ACKNOWLEDGMENT

I could not have written this thesis without the support of my advisors, Ioan Raicu, Kyle Hale, Kyle Chard and Valerie Hayot-Sasson. A special thanks to Professor Ioan Raicu, for introducing me to High Performance Computing and research in computer science. I thank Valerie Hayot-Sasson for working helping me implement and design experiments. I thank Professor Kyle Hale for guiding me through concepts in Operating Systems. I thank Professor Kyle Chard for aiding me with Globus Compute and Parsl. This work was supported by the National Science Foundation’s Office of Advanced Cyberinfrastructure award numbers 2209919 2150500 2107548.
AUTHORSHIP STATEMENT

I, Jamison Kerney, attest that the work in this thesis is substantially my own. In accordance with the disciplinary norm of department of Computer Science (see IIT Faculty Handbook, Appendix S), the following collaborations occurred in the thesis: Kyle Chard, Valerie Hayot-Sasson, and John Raicu of the University of Chicago. This work was advised by Ioan Raicu and Kyle Hale.

The contents of Chapter 2 were published in High-level Parallel Programming Models and Supportive Environments (HIPS) colocated with the 38th International Parallel and Distributed Processing Symposium (IPDPS). The contents of Chapter 3 were published in the ACM/IEEE Student Research Competition hosted at The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC23).
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ACKNOWLEDGMENT</strong></td>
<td>iii</td>
</tr>
<tr>
<td><strong>AUTHORSHIP STATEMENT</strong></td>
<td>iv</td>
</tr>
<tr>
<td><strong>LIST OF FIGURES</strong></td>
<td>vi</td>
</tr>
<tr>
<td><strong>ABSTRACT</strong></td>
<td>viii</td>
</tr>
<tr>
<td><strong>CHAPTER</strong></td>
<td></td>
</tr>
<tr>
<td>1. <strong>INTRODUCTION</strong></td>
<td>1</td>
</tr>
<tr>
<td>1.1. Fine–grained Parallelism</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Orchestration</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Serverless</td>
<td>3</td>
</tr>
<tr>
<td>1.4. Thesis Outline</td>
<td>4</td>
</tr>
<tr>
<td>2. <strong>FINE–GRAINED PARALLELISM IN PARSL</strong></td>
<td>5</td>
</tr>
<tr>
<td>2.1. Parsl Architecture</td>
<td>6</td>
</tr>
<tr>
<td>2.2. Analysis of Parsl’s Throughput</td>
<td>9</td>
</tr>
<tr>
<td>2.3. Optimizations</td>
<td>15</td>
</tr>
<tr>
<td>2.4. Evaluation</td>
<td>17</td>
</tr>
<tr>
<td>2.5. Related Work</td>
<td>27</td>
</tr>
<tr>
<td>2.6. Limitations</td>
<td>28</td>
</tr>
<tr>
<td>2.7. Conclusions and Future Work</td>
<td>28</td>
</tr>
<tr>
<td>3. <strong>FINE–GRAINED PARALLELISM IN GLOBUS COMPUTE</strong></td>
<td>30</td>
</tr>
<tr>
<td>3.1. Background</td>
<td>30</td>
</tr>
<tr>
<td>3.2. Approach</td>
<td>32</td>
</tr>
<tr>
<td>3.3. Results</td>
<td>32</td>
</tr>
<tr>
<td>3.4. Summary</td>
<td>35</td>
</tr>
<tr>
<td>4. <strong>CONCLUSION</strong></td>
<td>36</td>
</tr>
<tr>
<td><strong>BIBLIOGRAPHY</strong></td>
<td>38</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Parsl’s Execution Pipeline</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Profiling data showing the time spent in the major components of the Parsl architecture. The figure categorizes time spent in each function in the Parsl source code among ten categories. Time is normalized for each component.</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Average time (microseconds) spent in each Parsl component and communication for each task in a workload with 10k no-op tasks. Top figure shows tagging data from each component. Bottom figure shows tagging data from each mechanism (communication and threads) within the interchange.</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>DIREX vs HTEX throughput compared using 10k no-op tasks. Left: throughput as we increase the number of workers. Right: profiling Data from a DIREX worker.</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of throughput when workers share a single task queue (single) and when they have their task queue (multi). Results are shown as we increase the number of workers.</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Left: Profiling data from a worker receiving tasks via a single queue. Right: Profiling data from a worker receiving tasks with multi-queue.</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Throughput for the Python and C implementations of the DFK for a 100k no-op workload with varying workers.</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Throughput for the Python and C implementations of the DFK for a 10k no-op workload with varying workers.</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Left: number of objects created in the Python and C DFK as we increase the number of tasks. Right: Throughput comparison with and without the garbage collector for the Python DFK as we increase the number of tasks.</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>Throughput as we change the granularity (run time) of tasks for the Python DFK, Ray, and Dask.</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>Left: Throughout for the C DFK, DIREX, and standard Parsl as we increase the number of workers. Right: granularity cdfk vs all and granularity.</td>
<td>23</td>
</tr>
<tr>
<td>2.12</td>
<td>ParslDock runtime for Serial, Standard Parsl, and CDFK implementations for different batch sizes as we scale the number of workers.</td>
<td>25</td>
</tr>
</tbody>
</table>
3.1 Amount of time taken to import Tensorflow across multiple nodes 31

