
Improving the Performance of Proof-of-Space
in Blockchain Systems

Varvara Bondarenko1, Renato Diaz2, Lan Nguyen1 (advisor), Ioan Raicu1 (advisor)
1Illinois Institute of Technology, Chicago, IL, USA
2University of Central Florida, Orlando, FL, USA

{vbondarenko, lnguyen18}@hawk.iit.edu, renato.diaz@ucf.edu, iraicu@iit.edu

Abstract
Blockchain technologies enable the success of digital curren-

cies by providing security, decentralization, and trustless operation.
Two dominant consensus algorithms, Bitcoin’s Proof-of-Work and
Ethereum’s Proof-of-Stake, balance security, scalability, and energy
efficiency, though PoW is energy-intensive and PoS faces central-
ization risks. Chia’s Proof-of-Space offers a middle-ground, using
storage (instead of computation) for validation in the network while
maintaining decentralization. PoSpace turns the compute-intensive
problem into a data-intensive known as plotting. However, Chia’s
plotting process stresses hardware, requiring expensive setups and
shortening the lifespan of solid-state drives. This work takes a clean-
slate approach to implementing an efficient PoSpace system that is
lightweight and operates on small nodes (e.g. Raspberry Pis with
4-cores & 2GB RAM) to large systems (HPC server with 192-cores,
768GB RAM, & multiple NVMe storage devices). Our C and Rust
implementations achieve significantly higher performance than
Chia in plot generation and lookup efficiency across all system
sizes.

CCS Concepts
• Software and its engineering→ Software design engineering.

Keywords
blockchain, proof-of-space, multi-threading, high-performance com-
puting, memory caching & compression, I/O, storage

ACM Reference Format:
Varvara Bondarenko1, Renato Diaz2, Lan Nguyen1 (advisor), Ioan Raicu1 (ad-
visor), 1Illinois Institute of Technology, Chicago, IL, USA, 2University of Cen-
tral Florida, Orlando, FL, USA, {vbondarenko, lnguyen18}@hawk.iit.edu,
renato.diaz@ucf.edu, iraicu@iit.edu. 2024. Improving the Perfor-
mance of Proof-of-Space in Blockchain Systems. In Proceedings of The Inter-
national Conference for High Performance Computing, Networking, Storage,
and Analysis (SC ’24). ACM, New York, NY, USA, 3 pages. https://doi.org/
XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’24, November 17–22, 2024, Atlanta, GA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Bitcoin (BTC) [7] introduced the PoWconsensus algorithm,which

requires participants to perform heavy computations to prove their
validity in the network [7]. These heavy computations demand sig-
nificant power, conflicting with green computing principles. Since
then, various blockchain technologies have introduced new con-
sensus algorithms such as Chia’s (XCH) Proof-of-Space (PoSpace),
which rewards participants based on the allocation of disk storage
space [4, 6]. However, Chia’s plotting process stresses hardware, re-
quiring expensive setups and shortening the lifespan of solid-state
drives. [1]

Our work supports the notion of green computing by implement-
ing a PoSpace protocol with two phases: hash-initialization and
search-verification. This approach transforms a compute-intensive
PoW problem into a data-intensive/storage problem, improving
energy efficiency of blockchain systems. In this work, we compare
the performance of our solutions – Vault, written in C, and Vault-76
written in Rust – to Chia’s plotting software (namely, "plotters") to
demonstrate how our design outperforms in both throughput and
latency. Efficient use of large HPC resources with many cores and
multiple storage devices is essential for maximizing performance.

2 Architecture
2.1 Hash-Initialization

Figure 1 illustrates that thememory limit is equally shared among
threads. Each thread generates hashes concurrently from random
nonces with BLAKE3 library [10] and inserts them into a DashMap,
a hashmap variant in Rust that supports concurrent insertions [5].
Each entry in the hashmap represents a bucket of records that start
with the same prefix. Once the capacity of the hashmap is reached,
each bucket is written to disk concurrently at a specific offset. This
process repeats until all records are generated, resulting in a file
with records sorted by prefixes.

Figure 1: Hashes inserted into hashmap and flushed to disk

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


SC ’24, November 17–22, 2024, Atlanta, GA Bondarenko & Diaz

In Figure 2, the records are read into memory and sorted within
their buckets using an optimized combination of Quicksort and
Heapsort algorithms [11]. The records are then written back to disk
in a fully sorted order.

2.2 Search-Verification
This stage is intended to verify whether a network participant

stores a record file by searching for a particular hash. In Figure 3,
a binary search algorithm is employed, resulting in fast lookup
performance.

Figure 2: Sorting records Figure 3: Looking up records

3 Performance Evaluation
In order to evaluate the performance of Vault-76, we generated

files with 2k 32-byte records and collected throughput data on
machines with varying compute capabilities [3] and different types
of drives. Table 1 lists all Mystic nodes used for running benchmarks
[9]. Vault-76 and Vault tests were conducted with a file size-to-
memory limit ratio of 2 and a maximum memory limit of 16GB.

