worker.

If some workers are overloaded, instead of stealing one task at a
time, multiple tasks can be stolen to load balance quickly and efficiently
using less steal requests [27]. The no-wait work stealing approach
submits several work stealing requests due to the virtue of its design
and we explore the performance by stealing one and two tasks at a
time to understand the overall impact on performance.

5. Evaluation

We evaluate X-OpenMP using a set of synthetic benchmarks and
real-world applications. The microbenchmarks are specifically designed
to explore the performance of lock-less techniques described in this

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
paper for tasking and load balancing. We evaluate four different im-
plementations in X-OpenMP:

1. XQUEUE-STATIC - uses static round robin load balancing;
2. XOMP-DYNAMIC-WAIT - uses static load balancing and dynamic

wait-based work stealing;
3. XOMP-DYNAMIC-NOWAIT/ XOMP-DYNAMIC-NOWAIT-STEAL-

ONE - uses static load balancing and dynamic no-wait work
stealing, stealing one task at a time;

4. XOMP-DYNAMIC-NOWAIT-STEALTWO - uses static load balanc-
ing and dynamic no-wait work stealing, stealing two tasks at a
time.

We compare the performance of X-OpenMP (XOMP) with native LLVM
OpenMP (OMP), GNU OpenMP (GOMP), OpenCilk (CILK) and Intel
oneAPI Thread Building Blocks (TBB). OpenCilk [8] recently emerged
as an open source paradigm for task parallelism. OneTBB [38] is a
library part of the oneAPI toolkit which simplifies the work of adding
parallelism to applications and provides tasking constructs. To quan-
tify the performance improvements in real application workloads, we
evaluate strassen’s matrix multiplication from the BOTS benchmark
suite [39], cholesky factorization and symmetric rank-k update routines
from the PLASMA linear algebra library [40] and the Unbalanced Tree
Search benchmark [26]. PLASMA library is written in C and oneTBB
is a library for C++ applications, hence we have omitted TBB from the
benchmarks that use the PLASMA library. All experiments in this paper
are conducted on an Intel Skylake Server with 192 cores (384 hardware
threads) at 2.1 GHz with 8 sockets and 8 NUMA zones. We compiled all
the benchmarks using LLVM Clang version 11.0 and O3 optimization
level and ran experiments on Ubuntu 20.04.4.

5.1. Microbenchmarks

To evaluate the overheads of tasking and to explore the scalability
of X-OpenMP with extremely fine-grained tasks, we implemented a set
of microbenchmarks inspired by the EPCC Benchmark Suite [41]. While
the EPCC benchmark suite contains benchmarks for measuring the
overheads of tasking and load balancing in OpenMP, these benchmarks
are not sufficient for understanding the performance of the lock-less
techniques described in this paper. For the purposes of evaluation, each
microbenchmark runs a loop that increments a variable for a certain
number of iterations as a task. The number of iterations is derived based
on the delay time specified in the benchmark by running a test loop.
We refer to this task as the delay task. For benchmarking X-OpenMP,
we designed 3 different microbenchmarks: (1) Tasking overhead —
measures the overhead of launching a task of a certain length; (2) Task
Distribution — measures how the tasks are distributed across workers
when all workers are given an equal number of fixed length tasks; (3)
Work Stealing Efficiency — measures the efficiency of work stealing
based on the deviation of task distribution from the ideal case when
only the master worker receives all the tasks; (4) Memory footprint —
measures the execution time using various queue sizes to understand
the impact of queue sizes on the overall performance.

Fig. 6 shows the overheads of tasking in microseconds for various
versions of OpenMP using 192 threads. In this benchmark, each worker
processes 8 million delay tasks where each task runs for a fixed duration
between 1 ns (ns) and 1 (μs). The experiment is repeated 20 times and
the plot shows the average overhead time. To get the overhead, we
calculate the ideal time for the benchmark based on the number of
tasks and the task duration and subtract it from the overall execution
time. The tasking overhead measured for X-OpenMP with static round-
robin load balancing is about 110 ns. The overhead of X-OpenMP with
workstealing is about 150 to 200 ns. In native LLVM OpenMP, the
tasking overhead is about 400 ns. GNU OpenMP exhibits significantly
higher overhead for extremely fine-grained tasks at about 20.32 μs for
1 ns tasks, with the overhead going down up to 1 μs for 1 μs tasks.
OpenCilk has 30 ns overhead for executing 1 ns tasks and 110 ns
452
Fig. 6. Parallel Tasking Overhead on skylake-192 using 192 threads (lower is better).

Fig. 7. Average Task Distribution on skylake-192 using 192 threads.

Fig. 8. Delta of Task Distribution using Workstealing on skylake-192 using 192 threads
(lower is better).

overhead for 10 ns tasks. OneTBB shows 30 ns overhead for 1 ns
tasks and 85 ns overhead for 10 ns tasks. However, the overhead
increases with increasing task granularity. Profiling showed that as
task granularity increases, the time spent in spinlock increases which
results in higher overhead. Spinlocks are mainly used for the scheduling

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
Fig. 9. Execution time of a synthetic benchmark with varying queue sizes.

and join operations. These results clearly illustrate that the overheads
of tasking can be significantly reduced by using lock-less concurrent
queuing mechanisms.