3.2 Number of files touched by libraries commonly imported by Globus Compute functions 31

3.3 Time to enter Python interpreter on different platforms 33

3.4 Breakdown of time spent when booting Firecracker worker 34

3.5 CDF of time to spawn 240 workers across 16 nodes 34
ABSTRACT

In recent years we have witnessed large changes in how HPC users express their applications. While many applications still use traditional languages (e.g. C, Fortran) and frameworks (e.g. OpenMP, MPI), new applications are trending towards orchestration. Frameworks such as Parsl [2] and Dask [3] have marked this new era of high-performance computing. Scientists glue these frameworks together with high-performant simulation and data analysis applications written in low-level languages. With this shift towards orchestration, we see serverless computing, a new model of computation taking hold. Using the serverless model, scientists register a compute task with a serverless platform and specify the set of resources that the task can be deployed on. In recent years, orchestration and serverless have trended towards decomposing applications into smaller tasks. This trend is rooted in the fact that decomposing coarse-grained jobs into fine–grained tasks enables clusters to make more precise scheduling decisions. Current HPC orchestration and serverless frameworks efficiently launch and manage coarse-grained jobs, however, they struggle to do the same for fine–grained tasks. In this work we investigate the mechanisms that compose orchestration systems and improve those mechanisms for fine–grained parallelism. We also examine how serverless frameworks are used in the context of HPC systems. For HPC serverless frameworks we propose changes to their software stack to improve their performance. We conclude this work by discussing future directions for fine–grained parallelism in HPC.
CHAPTER 1
INTRODUCTION

In this thesis we present an exploration of fine-grained parallelism in two contexts. First we address fine-grained parallelism in orchestrating scientific workflows [4]. We focus on Parsl, an orchestration framework. We dissect and improve Parsl’s throughput. Second we explore cold start time in serverless computing [5]. We reduce cold start time by replacing containers with unikernels. We argue that reducing cold start time is also a question of fine-grained parallelism. Before exploring each work, we first define some terms.

1.1 Fine-grained Parallelism

Traditional High-Performance Computing (HPC) applications are composed of simulations followed by analyzing the data produced in the simulation step [6, 7]. In traditional HPC workflows users submit workloads to supercomputers as large batch processing jobs. These batch-processing jobs can take hours to days.

In recent years we have seen the case made for fine-grained parallelism in HPC [7] and Data centers [8, 9]. Raicu et al. [7] argues that small tasks enable clusters to make precise scheduling decisions and rapidly respond to changes in compute load. Increasingly, we see that scientific programs run many very short tasks (e.g., for machine learning inference) across large-scale HPC systems comprised of thousands of nodes and tens of thousands (or more) cores. The demand for these characteristics in software systems has led to a plethora of frameworks for both HPC [10, 11, 12] and Data centers [9, 13, 14] that are optimized for small tasks.

Python has become one of the most pervasive programming languages, in
part because it is a language that enables beginners and experts to quickly develop programs. Python offers a simple interface, clear error messages, and rapid development time. Given Python’s robust numerical libraries and extensive ecosystem of scientific frameworks, many make use of Python for scientific computations. The advantages of Python lead to the development of Parsl \[2\], a Python–based continuation of Swift \[15\]. Parsl is task parallel workflow system written to orchestrate scientific applications. Addressing modern workload requirements increasingly relies on the use of parallel and distributed computing resources; unfortunately, Python’s heavy interpreter and Global Interpreter Lock (GIL) make it difficult to scale. While there are plans to remove the GIL, Parsl was constructed around the GIL, and thus our improvements are constructed with the GIL in mind. Various Python-based libraries have been developed to overcome these limitations and enable distributed execution in Python \[3, 16\] \[2\]. We focus on Parsl, a parallel programming library that maintains Python’s accessible user interface while dispatching code for concurrent and asynchronous execution on both local and remote computing resources. Parsl’s low relative throughput implies it that the overhead to launch a task is relatively high. This high overhead effectively caps the scale of deployment. Parsl is used for a diverse range of scientific applications and is deployed on large supercomputers at enormous scales (thousands of nodes and hundreds of thousands of cores). A review of various Parsl applications shows that some tasks run for short durations.

Parsl’s low throughput effectively caps the scale of deployment due. An analysis of Globus Compute \[17\] workloads \[18\], a Python-based serverless computing framework for HPC that relies on Parsl for task execution, found that the median task time was 340ms.

Motivated by these small tasks we seek to understand the limitations of Parsl’s performance and indirectly the limitations of using Python for such purposes. We
conduct an extensive empirical evaluation of Parsl and illustrate a detailed picture of Parsl’s runtime. We identify areas for improvement and conduct experiments to evaluate the efficacy of these changes. Ultimately, we identify shortcomings that cannot be resolved in Python and implement a C version of Parsl’s scheduler. We show that our optimizations and new C implementation achieves six-fold better performance on microbenchmarks. Furthermore, we benchmark our improvements using a common scientific application and demonstrate throughput improvements.

1.2 Orchestration

Recent work [2] in HPC has identified orchestration as an in-demand feature in modern HPC frameworks. This demand is rooted in the number of software tools modern science applications are composed of. Today’s scientists write higher-level programs that stitch together components written in efficient lower-level languages (e.g., C/C++). Parsl and other orchestration framework [2, 15, 3, 16] play the role of managing the data and dependencies between lower-level software frameworks. This new requirement of HPC frameworks introduces new challenges. In this work, we address the challenge of orchestrating software with smaller granularity tasks.

1.3 Serverless

Serverless computing provides an abstraction for compute resources that enable users to deploy compute on laptops, clusters, and edge devices. To deploy jobs on diverse computing platforms Serverless frameworks execute jobs within containers. Containers enable deployment on multiple platforms by creating environments with the necessary libraries and dependencies for execution and isolating execution between functions. Wrapping libraries and dependencies in a container solves the portability problem, however, they incur some overhead due to the time required to spin up a container. Because of the startup overhead of containers, users must deploy
functions much larger than the overhead cost.