MACHINES CPU CORES RAM STORAGE ISA
8Socket Intel Xeon Platinum 8160 @2.10GHz 192 768GB SATA, NVMe SSD x86_64
EpycBox AMD EPYC 7501 @2.00GHz 64 320GB SATA, NVMe SSD, SATA HDD x86_64
Raspberry Pi 4 Broadcom BCM2711, ARM Cortex-A72 @1.8GHz 4 2GB SATA SSD, SATA HDD aarch64

Table 1: Machines used for experiments

3.1 Comparison to Chia Plotters
The current Chia plotters present significant speedup opportuni-

ties due to their complex algorithm, which creates seven tables of
SHA256 hash data. Vault-76, on the other hand, uses BLAKE3 hash
function, which is four times faster than SHA256 [2]. Additionally,
current Chia plotters can only create file sizes with a minimum k
of 32 (101.4 GiB), limiting their use on smaller systems. While Chia
plans to introduce smaller plot sizes in the coming years [8], our
solution already surpasses Chia plotters in this regard.

Figure 4: Throughput comparison of various plotters

Search Performance: Table 2 presents the lookup latency mea-
sured on the Epycbox machine (Table 1) after generating a file with
k=32 records.

DRIVE MIN (ms) AVG (ms) MAX (ms)
NVMe SSD 1.25 2.31 3.71
SATA SSD 2.10 31.86 155.08
SATA HDD 33.83 195.57 393.89

DRIVE MIN (ms) AVG (ms) MAX (ms)
NVMe SSD 8.00 17.14 118.00
SATA SSD 10.00 87.28 346.00
SATA HDD 224.00 310.66 411.00

Table 2: Search-Verification phase latency: Vault-76 (left);
ChiaPoS (right);

Figure 5: Throughput comparison for k25-32 on various Mys-
tic machines

4 Contributions
Our work has the following contributions:

• Improved PoSpace performance (both write throughput and
search time) by up to an order-of-magnitude across a variety
of hardware.

• Reduced I/O requirements and improved non-volatile mem-
ory longevity by decreasing I/O writes to two and I/O reads
to one.

5 Conclusion
The experiments demonstrate that Vault-76 and Vault signifi-

cantly outperform Chia plotters across all system sizes. Both pro-
grams benefit from an increased thread count; however, with HDDs,
I/O operations represent a bottleneck, resulting in similar perfor-
mance for both Rust and C implementations. With NVMe drives,
hash generation becomes the bottleneck, where Rust shows supe-
rior performance due to its native BLAKE3 library, which supports
concurrent hash generation more effectively under high parallelism.
Additionally, Vault-76 has lower latency in the search-verification
phase due to its simplified file traversal, whereas Chia’s lookup
involves seven tables.

Future work will focus on enhancing Vault-76’s performance
through the implementation of caching and compression. Caching
will involve adding an NVMe layer to store frequently accessed
data, while compression will employ a lossless technique to reduce
file size.

6 Acknowledgments
This work is supported in part by the National Science Foundation
OAC-2150500 award.



Improving the Performance of Proof-of-Space
in Blockchain Systems SC ’24, November 17–22, 2024, Atlanta, GA

References
[1] [n. d.]. https://docs.chia.net/ssd-endurance/
[2] Aahad Abubaker, Tanmay Anand, Sonal Gaikwad, Mahad Haider, Jacklyn McAn-

inch, Lan Nguyen, Alexandru Iulian Orhean, and Ioan Raicu. 2023. Exploring
Green Cryptographic Hashing Algorithms for Eco-Friendly Blockchains. (2023).

[3] AWS. 2024. What is Compute? https://aws.amazon.com/what-is/compute/
[Online; 2024].

[4] Bram Cohen and Krzysztof Pietrzak. 2019. The chia network blockchain. White
Paper, Chia. net 9 (2019).

[5] Docs.rs [n. d.]. DashMap. https://github.com/xacrimon/dashmap?tab=readme-
ov-file

[6] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. 2015. Proofs of space. In Annual Cryptology Conference. Springer, 585–
605.

[7] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
[8] Chia (XCH) Network. 2024. Approaching the Next Generation of Proof of

Space. https://www.chia.net/2024/08/08/approaching-the-next-generation-
of-proof-of-space/ [Online; posted 8-August-2024].

[9] AI Orhean, A Ballmer, T Koehring, K Hale, XH Sun, O Trigalo, N Hardavellas, S
Kapoor, and I Raicu. 2019. Mystic: Programmable systems research testbed to
explore a stack-wide adaptive system fabric. In 8th Greater Chicago Area Systems
Research Workshop (GCASR).

[10] Jack O’Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-
O’Hearn. 2020. one function, fast everywhere. (2020).

[11] Orson Peters. [n. d.]. ORLP/pdqsort: Pattern-defeating quicksort. https://github.
com/orlp/pdqsort

https://docs.chia.net/ssd-endurance/
https://aws.amazon.com/what-is/compute/
https://github.com/xacrimon/dashmap?tab=readme-ov-file
https://github.com/xacrimon/dashmap?tab=readme-ov-file
https://www.chia.net/2024/08/08/approaching-the-next-generation-of-proof-of-space/
https://www.chia.net/2024/08/08/approaching-the-next-generation-of-proof-of-space/
https://github.com/orlp/pdqsort
https://github.com/orlp/pdqsort

	Abstract
	1 Introduction
	2 Architecture
	2.1 Hash-Initialization
	2.2 Search-Verification

	3 Performance Evaluation
	3.1 Comparison to Chia Plotters

	4 Contributions
	5 Conclusion
	6 Acknowledgments
	References