Fig. 7 shows a box plot of task distribution across workers for 20
runs of 8 million fixed-length 0.1 μs delay tasks using 192 threads. Ev-
ery worker in the X-OpenMP implementation with static load balancing
executes the same number of tasks due to the absence of dynamic load
balancing. LLVM and GNU OpenMP versions spend significant time
in load balancing depending on the execution speed of each worker.
OpenCilk and oneTBB show significant variability in the number of
tasks executed by each worker with some workers executing over 10x
the tasks as compared to other workers. The tasking overhead plays
a significant role in triggering work stealing, since higher overhead
for pushing tasks implies that the workers are idle for a long time
which triggers work stealing even when it is not necessary. X-OpenMP
with wait-based and no-wait workstealing approaches also steal tasks in
order to load balance, however the standard deviation is low compared
to the other runtimes evaluated. The execution time is directly corre-
lated with the number of tasks executed by each worker. Compared
to LLVM and GNU versions, X-OpenMP runs about 36% faster in this
microbenchmark. This slowdown is due to the overheads of enqueue-
ing and dequeuing in lock-based approaches used in LLVM and GNU
versions. X-OpenMP is about 30% faster compared to OpenCilk and
oneTBB in this benchmark.

Fig. 8 shows the efficiency of work stealing across 192 workers. This
benchmark creates an OpenMP parallel region and the master thread
runs a for loop which creates 65K delay tasks with 0.1 μs delay. This
experiment is repeated 20 times and we count the total number of tasks
processed per worker. The plot shows the deviation from the ideal case
(delta) of each worker based on the task distribution across all the runs.
The delta metric of each worker is calculated using the formula:

𝐷𝑒𝑙𝑡𝑎𝑤𝑜𝑟𝑘𝑒𝑟𝑖 =
|𝑇 𝑎𝑠𝑘𝑠𝑤𝑜𝑟𝑘𝑒𝑟𝑖 − 𝑇 𝑎𝑠𝑘𝑠𝑖𝑑𝑒𝑎𝑙|

𝑇 𝑎𝑠𝑘𝑠𝑖𝑑𝑒𝑎𝑙
The ideal case is when every worker runs an equal number of tasks

which implies the delta is zero. The delta for all versions of X-OpenMP
is very close to zero and for the native LLVM OpenMP version, the
delta ranges between 0.0005 and 0.99. GNU OpenMP shows significant
variance in the task distribution which is also observed in the overall
execution time and it runs about 5X to 10X slower compared to the
native LLVM and X-OpenMP versions. For OpenCilk, the delta ranges
between 0 and 2.08 and for oneTBB, the delta is between 0.001 and
5.84. Both oneTBB and OpenCilk dynamically control task granularity.
OpenCilk uses fast clone for spawned tasks and slow clone for stolen
tasks. If no stealing happens, fast clones are run sequentially and slow
clone induces parallelism. On the other hand, oneTBB uses mailboxing
453
concept for workstealing instead of completely randomized scheduling
which results in better task affinity. Task granularity is controlled by us-
ing RDTSC to put a ban of work sharing to coarsen the grain-size during
this interval. These optimizations result in significant load imbalance,
particularly with extremely fine-grained tasks. The main takeaway
from this benchmark is that lock-less implementations of work stealing
perform similar to traditional work stealing implementations.

The memory footprint benchmark is designed to study the amount
of memory required by the runtime to efficiently execute applications.
X-OpenMP uses multiple queues per worker as opposed to single queue
per worker in the other runtimes, which raises a question about the
amount of memory required for the runtime itself. In this benchmark,
the master worker receives 𝑁 × 10 tasks (where N is the number of
workers) which run for 1 s each. The ideal time to execute these tasks
with perfect load balancing is 10 s. Also, every worker receives 8
million delay tasks of length 0.1 μs, which should ideally execute within
a second. The idea behind this synthetic benchmark is to simulate
load imbalance and to understand how queue sizes can impact the
overall execution time. Fig. 9 shows the results obtained by running this
benchmark. Legend shows number of queue slots per worker. Please
note that the queue sizes could not be matched for X-OpenMP and
LLVM implementations since the latter requires powers of two for
queue length. The number of queues for X-OpenMP = 192 threads *
16 (per queue size) = 3072 and 192 * 256 (per queue size) = 49 152.
The plot shows execution time by varying queue sizes in the runtime
implementations to understand the impact of queue size when a single
worker is overloaded with work. GNU OpenMP, OpenCilk and oneTBB
are excluded from this plot since we used pre-built libraries for the
evaluation. The execution time of this synthetic benchmark for LLVM
OpenMP shows that the performance of the runtime is sensitive to
queue size. Default queue size in LLVM OpenMP is 256 which results
in 8X slowdown compared to the ideal execution time. Increasing the
number of queue slots per worker results in better load balancing
and better performance. XQueue and X-OpenMP can handle such load
imbalances well due to the round-robin load balancing where long-
running tasks get distributed to all the workers. This experiment also
clearly shows that X-OpenMP is not sensitive to the size of the queue
due to the existence of multiple queues per worker. The queue sizes
can be kept small, thereby requiring less memory for the underlying
runtime and achieve good performance.

5.2. Macrobenchmarks

To demonstrate the behavior of X-OpenMP in real application sce-
narios, we chose benchmarks which are commonly studied and relevant
to real-world HPC applications: a matrix multiplication benchmark,
two linear algebra routines, and an unbalanced tree search benchmark.
We evaluate these applications on the skylake machine with 192 cores
using various versions of X-OpenMP and compare with LLVM and GNU
versions of OpenMP as well as with OpenCilk and oneTBB.