1.4 Thesis Outline

This thesis discusses two works and is structured as follows. In Chapter 2, we examine Parsl. We analyze Parsl’s throughput from different perspectives and use that information to guide performance optimizations. We conclude Chapter 2 showing that Parsl competitive with existing parallel workflow systems and showing that the performance gains we observe in microbenchmarks carry over to real scientific applications. In Chapter 3 we focus on Globus Compute. We explore the cold-start times of common container and virtualization technologies (Docker and Firecracker). Finding that these technologies have significant cold-start time, we explore a new approach using Python Unikernels. Unikernels have low cold-start time as they include only necessary libraries and system programs. Critically, unikernels, when executed as virtual machines, move libraries from disk to memory. In Chapter 4, we argue that both works are questions of fine-grained parallelism. Our first work addresses fine-grained parallelism directly. However, in reducing serverless cold start times in our second work we enable efficient execution of short duration functions (i.e. finer-grained tasks). We conclude by discussing our general approach toward improving applications for fine-grained parallelism and the implications of having computing infrastructure built for fine-grained parallelism.
CHAPTER 2
FINE-GRAINED PARALLELISM IN PARSL

Parsl is used for a diverse range of scientific applications and is deployed on large supercomputers at enormous scales (thousands of nodes and hundreds of thousands of cores [2]). A review of various Parsl applications shows that some tasks run for short durations, effectively capping the scale of deployment due to the limited throughput. An analysis of Globus Compute workloads [18], a Python-based serverless computing framework for HPC [17] that relies on Parsl for task execution, found that the median task time was 340ms.

Motivated by these small tasks we seek to understand the limitations of Parsl’s performance and indirectly the limitations of using Python for such purposes. We conduct an extensive empirical evaluation of Parsl and illustrate a detailed picture of Parsl’s runtime. We identify areas for improvement and conduct experiments to evaluate the efficacy of these changes. Ultimately, we identify shortcomings that cannot be resolved in Python and implement a C version of Parsl’s scheduler. We show that our optimizations and new C implementation achieves six-fold better performance on microbenchmarks. Furthermore, we benchmark our improvements using a common scientific application and demonstrate throughput improvements.

In this work we contribute the following.

• In-depth analysis of a modern Python workflow system
• Scheduler improvements for fine-grain parallelism
• Comparison of task-based parallel workflow systems
This chapter is structured as follows. In Section 2.1 we describe the Parsl architecture. In Section 2.2 we analyze Parsl’s performance from two perspectives. We first understand Parsl by profiling each component in its execution pipeline. Second, we place timestamps on each task to understand in which component do tasks spend most of their time. Informed by profiling and tagging data in Section 2.3 we describe the changes we made to Parsl’s components to improve throughput. Section 2.4 we evaluate the optimizations described in Section 2.3. We discuss the limitations of our solutions in Section 2.6. In Section 2.5 we discuss related work and conclude our findings in Section 2.7.

2.1 Parsl Architecture

To give a background for our analysis we briefly describe Parsl’s architecture. The relevant parts of Parsl’s architecture are shown in Figure 2.1. We explain each component and relate them to common elements of parallel programming frameworks.

2.1.1 Dataflow Kernel. The DataFlow Kernel (DFK) is Parsl’s scheduler. It is responsible for selecting an appropriate resource for execution and dispatching tasks to that resource. The DFK maintains a dictionary of Task Records that maps task id to task record objects. Each task \( t \), with dependencies \( t_0, ..., t_n \), is assigned a callback function that attempts to launch all dependent tasks \( t_0, ..., t_n \) when it (task \( t \)) has finished. The DFK automatically memoizes tasks to decrease redundant computation. The DFK is written entirely in Python.

2.1.2 Executor. The executor is an abstraction for computation resources. Parsl maintains several executors that are built for different types of workloads: High-Throughput Executor, Low Latency Executor, and Extreme-Scale Executor. Several external executors have also been integrated, such as RADICAL-Cybertools [19], Flux [20], and WorkQueue [21]. The executor is associated with a provider, which
Figure 2.1. Parsl’s Execution Pipeline
allows Parsl to elastically provision compute resources via different interfaces (e.g.,
batch scheduler, container orchestration system, or cloud API). The DFK, executor,
and provider are all started by the same Python interpreter. The executor manages
computation resources and partitions compute nodes into blocks. The user allocates
a minimum number of blocks, configures the number of nodes per block, and sets a
maximum number of blocks. Given that information, the executor will dynamically
add blocks and remove blocks. In this work, we focus on Parsl’s default executor, the
High Throughput Executor (HTEX).

2.1.3 Interchange. The interchange is a critical part of Parsl’s execution frame-
work. It enables the use of supercomputers, clouds, and clusters. The interchange
is deployed on the same node as the DFK and executor but lies within a separate
Python interpreter. The interchange receives tasks from the executor and sends tasks
to managers via Zero-MQ sockets (which wrap linux sockets in a flexible interface).
The interchange maintains a queue for tasks and results. It combines tasks into
batches and sends the batches to managers. The interchange chooses the manager
based on the manager’s advertised capacity (in terms of number of tasks). The inter-
change is responsible for tracking the status of workers, it does this by occasionally
sending messages to workers. Since the interchange interacts directly with managers
it is responsible for load balancing. The interchange tracks each manager’s capacity.
It sends batches of tasks to a manager so long as the number of tasks assigned to it is
less than its capacity.

2.1.4 Manager. Managers are responsible for a subset of workers on a node.
Managers can reside on the same node as the DFK, executor, and interchange, how-
ever, they typically are deployed on separate compute nodes. Managers communicate
with the interchange via Zero-MQ pipes and communicate with their workers via
IPC queues. The same result and task queues are shared by the manager and all
of its workers. During initialization, the manager creates separate processes for each worker and begins sending them tasks. Managers effectively allow for multiplexing of communication from the interchange to the many workers deployed on a node and allow Parsl to consume fewer ports on each node.

2.1.5 Worker. Workers receive tasks from managers, execute tasks, and return their results back to managers. They are single-threaded Python processes that always reside on the same node as their manager.

2.2 Analysis of Parsl’s Throughput To build a comprehensive image of Parsl we employ two methods to measure performance. First, we profile the Python processes for each component. Some of the components are I/O heavy (e.g., interchange) thus they are multi-threaded processes. For these processes, we profile each thread. Second, we augment the Parsl codebase to capture the timestamps when entering and exiting each component. This approach captures where time is spent from the task’s perspective. For both methods we used a no-op workload, so we could isolate system overheads from execution of the task. It is essential to note that we chose to augment the code rather than use Parsl’s existing logging mechanism as our initial profiling data showed that logging consumed a significant portion of the time in the DFK. When we disabled all logging Parsl’s throughput increased from 1200 to 4000 tasks per second. Our experiments used Python version 3.10 and Parsl version 1.3.0 dev. Single-node experiments were conducted on a testbed using Ubuntu 22.04 with Linux kernel version 5.15. This node has 770GiB of RAM and 8 Intel Xeon Platinum 8160 each having 24 cores with 2 hardware threads per core. The multi-node experimental setup is discussed later.
2.2.1 Profiling.