Strassen’s Matrix Multiplication [39,42] is a parallel algorithm
that uses the divide and conquer approach to multiply two square
matrices. A large matrix is divided into smaller and smaller matrices by
recursion. When the algorithm reaches the base size, it computes the
matrix multiplication using a sequential divide and conquer approach.
The depth based cutoff value for the sequential divide and conquer
algorithm is set to 3.

Fig. 10(a) shows the scalability plot for Strassen’s matrix multipli-
cation algorithm. The experiment multiplies square matrices of size
8192 × 8192 using the recursive algorithm and base condition is set to
256 since it gives the fastest execution time for most implementations
(see below). The results show that the implementation scales up to 96
threads and then performance degrades. GNU OpenMP is the fastest
and runs in 3.6 s using 96 threads, followed by oneTBB which runs
in 4.5 s using 48 threads, followed by XOMP-STATIC which runs in
about 5.9 s using 96 threads. The native LLVM version runs about 5%

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
Fig. 10. Strassen’s matrix multiplication using 8K matrix on skylake-192.

slower than X-OpenMP using 96 threads and OpenCilk is about 21%
slower. It is interesting to note that while GNU OpenMP scales well
beyond 96 threads, LLVM OpenMP quickly degrades in performance.
GNU OpenMP employs centralized greedy scheduler where a shared
queue is protected by a global lock. It has hierarchical queues where
parent tasks have a queue and child tasks have their own queues.
The hierarchical queuing along with centralized scheduling inherently
results in good performance for this algorithm. The best running time of
strassen’s using OpenCilk is 6.37 s using 48 threads, and for oneTBB, the
best running time is 4.5 s with 48 threads, which is 15% faster than the
best running time of X-OpenMP. At 96 thread scale, the performance
of X-OpenMP and oneTBB are comparable at 5.9 s.

Fig. 10(b) shows the results obtained by running Strassen’s algo-
rithm on an 8192 × 8192 matrix using 192 threads and varying base
sizes for the matrix from 128 to 1024. The plot shows the average
of three runs. The best performance is achieved using base sizes of
256 and 512 in case of X-OpenMP. It is worth noting that X-OpenMP
using static load balancing is sufficient to achieve good performance
for this algorithm. Dynamic work stealing induces additional overhead
increasing the overall running time for this particular application.

LLVM OpenMP is much slower compared to the other implemen-
tations for Strassen’s matrix multiplication using 192 threads. At this
concurrency scale, the runtime incurs significant overheads due to wait
454
Fig. 11. Symmetric rank update using 12K matrix on skylake-192 using 96 threads
(higher is better).

time and synchronization which results in high cycles per instruction
rate. This algorithm is also highly memory intensive and memory
profile of the application showed high memory pressure on one numa
node compared to the others for all the runtimes. OpenCilk achieves
a runtime of 5.5 s similar to X-OpenMP with 256 tile size, whereas
oneTBB is about 36% slower than X-OpenMP.

Symmetric Rank-k Update (SYRK) [43] is an important building
block of many linear algebra algorithms and included in the Basic
Linear Algebra Subprograms (BLAS) specification [44]. The SYRK algo-
rithm computes the upper or lower part of the result of a matrix product
where the given matrix is a symmetric matrix. Parallel Linear Algebra
Software for Multicore Architectures (PLASMA) numerical library [40]
is a dense linear algebra package which implements a full set of BLAS
routines using task-based parallelism. PLASMA library uses a tile-based
approach for the algorithms where the matrix is divided into square
blocks and each tile is typically processed by a task.

Fig. 11 shows the results obtained by running DSYRK on skylake-
192 using 96 threads and varying tile sizes. The algorithm scales up
to 4 sockets and 96 threads on the skylake-192 server. X-OpenMP
with static round-robin load balancing achieves the highest floating
point operations per second with 1229 GFLOPS at 976 tile size. X-
OpenMP with wait-based work stealing approach achieves 927 GFLOPS
using 848 tile size. X-OpenMP with the no-wait approach and stealing
two tasks at a time achieves 979 GFLOPS using 736 tile size. Larger
tiles provide cache efficiency for DSYRK algorithm by reusing the data
within the cache. The round-robin distribution of tasks within the X-
OpenMP framework confers an advantage in L3 cache locality when
contrasted with the randomized stealing of tasks. This approach yields
superior performance outcomes using X-OpenMP for this benchmark.
The native LLVM version achieves 956 GFLOPS using 1024 tile size,
however it is about 50% slower with smaller block sizes. With fine-
granular tasks, the native LLVM version has a long tail at the end of the
computation where a single or only a few workers are busy executing
tasks which results in significant loss in performance. The overheads of
synchronization and wait times in continuation stealing significantly
degrade the performance of OpenCilk across all tile sizes.

Cholesky Factorization (POTRF) of a symmetric positive definite
matrix is the factorization of the matrix into upper triangular and
lower triangular matrices with positive diagonal elements. Several prior
works have explored task-based Cholesky factorization algorithms and
we evaluate the DPOTRF algorithm from the PLASMA numerical library
which is a tile-based implementation using OpenMP tasking. Cholesky
factorization uses DPOTRF for factorization of a tile and uses three
kernels from the library for the algorithm: DGEMM (general matrix
matrix multiplication), DTRSM (for solving a system with a triangular

matrix) and DSYRK (for rank-k update of the symmetric matrix).