Figure 2.2. Profiling data showing the time spent in the major components of the Parsl architecture. The figure categorizes time spent in each function in the Parsl source code among ten categories. Time is normalized for each component.

The following profiling data is obtained from an experiment where we executed 10k no-op tasks on a single node with 192 workers. We configured Parsl such that each manager is responsible for eight workers, resulting in 24 managers. Figure 2.2 shows the results from profiling. The raw profiling data includes a list of functions called within Parsl and the time spent in each of those functions. We categorized each function and divided the time consumed by each category by total thread time, returning the proportion of time dedicated to each category. We discuss each thread in order of task submission.

2.2.1.1 Dataflow Kernel and Executor. The first bar in Figure 2.2 corresponds to DFK and HTEX. The DFK and HTEX live in the same process and the DFK invokes HTEX via Python function calls, thus they occupy the same thread. Our initial observation is that the bulk of time is spent submitting a task. Communication, composed of categories Send and Poll are the most expensive. The functions apart of the communication category are responsible for queuing tasks within the interchange. Parsl operations consume a fifth of total time and are concerned with managing
Parsl’s task launch state. Those functions include (in order of invocation) dfk.submit, dfk.launch_if_ready, dfk.launch, and htex.submit.

2.2.1.2 Interchange. The interchange is a multi-threaded process. Its main thread is responsible for sending results back to HTEX and sending tasks to available managers. Its command thread ensures that workers are alive and allows the user to manually kill workers. Lastly, its Task puller thread receives work from HTEX. The profiling results of each thread are represented by separate rows in Figure 2.2.

Task Puller Thread. The task puller thread pops tasks from a ZMQ socket that connects the interchange and executor. The tasks it receives are immediately placed in an in-process queue within the interchange. From this queue, the main thread pulls tasks. The third row in Figure 2.2 shows where time is spent in the task puller thread. The task puller thread spends upwards of 95% of time receiving tasks. The next most significant cost is deserializing the Python objects it receives which consumes \( \sim 1.5\% \) of time. Finally placing the tasks on the internal queue consumes \( \sim 1\% \) of time.

Main Thread. Similar to the DFK, communication dominates work performed by the interchange’s main thread. However, in this case, Poll accounts for most of communication time. The main thread waits for tasks on an in-process queue between it and the task puller thread. After polling, Send, which involves sending a batch of tasks to a manager consumes the next most time.

Command Thread. The command thread has little activity. The Python interpreter spends the least time on this thread. Almost all of its time is spent receiving confirmation messages from workers. Most of the functions called in this thread are invoked less than 10 times.
2.2.1.3 Manager. The manager is a dual-threaded process. It contains a thread that pulls tasks from the interchange and sends those tasks to workers and a thread that pulls results from the workers and pushes results to the interchange. Both the threads within the manager are I/O bound.

Task Puller thread. Polling the ZMQ socket consumes most (approximately 90%) time in this thread. While the other operations consume little time.

Result Pusher thread. The result pusher thread’s profiling information is displayed in the sixth row of Figure 2.2. Like the interchange’s main thread, polling accounts for roughly three-quarters of thread time. Unlike the previous threads, queue operations are the next most expensive category. This category is composed of functions that wait for and pop results from the worker’s results queue. Little time is spent sending results to the interchange, roughly 2.5%. The fact that the majority of the time is spent polling suggests that even with 100s of workers computing results, the workers are unable to saturate the queue.

2.2.1.4 Worker. Workers are single-threaded Python processes that lie at the end of the execution pipeline. Workers pop tasks off the queue they share with their manager and place results in a separate queue. They receive tasks as serialized Python objects, so deserialization is a cost that workers pay for each task as well as serializing results. The last row of Figure 2.2 displays the profiling data from the worker. The worker’s profiling data shows two functions consume most of its time. Reading bytes from the task queue consumes ∼60% of time. The other ∼40% of time is spent contending over the Semaphore that protects the tasks queue.

2.2.1.5 Profiling Summary. For all processes, communication in some form consumed most time. Every process/thread downstream of the interchange’s task puller thread spent most of its time polling. While the interchange’s task puller
thread spent most of its time receiving Python objects, this suggests that tasks might face a bottleneck within the interchange. Although receive accounted for most of the worker’s time, workers spent a substantial amount of time contending for a semaphore.

### 2.2.2 Tagging.

![Bar chart showing time spent in each Parsl component and communication for each task in a workload with 10k no-op tasks.](image)

**Figure 2.3.** Average time (microseconds) spent in each Parsl component and communication for each task in a workload with 10k no-op tasks. Top figures shows tagging data from each component. Bottom figure shows tagging data from each mechanism (communication and threads) within the interchange.

Profiling showed where time was spent from the perspective of the process. This information yielded insights that informed our optimizations; however, it does not tell the complete story. We now explore performance from the perspective of a task (rather than the processes). We use a method we call *tagging* to track where tasks spent their time during execution. [Figure 2.3](image) summarizes our results for a no-op workload with 10k tasks using 192 workers and a single manager.
Figure 2.3 is a logarithmic graph that shows the average number of microseconds tasks spent in each component and communication channel throughout the entire 10k no-op workload. Tasks spend an order of magnitude more time within the interchange than other components. Figure 2.3 shows that tasks are piling up in the queue between the interchange’s main and task puller threads. Tasks spend more time on average within that queue than they do in all other components combined.

The second most costly component is the ZMQ connection between HTEX and the interchange. Tasks likely begin to pile up in this component after the interchange’s internal queue.

After the HTEX-interchange ZMQ socket, tasks spend the most time within workers and the manager-worker in-process queue. Tasks spending significant time within the worker may be surprising because the workload is a no-op and the worker code is simple. However, recall that workers spend upwards of 40% of their time contending for a Semaphore, and thus tasks stall, waiting within the worker.

As mentioned previously managers can be deployed on separate nodes thus the queue between the interchange and manager is unique to each manager and uses a ZMQ socket. This communication channel is the least expensive channel on average.

Tasks spend little time in the DFK, HTEX, and Managers. The DFK determines if a task can be launched. When HTEX is invoked, it stores some state about the task and places the task on the pipe. The difference in responsibilities explains the gap in time cost. Workers place themselves in a queue when they can receive work, and the manager sends work to workers in the queue. When a worker receives work it pops itself off that queue. The simplicity of the manager’s role explains its low cost.
2.3 Optimizations

We build upon the detailed analysis performed in previous sections to motivate several important optimizations. We both augment Parsl’s architecture as well as modify data structures used for communication.

2.3.1 Cut out the Middleman. We learned from tagging data that tasks spend on average $10^4\mu$s in the interchange. That makes the interchange 10 times costly than any other component. The interchange is a component that performs multiple roles (e.g., fault tolerance, and load balancing). Given its complexity and that tasks pile up in its internal queue we decided to remove the interchange altogether. In this exercise, we also removed the manager because it exists to reduce the number of ports consumed by Parsl on a singular node. We call this the DIRect to worker EXecutor (DIREX).

Removal of the interchange restricts Parsl to operate on a single node. The interchange is core to Parsl’s fault tolerance, thus removing it exposes our experiments to the failures of workers. Workers may crash during computation, if a worker was computing a task that has dependencies when it crashed then none of its dependencies could be launched, causing the entire computation to fail. Using no-ops for our benchmarks temporarily buries that concern, since there are no dependencies. However, for some workloads, the exchange of fault tolerance for performance may not be possible.

2.3.2 Worker Queues. Profiling showed that workers spent a large portion of their time contending over the semaphore that protects the task queue between them and their manager. Semaphore contention is expensive even when the worker count is small. To reduce this cost we assign a task queue to each of the workers. Though semaphores are still protecting the queues, decreasing the number of workers
contending for that semaphore to one worker minimizes its cost. Workers are assigned tasks in a round-robin manner.

2.3.3 Implementing the DFK in C. The DFK is core to the performance of the entire runtime system. If the DFK cannot create and schedule a million tasks per second then Parsl could never execute a million tasks per second. In Figure 2.3 we demonstrated that the DFK and HTEX are inexpensive for each task, however, it is important to note that the average task submit time was 100$\mu s$. To achieve 10k tasks per second, we would need to have an average turnaround time for an entire task of 100$\mu s$. Of course, many components can be parallelized, Parsl can have multiple executors, thus multiple interchanges and multiple managers supervising many workers, however, in its current form every task will pay that 100$\mu s$ toll.

When investigating the causes of the submit cost in the DFK we found many necessary, but computationally trivial, operations that collectively are very expensive. Even the operations that we believed should be inexpensive, such as creating a Task Record object, took 5$\mu s$ which is a non-trivial amount of time if we aim for a total time of 100$\mu s$.

We choose C over other low-level languages because it provides high performance and integrates well with CPython. CPython is the most commonly used Python implementation. Integrating C/C++ code with Python is made simple with CPython’s C/C++ API. We leverage the C/C++ API to decrease the overhead of scheduling task in Parsl.

Memory footprint is an important consideration when aiming to support fine-grained parallelism. Python represents data as objects and uses garbage collection for memory management. Invoking 10s of thousands of tasks implicitly creates at least 10s of thousands of objects. Since Parsl represents tasks as a Task Record object
which is a dictionary, many objects are created for each task.

In implementing the DFK in C we represent tasks as structs. Our task struct consumes 128 bytes plus the size of its Python objects. Using Python’s sys library to measure the size of an empty Task Record we found a Task Record in Python consumes at least 232 bytes plus the size of its Python objects.

2.3.4 Bringing it all Together. Removing the interchange and giving each worker its task queue will decrease the cost of sending tasks to workers. Improving the latency of the execution pipeline increases throughput, assuming that the DFK can launch tasks quickly enough. The C implementation of the DFK produces many more tasks per second than the Python DFK.

2.4 Evaluation

We evaluate the performance of our optimizations and the C implementation of the Parsl DFK. The evaluation was performed on the Mystic testbed, as discussed previously.

2.4.1 Removing the Interchange. To remove the interchange we modified DIREX such that it would spawn its workers. Using a no-op workload with 10k tasks we compare throughput achieved by HTEX and DIREX as a function of the number of workers in Figure 2.4.

Figure 2.4 shows that with the interchange removed Parsl using DIREX achieves the same throughput with 1 worker as Parsl using HTEX does with hundreds of workers. This clearly demonstrates that workers are not saturated. Workers could handle many more tasks if Parsl were able to produce more of them. While removing the interchange increases the throughput of Parsl with low worker counts, at scale, the throughput improvements are minimal at ∼15%. Moreover, DIREX experiences a slight decrease in throughput as the worker count increases.
Figure 2.4. DIREX vs HTEX throughput compared using 10k no-op tasks. Left: throughput as we increase the number of workers. Right: profiling Data from a DIREX worker.

Figure 2.4 also shows profiling data from a DIREX worker. Using a single worker resulted in semaphore contention accounting for an immeasurable amount of time. Like all previous threads, communication dominates, however, the category Python Std Lib now consumes 10% of total thread time. Functions in the Python Std Lib category include `time.sleep` and `exec`. Exec is used to execute the task and `time.sleep` is the task body itself. Thus removing the interchange has increased the utilization of the worker.