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
Fig. 12. Cholesky factorization on skylake-192.

Fig. 12(a) shows the scalability plot of Cholesky factorization using
X-OpenMP, LLVM, GNU and OpenCilk versions. The algorithm scales
up to 96 threads for all the runtimes evaluated with peak performance
achieved using no-wait based X-OpenMP implementation. The perfor-
mance of all the implementations drops significantly with 192 and
384 threads which clearly indicates there is room for improvement
in existing algorithms to leverage the parallelism available on modern
hardware.

Fig. 12(b) shows the performance of Cholesky Factorization algo-
rithm on skylake-192 server using 12K matrix, 96 threads and varying
tile sizes. The highest performance of 911 GFLOPS is achieved using a
tile size of 256. X-OpenMP with no-wait work stealing performs best
for this algorithm. XQueue with static round-robin load balancing has
performance similar to LLVM overall and the dynamic work stealing
highly improves the performance compared to native LLVM OpenMP.
OpenCilk achieves highest performance with 160 tile size and as task
granularity increases, performance drops. This behavior is consistent
with the microbenchmarks where the overheads of tasking keep in-
creasing with task granularity. OpenCilk runtime also spends increasing
amount of time in synchronization with increased task granularity
thereby resulting in lower performance. It is notable that the native
LLVM version achieves its peak performance with a tile size of 352,
whereas all versions of X-OpenMP reach their peak performance with
a tile size of 256. This observation underscores the effectiveness of
lightweight tasking and reduced synchronization overheads, enabling
acceleration of applications utilizing tasks with much finer granularity
455
Fig. 13. Unbalanced Tree Search on skylake-192 (lower is better).

than typically supported by contemporary runtime systems. Addition-
ally, it underscores the potential for exploring over-decomposition of
task-based applications to unlock maximum speedup on modern ar-
chitectures. The algorithm using GNU OpenMP takes a long time to
execute and it results in very low GFLOPS for both DPOTRF and DSYRK
algorithms, hence we have not included the results in the plots.

Unbalanced Tree Search (UTS) [26] benchmark is designed to
evaluate the performance of dynamic load balancing in task parallel
runtime systems. The benchmark implements a version of UTS using
OpenMP tasking where workstealing is used to reduce the load im-
balance between workers. We chose this benchmark since it requires
efficient dynamic load balancing to achieve good performance. The
benchmark traverses all the nodes of a tree with a parameterized size
and imbalance and reports the total number of nodes in the tree. The
benchmark provides sample trees for the purposes of evaluation. We
evaluate T3L which is binomial tree with over 100 million nodes with
17 844 tree depth and close to 90 million leaf nodes. We report the
results of running UTS using 96 threads and 192 threads on skylake-192
server.

Figs. 13(a) and 13(b) show the execution time of T3L using 96
threads and 192 threads on the skylake-192 server. As with the other
benchmarks, UTS benchmark also scales up to 4 sockets and 96 threads
on this machine using LLVM and GNU OpenMP, X-OpenMP scales up
to 192 threads. The plots show execution time of UTS at varying levels
of compute granularity. The granularity defines the amount of compute
for each task, with 1 being the finest granularity and 10 being the coars-
est. For all fine, medium and coarse grain tasks, X-OpenMP with static

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
Fig. 14. Unbalanced Tree Search using X-OpenMP and 192 threads on skylake-192.

round robin load balancing achieves the best execution time of 8.6 s,
9.9 s, and 11.8 s respectively using 192 threads. GNU OpenMP incurs
significant overheads with this workload with about 40X slowdown
across all task granularities. In general, binomial trees are the best
adversary for load balancing because they create highly unbalanced
trees [26]. Despite the hierarchical queuing in GNU OpenMP favoring
Strassen’s matrix multiplication benchmark, the runtime suffers from
severe load imbalance in this benchmark due to the nature of the
benchmark, in which some child nodes in the binomial tree result in
a large number of tasks and no tasks on the other child. This results
in a few threads having a huge number of tasks in comparison to
others and the lack of dynamic load balancing results in significant
performance degradation due to the lack of a dynamic load balancing
mechanism in GNU OpenMP. OpenCilk is 6x slower than X-OpenMP
and oneTBB is 5x slower. Both OpenCilk and oneTBB use a traditional
lock-based randomized work stealing as a load balancing mechanism
which results in overheads due to the synchronization required for
achieving load balancing for this workload. X-OpenMP achieves the
highest performance for this benchmarks with 40X speedup over GNU
OpenMP, 6x speedup over OpenCilk and 5x speedup over oneTBB.
The observed speedups can be credited to the innovative integration
of a static round-robin load balancing strategy with dynamic work
stealing. This combination ensures effective task distribution among all
workers, resulting in enhanced performance. Fig. 14 shows a part of the
timeline plot of one execution of UTS using T3L graph and X-OpenMP.
Although the nature of the workload is highly imbalanced, X-OpenMP
achieves a reasonable load balance and speed up compared to the other
OpenMP implementations. These results showcase the significance of
better and light-weight load balancing techniques to achieve improved
performance. Using 96 threads, the best execution time is achieved
using X-OpenMP with static round robin load balancing at the finest
granularity. For medium and coarse granularities, X-OpenMP with no-
wait load balancing and stealing one task at a time performs the best
at 11.9 s and 13.1 s. At 96 thread scale, X-OpenMP is 10X faster than
GNU OpenMP and 2X faster than LLVM OpenMP.