2.4.2 Worker Queues. Figure 2.5 shows the throughput of Parsl when workers each pop tasks of the same queue and when workers have their own task queues. As expected, neither scales well, and both show similar trends in throughput. However, the multi-queue model has consistently lower throughput. The difference in throughput is not trivial either, it erases the slight throughput gains from removing the interchange and manager.

Figure 2.6 show the profiling data collected from the workers. Profiling single-queue workers shows that semaphore contention becomes even more expensive when the interchange is removed, however, as shown in the profiling data of multi-queue workers all of that cost is shifted back to reading bytes off the queue.
Figure 2.5. Comparison of throughput when workers share a single task queue (single) and when they have their task queue (multi). Results are shown as we increase the number of workers.

We conclude that while semaphore contention is expensive, the use of semaphores does not impede throughput. This further motivates our optimization to remove this lock—workers spend 85% of their time acquiring this lock.

Figure 2.6. Left: Profiling data from a worker receiving tasks via a single queue. Right: Profiling data from a worker receiving tasks with multi-queue.

2.4.3 Moving the DFK to C. We now explore throughput and memory footprint of the C DFK. We finally evaluate performance when combining the C implementation with DIREX.
2.4.3.1 Throughput. Results from above suggest that the workers were not saturated. Profiling showed that Semaphore contention consumed significant time for the workers, but, we did not achieve a significant throughput improvement by removing these semaphores. Similarly, the modest gains to maximum throughput from removing the interchange combined with the increased utilization of the workers implies that there are still throughput gains to be realized from increasing the throughput of Parsl’s scheduler.

![Throughput graph](image)

Figure 2.7. Throughput for the Python and C implementations of the DFK for a 100k no-op workload with varying workers.

Figure 2.7 compares the throughput accomplished during a 100k no-ops workload with varying amounts of workers. The C implementation of the DFK achieves a maximum throughput double that of standard Python implementation. While the Python DFK scales linearly with a worker count of up to 128 workers, the C DFK never experiences linear scaling. Its maximum throughput is reached with 8 workers. Furthermore, its throughput with 1 worker is similar to the Python DFK’s throughput with many workers. The benchmark in Figure 2.7 does not include any of the previous changes. The current C DFK implementation is integrated into Parsl without changes to the executor, interchange, manager, and worker.

Given that CDFK is functional with HTEX (i.e. it can communicate with the
Figure 2.8. Throughput for the Python and C implementations of the DFK for a 10k no-op workload with varying workers.

interchange), we can deploy work tasks over multiple nodes. Figure 2.8 shows the throughput achieved using one node and eight nodes. Each node is identical using CentOS 8 with Linux kernel version 4.18. They have 2 Intel Xeon Silver 4108 with 8 cores and 2 hardware threads per core, 64GB of DRAM, and Mellanox MT27800 Network cards. With few workers the single node outperforms multi-node. As the number of workers increases the performance of both converge. This demonstrates that our improvements are applicable to large-scale Python workflows.

2.4.3.2 Memory footprint. With small task counts, necessarily the number of Python objects will be small, and as the task count increases the number of Python objects increases. A large number of Python objects becomes a problem for Python’s garbage collector. Figure 2.9 shows the throughput difference between the Python DFK with the garbage collector turned on and turned off.

Turning off the garbage collector is simple, however, we do not want our target users, domain scientists, disabling and enabling the garbage collector for improved performance. It could also be dangerous with many task workloads. Having many millions or tens of millions of outstanding Python objects, many of which are Task Records, and the objects they store could cause other issues. Figure 2.9 is a log plot
Figure 2.9. Left: number of objects created in the Python and C DFK as we increase the number of tasks. Right: Throughput comparison with and without the garbage collector for the Python DFK as we increase the number of tasks.

displaying the difference in object count between standard Parsl’s DFK and C DFK Parsl. The workload used was no-op with varying amounts of tasks.

The gap in object count is roughly 10 times the task count. For example, the final data point shows that C DFK Parsl had approximately 2.6 million Python objects after executing 100k no-ops, while Parsl had 3.6 million Python objects. Careful readers will point out that since the DFK has been moved to C, Python’s garbage collector should not impact our performance. However, recall that the executor and DFK are in the same process. Therefore the executor and DFK share the garbage collector and C DFK creates and tracks Python objects for its tasks, so polluting the interpreter with 100s of thousands more objects could slightly impact throughput.

2.4.3.3 C DFK + DIREX.

We finally integrate the above optimizations and evaluate performance. Recall, the C DFK, which increases the rate of scheduling tasks, and DIREX, which minimizes the latency of the execution pipeline complement each other. We compare performance against standard Parsl as well as against Dask [3] and Ray [16], two of the most widely used Python parallelism libraries (although more than 70% of Ray is implemented in C++).
Figure 2.10. Throughput as we change the granularity (run time) of tasks for the Python DFK, Ray, and Dask.

Figure 2.11. Left: Throughout for the C DFK, DIREX, and standard Parsl as we increase the number of workers. Right: granularity cdfk vs all and granularity
Figure 2.11 shows a peak throughput of roughly 14k tasks per second is achieved with C DFK using DIREX with 4 workers. Previous experiments showed that neither C DFK nor DIREX achieved linear scaling by themselves, however, Parsl achieves linear scaling. While C DFK + DIREX achieves a higher maximum throughput it too does not scale. C DFK with or without DIREX achieves similar throughput. After reaching a maximum throughput with 4 workers it experiences decreased throughput when worker count is increased. The throughput of C DFK using HTEX or DIREX during a no-op workload with 1 worker is around 8k tasks per second. This high baseline throughput linear scaling with C DFK would imply $\sim 500k$ tasks per second with hundreds of workers.

Figure 2.11 also shows the same experiment performed using Parsl’s Python DFK with HTEX. Throughput for tasks of granularity 0$\mu$s, 1$\mu$s, and 10$\mu$s have the same trend lines and are unaffected by task duration. Task duration begins to affect throughput at 10$ms$ granularity.

While CDFK + DIREX achieves higher maximum throughput on finer granularity tasks (0$\mu$s 10$\mu$s) Ray, shown in Figure 2.10 achieves better scaling and higher throughput for coarse grain tasks. Executing 10$ms$ tasks Ray achieves nearly 8k tasks per second with 128 workers, while CDFK + DIREX does not scale past 8 workers and peaks at around 7k tasks per second. Ray scales with 1$ms$ tasks similarly to how it scales with 10$ms$ tasks.

Figure 2.10 also shows the performance of Dask. Dask achieves peak performance with around 16 workers, afterwards, it experiences decreased throughput per worker. In comparison Parsl scales much better, handling up to 128 workers before throughput drops. Important to note is that Dask’s throughput for millisecond and microsecond no-ops tasks are the same. Suggesting that the minimum task granularity for Dask is much higher than for Ray or Parsl. Similar conclusions were made in
Figure 2.12. ParslDock runtime for Serial, Standard Parsl, and CDFK implementations for different batch sizes as we scale the number of workers.

Slaughter et al. [22].

2.4.4 Scientific Application.

Finally, we explore performance of our techniques on a real-world protein docking workflow. Protein docking is a computational method used in molecular biology to predict the structure of protein complexes formed when two or more proteins interact. This technique is vital in understanding biological processes and designing therapeutic drugs. It involves simulating the process by which proteins fit together or ‘dock’ to form a stable complex. This is akin to finding the correct way two puzzle pieces fit together among myriad possibilities. This docking process is driven by several factors, including shape complementarity, electrostatic attractions, and hydrophobic interactions. As proteins are highly flexible and complex molecules, the problem of predicting their interactions is computationally demanding.

A typical docking computation can take over 10 minutes on a single core; a typical workload involves multiple protein receptors with millions of possible ligands to dock, yielding a total runtime for a brute force approach to be over 21M CPU-hours. This high computational requirement has motivated researchers to leverage machine learning methods to expedite screening.

ParslDock [23], a docking simulation coordinated with Parsl, aims to identify
the “best” ligands from a large dataset of potential molecules by efficiently combining simulation (i.e. docking) and machine learning algorithms on high-performance computing resources. The computational complexity of brute force docking applications is reduced through machine learning methods.

Key to this work is the workflow graph generated by ParslDock. Each task consists of a molecule that is formatted and passed to a machine-learning module for inference. This generates a bag-of-tasks graph, such a task graph is highly parallelizable and has very short-running tasks. We use this scientific application to demonstrate the improved performance achieved by our optimizations.

We execute ParslDock on the Mystic testbed mentioned previously. The docking simulation displayed in Figure 2.12 shows runtime with varying numbers of workers and batch size. The simulation was run across 100k total molecules For serial, standard Parsl with Python DFK, and CDFK. We see the best runtimes are achieved with the largest batch size. This suggests that there is still an opportunity to improve performance for fine-grained tasks.

The leftmost plot in Figure 2.12 shows the runtime of the docking simulation as a function of the batch size using serial code. Using a batch size of 1000 molecules the serial code achieves a runtime of around ~35 seconds. The middle plot in Figure 2.12 displays the runtime achieved by standard Parsl with the Python DFK. Parsl achieves its lowest runtime using 8 workers with a batch size of 1000, ~11s. With standard Parsl using many workers or few workers returns a high runtime, ~100 seconds. The rightmost plot in Figure 2.12 shows the runtime achieved by CDFK Parsl. It scales linearly with the number of workers used, plateauing with hundreds of workers. CDFK Parsl with 128 workers and a batch size of 1000 simulates 100k molecules in ~1.5 seconds. This runtime is 10x faster than standard Parsl’s lowest runtime and 30x faster than serial.
2.5 Related Work

Rust Dask Scheduler. [24] The most relevant related work was an investigation of Dask’s throughput when its scheduler is implemented in Rust. [24]. As discussed in their paper Dask utilizes a work-stealing scheduler. When all of a task’s dependencies have been resolved the task is given to a worker such that its time to start is minimized. If there is a load imbalance, saturated workers will have tasks stolen from them by unsaturated workers. In their work, they first compare Dask’s scheduler to a random scheduler. In this exercise, they find that the random scheduler achieves performance near Dask’s work-stealing schedule for many workloads. The random scheduler achieves up to 1.4x speedup and at worst its performance is twice as slow.

Second, they compare RuSt Dask Scheduler (RSDS), a scheduler they implemented in Rust that uses work-stealing, to Dask’s scheduler. In so doing they find that RSDS achieves up to 4x speedup and at worst throughput slightly decreases. In their final experiment, they compare RSDS with random scheduling to Dask’s scheduler. This experiment demonstrates the limits of Python as RSDS outperforms Dask’s scheduler in many cases despite using a random scheduler. Similar to the previous experiment RSDS reaches a maximum speedup of 4x while at worst being half as performant. They conclude that the performance gains of an intricate scheduler cannot be actualized if the underlying runtime system is inefficient.

Ray [16] is a distributed computing framework tailored towards AI applications. Since many AI applications are written in Python users interact with Ray using a Python API. Much like Parsl, Ray models computation with a dynamic task graph. In Ray, a task represents stateless computation while an actor represents stateful computation. Ray uses a bottom-up scheduler, each node has a local scheduler for its workers, who communicate with a global scheduler when necessary. When a task is created on a node, its local scheduler will attempt to assign a worker to that task.
When a local scheduler is unable to assign the task to a local worker it will forward
task to the global scheduler. Using this scheduling system along with other
components Ray achieves a million tasks per second at scale. Though Ray is accessed
via its Python API, 72% of Ray’s System layer is written in C++. This shows that
Python frameworks can achieve high throughput when their underlying system code
is written in a performant language.