5.3. Discussion and summary

This evaluation showed that static load balancing mechanisms are
suitable for some applications, while others require more dynamic
approaches. Configuring how many tasks to steal at a time is dependent
on the application and the computational complexity of the tasks. If
tasks are of similar lengths in terms of execution time, static round-
robin load balancing along with stealing one task at a time works
well. For highly imbalanced applications, traditional work stealing ap-
proaches can incur extremely high overheads due to synchronization at
higher concurrency levels. Such applications can benefit from lock-less
approaches presented in this paper. Most state-of-the-art applications
do not scale up to hundreds of threads on modern architectures and
the applications must be redesigned to achieve further improvements
in performance using extremely fine-grained tasks.

Our results clearly demonstrate the performance improvements that
can be achieved using lightweight tasking and reduced synchronization
456
overheads. The techniques presented in this paper can be used to
enhance existing parallel runtime systems to improve the efficiency of
fine-grained parallelism on many-core architectures.

6. Related work

Task-based Parallel Runtimes: Most parallel runtime systems and
execution models (e.g., OpenMP [21], Charm++ [6], and Swift/T [45])
use concurrent queues for sharing data between threads or processes.
Charm++’s run-time [6] uses message-driven execution to hide the
latency of communication between tasks and remote data; it demon-
strates about 10–20 percent improvement in performance by using op-
timization techniques like lock-free queues, CPU affinity, and memory
management [46]. Researchers have investigated contention manage-
ment in thread-safe MPI libraries [47] and the use of abort locking [48].
Recently, Cpp-taskflow [35] emerged as an alternative to OpenMP for
C++ with support for template instantiation to compose dependency
graphs. Cilk [7] is an influential programming language based on C in
which programmers are responsible for exposing parallelism via tasks
and dependencies. OpenCilk [8] has emerged as a new parallel runtime
after Intel CilkPlus has been deprecated in 2018. StarPU [49] integrates
tasking across CPUs and accelerators. XKAAPI [50] is a run-time for
scheduling irregular fine-grained tasks with dataflow dependencies.
PARSEC [51] provides a highly-efficient distributed low-level task-
based runtime supporting a varied set of Domain Specific Languages
(DSL) programming languages and APIs. In all these examples the
programmer specifies what shared data each task will access and how.
Intel’s TBB [4] provides task-based parallelism using C++ templates
in which dependencies are handled by explicitly waiting for spawned
tasks. Legion [5,52] queues tasks eagerly, but defers their execution un-
til it is safe to do so. Wool [53] is a user-level task management library
which is aimed at efficient load balancing with very low overheads for
task creation. In each of these systems, the developer needs to be aware
of limitations of task granularity and decomposition to achieve efficient
performance. In our work, we aim for a task-based parallel program-
ming model in which applications can achieve improved performance
at finer granularity and decomposition.

Load Balancing: Several researchers have proposed various load
balancing mechanisms [24,32]. Blumofe and Leiserson et al. introduced
work stealing and proved that it is superior to work sharing [54].
Quintin et al. proposed hierarchical work stealing for exploiting data
locality to achieve speed up compared to classical work stealing algo-
rithms [55]. Various parameters of work stealing have been explored
in the literature and Michael et al. showed that two random choices for
work stealing exponentially improves performance and is sufficient to
achieve good load balancing [56]. Several applications implement their
own load balancing mechanisms in order to achieve ideal performance
on various architectures. Recently Shiina et al. introduced ‘‘Almost
Deterministic Work Stealing’’ which addresses the issue of data locality
by making scheduling almost deterministic [57]. All mechanisms pro-
posed in the literature for multi-threaded runtimes rely on concurrent
data structures and synchronization mechanisms for achieving dynamic
load balancing. In contrast, our work explores lock-less techniques for
achieving comparable dynamic load balancing by using non-atomic
memory updates.

7. Conclusion and future work

We propose X-OpenMP as a framework to enable extremely fine-
grained task parallelism on modern shared memory architectures with
hundreds of cores. The work stealing algorithm in X-OpenMP does not
require any atomicity for read, write, and modify operations on TSO
architectures, and achieves performance comparable with state-of-the-
art implementations. Existing OpenMP applications can use X-OpenMP
without modification by simply linking against the X-OpenMP library.
We evaluate our approach using workloads that are highly prevalent in

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.

s
a

D

c
i

D

A

(

R

HPC applications and are crucial for achieving better performance in
real-world scenarios. We demonstrate speedups of up to 40X compared
to GNU OpenMP, up to 2X compared to the native LLVM OpenMP
implementation, up to 6X over OpenCilk and up to 5X over oneTBB.

Integration of our techniques with LLVM OpenMP creates the oppor-
tunity to transparently accelerate many applications with fine-grained
parallelism. Our work in this area of task-based parallel runtime sys-
tems creates new avenues for exploring lock-less techniques in the
HPC space. We plan to evaluate real-world scientific applications in
Computational Biology, Materials Science, Computational Chemistry,
and Astrophysics using X-OpenMP to demonstrate the performance
improvements achievable in parallel runtimes as a step towards ex-
ascale goals. By enabling efficient support of fine-grained parallelism
across the growing range of scales seen in modern and future hard-
ware, we believe this work will enhance the productivity of parallel
programmers.

CRediT authorship contribution statement

Poornima Nookala: Writing – original draft, Software, Methodol-
ogy, Investigation, Conceptualization. Kyle Chard: Writing – review
& editing, Supervision, Resources, Project administration, Funding ac-
quisition. Ioan Raicu: Writing – review & editing, Supervision, Re-
ources, Project administration, Methodology, Investigation, Funding
cquisition, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work is supported in part by National Science Foundation
NSF) CNS-1730689 CRI and the OAC-2107548/2107283 Core awards.

eferences

[1] S. Heldens, P. Hijma, B.V. Werkhoven, J. Maassen, A.S.Z. Belloum, R.V.
Van Nieuwpoort, The landscape of exascale research: A data-driven literature
analysis, ACM Comput. Surv. 53 (2) (2020) http://dx.doi.org/10.1145/3372390.

[2] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu,
R. Colwell, W. Dally, J. Dongarra, DOE Advanced Scientific Computing Advisory
Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges, Technical
Report, USDOE Office of Science (SC)(United States), 2014.

[3] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, D. Fey, Hpx: A task based
programming model in a global address space, in: Proceedings of the 8th
International Conference on Partitioned Global Address Space Programming
Models, 2014, pp. 1–11.

[4] A. Kukanov, M.J. Voss, The foundations for scalable multi-core software in intel
threading building blocks., Intel Technol. J. 11 (4) (2007).

[5] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing locality and
independence with logical regions, in: Proceedings of Supercomputing, SC 2012,
2012.

[6] L. Kalé, S. Krishnan, CHARM++: A portable concurrent object oriented system
based on C++, in: OOPSLA’93, 1993.

[7] M. Frigo, C.E. Leiserson, K.H. Randall, The implementation of the cilk-5 multi-
threaded language, in: PLDI’98, 1998, pp. 212–223, http://dx.doi.org/10.1145/
277650.277725.

[8] T.B. Schardl, I.-T.A. Lee, OpenCilk: A modular and extensible software infras-
tructure for fast task-parallel code, in: Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming, 2023,
pp. 189–203.

[9] Y. Babuji, A. Woodard, B. Clifford, Z. Li, D.S. Katz, R. Chard, R. Kumar, L.
Lacinski, J. Wozniak, I. Foster, M. Wilde, K. Chard, Parsl: Pervasive parallel
457

programming in python, in: HPDC’19, ACM, New York, NY, USA, 2019.
[10] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1) (1998).

[11] X. Meng, X. Zeng, X. Chen, X. Ye, A cache-friendly concurrent lock-free queue
for efficient inter-core communication, in: ICCSN’17, 2017.

[12] I. Rickards, J. Donner, S. Vigna, W. Brown, C. via the C Programming Forum,
LIBLFDS, 2009, URL http://www.liblfds.org/.

[13] S.A. Bahra, Concurrency kit, 2011, URL http://concurrencykit.org/.
[14] H. Sutter, The trouble with locks, 2005, URL http://www.drdobbs.com/cpp/the-

trouble-with-locks/184401930.
[15] R. Rodrigues, S. Bhogavilli, Lockless queues, 2012, Patent No. US8443375B2,

Filed Dec 14th., 2009, Issued May. 14th., 2012.
[16] P. Nookala, P. Dinda, K.C. Hale, K. Chard, I. Raicu, Enabling extremely

fine-grained parallelism via scalable concurrent queues on modern many-core
architectures, in: 2021 29th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, MASCOTS, IEEE, 2021,
pp. 1–8.

[17] U.A. Acar, A. Charguéraud, S. Muller, M. Rainey, Atomic Read-Modify-Write
Operations are Unnecessary for Shared-Memory Work Stealing, Research Report,
2013, URL https://hal.inria.fr/hal-00910130/file/main.pdf.

[18] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55.

[19] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, G. Zhang, The design of OpenMP tasks, in: TPDS’09, Vol. 20,
IEEE, 2009.

[20] GCC team, GOMP: An OpenMP implementation for GCC, 2023, URL https:
//gcc.gnu.org/projects/gomp/.

[21] OpenMP Architecture Review Board, OpenMP®: Support for the OpenMP
language, 2023, URL https://openmp.llvm.org/.

[22] H. Sutter, Lock-free code: A false sense of security, 2008, URL https://drdobbs.
com/cpp/lock-free-code-a-false-sense-of-security/210600279.

[23] TUG, Intel® 64 and IA-32 architectures software developer’s manual, 2018,
URL https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-
vol-1-2abcd-3abcd.pdf.

[24] J. Dinan, D.B. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha, Scalable
work stealing, in: Proc. ACM Conf. on High Performance Computing Networking,
Storage and Analysis, SC, 2009.

[25] N.S. Arora, R.D. Blumofe, C.G. Plaxton, Thread scheduling for multiprogrammed
multiprocessors, Theory Comput. Syst. 34 (2) (2001) 115–144.

[26] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, C.-W. Tseng, UTS:
An unbalanced tree search benchmark, in: International Workshop on Languages
and Compilers for Parallel Computing, Springer, 2006, pp. 235–250.

[27] K. Wang, A. Kulkarni, M. Lang, D. Arnold, I. Raicu, Exploring the design
tradeoffs for extreme-scale high-performance computing system software, IEEE
Trans. Parallel Distrib. Syst. 27 (4) (2015) 1070–1084.

[28] J. Wang, K. Zhang, X. Tang, B. Hua, B-queue: Efficient and practical queuing
for fast core-to-core communication, IJPP 41 (1) (2013) 137–159, http://dx.doi.
org/10.1007/s10766-012-0213-x.

[29] K. Mitropoulou, V. Porpodas, X. Zhang, T.M. Jones, Lynx: Using OS and hardware
support for fast fine-grained inter-core communication, in: ICS’16, 2016.

[30] X. Meng, X. Zeng, X. Chen, X. Ye, A cache-friendly concurrent lock-free queue
for efficient inter-core communication, in: ICCSN’17, IEEE, 2017.

[31] S. Arnautov, P. Felber, C. Fetzer, B. Trach, FFQ: A Fast Single-Producer/Multiple-
Consumer Concurrent FIFO Queue, IEEE, 2017.

[32] Y. Guo, R. Barik, R. Raman, V. Sarkar., Work-first and help-first scheduling
policies for terminally strict parallel programs., in: Proc. of the 23rd IEEE
International Parallel and Distributed Processing Symposium, IPDPS, 2009.

[33] A. Podobas, M. Brorsson, V. Vlassov, Scheduling for improved data-driven task
performance with fast dependency resolution, in: IWOMP’14, Springer, Salvador,
Brazil, 2014, pp. 45–57, http://dx.doi.org/10.1007/978-3-319-11454-5_4.

[34] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, K. Warren, Introduction to
UPC and Language Specification, Technical Report CCS-TR-99-157, IDA Center
for Computing Sciences, 1999.

[35] G.G. Tsung-Wei Huang, M. Wong, Cpp-Taskflow: Fast task-based parallel
programming using modern C++, IPDPS’19 (2019) 974–983.

[36] P. Sewell, S. Sarkar, S. Owens, F.Z. Nardelli, M.O. Myreen, X86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors, Commun. ACM 53 (7)
(2010) 89–97.

[37] B.-J. Kwak, N.-O. Song, L.E. Miller, Performance analysis of exponential backoff,
IEEE/ACM Trans. Netw. 13 (2) (2005) 343–355.

[38] I. Corporation, Intel® oneAPI threading building blocks, 2023, URL https://www.
intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html.

[39] A. Duran, X. Teruel, R. Ferrer, X. Martorell, E. Ayguade’, Barcelona OpenMP
tasks suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP, in: ICPP’09, 2009, pp. 124–131.

[40] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki, A.
YarKhan, M. Abalenkovs, N. Bagherpour, et al., PLASMA: Parallel linear algebra
software for multicore using OpenMP, ACM Trans. Math. Softw. 45 (2) (2019)
1–35.

[41] J.M. Bull, F. Reid, N. McDonnell, A microbenchmark suite for OpenMP tasks, in:

International Workshop on OpenMP, Springer, 2012, pp. 271–274.

http://dx.doi.org/10.1145/3372390
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb2
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb6
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb6
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb6
http://dx.doi.org/10.1145/277650.277725
http://dx.doi.org/10.1145/277650.277725
http://dx.doi.org/10.1145/277650.277725
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb8
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb10
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb10
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb10
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb11
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb11
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb11
http://www.liblfds.org/
http://concurrencykit.org/
http://www.drdobbs.com/cpp/the-trouble-with-locks/184401930
http://www.drdobbs.com/cpp/the-trouble-with-locks/184401930
http://www.drdobbs.com/cpp/the-trouble-with-locks/184401930
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb15
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb16
https://hal.inria.fr/hal-00910130/file/main.pdf
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb18
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb19
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb19
https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/
https://openmp.llvm.org/
https://drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279
https://drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279
https://drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb24
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb25
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb26
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb27
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb27
http://dx.doi.org/10.1007/s10766-012-0213-x
http://dx.doi.org/10.1007/s10766-012-0213-x
http://dx.doi.org/10.1007/s10766-012-0213-x
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb29
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb30
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb31
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb32
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb32
http://dx.doi.org/10.1007/978-3-319-11454-5_4
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb34
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb35
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb36
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb36
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb36
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb36
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb36
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb37
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb37
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb37
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb39
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb39
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb39
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb39
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb39
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb40
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb40
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb40
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb40
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb40
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb40
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb40
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb41
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb41
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb41

Future Generation Computer Systems 159 (2024) 444–458P. Nookala et al.
[42] S. Huss-Lederman, E.M. Jacobson, J.R. Johnson, A. Tsao, T. Turnbull, Implemen-
tation of strassen’s algorithm for matrix multiplication, in: Supercomputing’96:
Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, IEEE, 1996,
p. 32.

[43] J.A. Calvin, C.A. Lewis, E.F. Valeev, Scalable task-based algorithm for multipli-
cation of block-rank-sparse matrices, in: Proceedings of the 5th Workshop on
Irregular Applications: Architectures and Algorithms, 2015, pp. 1–8.

[44] I.S. Duff, M.A. Heroux, R. Pozo, An overview of the sparse basic linear algebra
subprograms: The new standard from the BLAS technical forum, ACM Trans.
Math. Softw. 28 (2) (2002) 239–267.

[45] J.M. Wozniak, T.G. Armstrong, M. Wilde, D.S. Katz, E.L. Lusk, I.T. Foster, Swift/t:
scalable data flow programming for many-task applications, in: PPOPP’13, 2013.

[46] C. Mei, G. Zheng, F. Gioachin, L.V. Kalé, Optimizing a parallel runtime system
for multicore clusters: A case study, in: Proceedings of the 2010 TeraGrid
Conference, 2010.

[47] A. Amer, H. Lu, P. Balaji, M. Chabbi, Y. Wei, J. Hammond, S. Matsuoka, Lock
contention management in multithreaded MPI, ACM Trans. Parallel Comput.
(TOPC) 5 (3) (2018) http://dx.doi.org/10.1145/3275443.

[48] M. Chabbi, A. Amer, S. Wen, X. Liu, An efficient abortable-locking protocol for
multi- level NUMA systems, in: PPOPP’17, ACM, New York, NY, USA, 2017, pp.
61–74.

[49] C. Augonnet, S. Thibault, R. Namyst, P. Wacrenier, StarPU: A unified platform
for task scheduling on heterogeneous multicore architectures, Concurr. Comput.
Pract. Exp. 23 (2011) 187–198.

[50] T. Gautier, J.V.F. Lima, N. Maillard, B. Raffin, XKaapi: A runtime system for
data-flow task programming on heterogeneous architectures, in: Proceedings -
IEEE 27th International Parallel and Distributed Processing Symposium, IPDPS
2013, 2013, pp. 1299–1308, http://dx.doi.org/10.1109/IPDPS.2013.66.

[51] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, J.J. Dongarra,
Parsec: Exploiting heterogeneity to enhance scalability, Comput. Sci. Eng. 15
(6) (2013) 36–45.

[52] S. Treichler, M. Bauer, A. Aiken, Language support for dynamic, hierarchical
data partitioning, in: Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2013, 2013, pp. 495–514.

[53] SIGARCH Comput. Archit. News 36 (5) (2008).
[54] R.D. Blumofe, C.E. Leiserson, Scheduling multithreaded computations by work

stealing, J. ACM 46 (5) (1999) 720–748.
[55] J.-N. Quintin, F. Wagner, Hierarchical work-stealing, in: European Conference

on Parallel Processing, Springer, 2010, pp. 217–229.
[56] M. Mitzenmacher, The power of two choices in randomized load balancing, IEEE

Trans. Parallel Distrib. Syst. 12 (10) (2001) 1094–1104.
458
[57] S. Shiina, K. Taura, Almost deterministic work stealing, in: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, 2019, pp. 1–16.

Poornima Nookala is a Research Scientist at Intel. She
received her Ph.D. in Computer Science in 2022 from
Illinois Institute of Technology. Her research interests in-
clude parallel programming models and runtime systems
for extreme-scale supercomputing systems, computer archi-
tecture, cloud computing systems, and big-data computing.
She is particularly interested in bridging the gap between
software and hardware layers for enabling both functionality
and performance, as well as questioning assumptions made
by the software stacks we use today in a rapidly evolving
hardware landscape.

Kyle Chard is a Research Associate Professor in the Depart-
ment of Computer Science at the University of Chicago and
a researcher at Argonne National Laboratory. He received
his Ph.D. in computer science from Victoria University of
Wellington, New Zealand. His research focuses on devel-
oping new systems to address various computational and
data-intensive problems.

Ioan Raicu is an associate professor in Computer Science
at Illinois Institute of Technology (IIT), as well as a guest
research faculty in the Math and Computer Science Division
at Argonne National Laboratory. He is also the founder and
director of the Data-Intensive Distributed Systems Labora-
tory at IIT. He obtained his Ph.D. in Computer Science
from University of Chicago under the guidance of Dr. Ian
Foster in 2009. His research work and interests are in the
general area of distributed systems. His work has focused on
defining and exploring both the theory and practical aspects
of realizing many-task computing across a wide range of
large-scale distributed systems. He is particularly interested
in resource management in large scale distributed systems
with a focus on many-task computing, data intensive com-
puting, cloud computing, grid computing, and many-core
computing.

http://refhub.elsevier.com/S0167-739X(24)00254-1/sb42
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb42
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb42
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb42
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb42
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb42
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb42
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb43
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb43
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb43
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb43
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb43
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb44
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb44
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb44
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb44
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb44
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb45
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb45
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb45
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb46
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb46
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb46
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb46
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb46
http://dx.doi.org/10.1145/3275443
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb48
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb48
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb48
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb48
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb48
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb49
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb49
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb49
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb49
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb49
http://dx.doi.org/10.1109/IPDPS.2013.66
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb51
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb51
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb51
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb51
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb51
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb52
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb52
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb52
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb52
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb52
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb52
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb52
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb53
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb54
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb54
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb54
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb55
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb55
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb55
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb56
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb56
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb56
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb57
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb57
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb57
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb57
http://refhub.elsevier.com/S0167-739X(24)00254-1/sb57

	X-OpenMP — eXtreme fine-grained tasking using lock-less work stealing
	Introduction
	Motivation
	Tesbed, Software Stack, and Timing Mechanisms
	Performance of Synchronization Mechanisms

	XQueue— Lock-less queuing mechanism for task-parallel runtime systems
	Static load balancing in XQueue
	XQueue integration with the OpenMP runtime

	X-OpenMP — eXtreme fine-grained tasking runtime
	Lock-less Work Stealing Using Wait
	Lock-less Work Stealing Without Wait (no-wait)
	Scheduling Logic

	Evaluation
	Microbenchmarks
	Macrobenchmarks
	Discussion and Summary

	Related Work
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