TaskBench [22] is a framework that measures the performance of parallel run-
time systems that make use of task parallelism. One of the major contributions
of TaskBench was Minimum Effective Task Granularity (METG). METG is a metric
that quantifies the efficiency of a workflow system at a given task granularity and is
parameterized by efficiency. Slaughter et al. apply this metric to OpenMP, OpenMP
+ MPI, Dask, OpenMP task, StarPU, Tensorflow, and more. They measure METG
as a function of task granularity and find the threshold at which efficiency dips below
50%. Implicitly our work seeks to decrease METG for Parsl. We do not integrate
Parsl into TaskBench, however, we measure the throughput of Parsl at different gran-
ularities with and without the optimizations we apply in later sections.

2.6 Limitations DIREX imposes the greatest limitations on Parsl. DIREX sends
tasks to workers using an interprocess queue between itself and its workers. In con-
trast, HTEX uses ZMQ sockets to communicate with managers, who ultimately use
interprocess queues to send tasks and receive results from workers. The usage of inter-
process queues instead of ZMQ sockets disables DIREX from coordinating workflows
across multiple nodes.

2.7 Conclusions and Future Work In this work, we investigated and improved
Parsl’s ability to manage fine–grained tasks. We first rigorously investigated how
processes and task spend their time and then used the data we collected to motivate
changes to Parsl’s execution pipeline. The profiling data we collected led us to believe
that the semaphores on the manager-worker IPC were a bottleneck in throughput; 
however, we did not see a significant improvement in throughput after removing 
the semaphores. The optimizations motivated by tagging data (i.e., C-DFK and 
removing interchange) increased throughput. We conclude that while profiling data 
can be useful, for task-based parallel systems, where the journey of the task is most 
important for throughput tracking the individual task throughout a workload returns 
the most useful data.

This work lead us to conclude that the barrier to high throughput in Python-
based parallel workflow systems is much closer to the throughput experienced by the 
system than first thought. Python is a high-level language that sacrifices performance 
for accessibility. Given that, one should expect Python frameworks to be less per-
formant than C frameworks, however, we did not expect the barrier to be at our 
doorstep. Through rigorous exploration of Parsl’s execution pipeline, we found that 
trivial operations consume non-trivial amounts of time, leading us to move critical 
components of Parsl out of Python.

In the future, we plan to collect more scientific applications to further validate 
our findings. Given that machine learning inference tasks effectively have no depen-
dencies and do not require I/O inside the worker, we seek applications that will place 
a greater strain on our systems.
CHAPTER 3
FINE-GRAINED PARALLELISM IN GLOBUS COMPUTE

Function-as-a-Service (FaaS) platforms typically deploy containers in which functions are executed. Containers serve not only to isolate execution between functions, but also to create environments with the necessary libraries and dependencies for execution. While containers solve the portability problem they incur some overhead due to the time required to start (“cold-start” time).

We focus on improving the cold-start time as part of the Globus Compute (previously funcX) platform. Globus Compute implements a federated FaaS model in which Python functions can be executed on remote computing systems, often HPC systems. Previous research has explored the challenges of scaling Python on HPC systems, showing that the time to import common Python libraries can take up to 10 of minutes. We explore the cold-start times of common container and virtualization technologies (Docker and Firecracker). Finding that these technologies have significant cold-start time, we explore a new approach using Python Unikernels. Unikernels have low cold-start time as they include only necessary libraries and system programs. Critically, unikernels, when executed as virtual machines, move libraries from disk to memory.

3.1 Background

In HPC environments libraries and containers must be loaded from shared file systems. Shared file systems distribute chunks of files across nodes within the cluster. File stripping improves read performance on large files since a few network and OS invocations are amortized across many blocks and reads are parallelized across nodes. However, for small files, the opportunity for parallelizing I/O is diminished and
they incur the same cost on the metadata store as large files. Unfortunately, many Python libraries are composed of many small files. Figure 3.2 shows the number of files accessed for common libraries used in Globus Compute. We see libraries like Tensorflow access thousands of files. Figure 3.1 shows the time taken to load Tensorflow as we increase the number of nodes on the Theta supercomputer [1]. We see that it takes up to 10 minutes even on a modest number of nodes.

Figure 3.1. Amount of time taken to import Tensorflow across multiple nodes [1]

Figure 3.2. Number of files touched by libraries commonly imported by Globus Compute functions
3.2 Approach

We seek to improve cold start time for scientific workflows on HPC systems with Python Unikernels. We first evaluated existing solutions such as Firecracker, a lightweight virtual machine manager and Docker, a container management system. On both Firecracker and Docker we run Alpine Linux, a lightweight Linux distribution. We then integrated Docker and Firecracker into Parsl, the Python-based parallel runtime used in Globus Compute. In Parsl, VMs and containers are used for the worker processes.

We employ Python unikernels to wrap the entire application including libraries and runtime systems into a single image. This allows us to cater system calls and other low level utilities towards our applications, and remove unnecessary utilities. We use Unikraft [25], a framework for building unikernels, to build our images because it provides a uniform interface. Using unikernels gives the application developer access OS mechanisms (e.g., scheduler, drivers, page allocator). To further reduce cold start time developers can leverage these mechanisms. For example, SEUSS [26] is an operating system that improves on cold start by creating snapshots of unikernel images. Snapshots cache the memory and cpu state of a unikernel after booting within the unikernel image. This allows us to avoid the cost of booting the unikernel.

3.3 Results

We measure the boot time of the Python Unikernel running on qemu-kvm, and compare it with the boot time of Alpine Linux running on Firecracker, and Docker. Boot times are measured within the Python interpreter. As shown in Figure 3.3 the Unikernel boots 1.6x faster than Docker and 2.4x faster than Firecracker.

We further explore where time is spent when booting Firecracker virtual machines. Figure 3.4 shows the time consumed by different stages. Booting Alpine Linux
Finally, we conducted a scaling experiment with Firecracker and Docker integrated with Parsl. We measure the time it takes to create 240 workers across 16 nodes. Each node has 64GBs of RAM with 2 in Intel Xeon Silver 4108 each having 8 cores with 2 hardware threads per core. Both Docker and Firecracker images are stored on a Lustre shared file system. In this experiment both Firecracker and Docker run Alpine Linux. We compare Firecracker and Docker to Parsl workers that run inside a Linux process. Similar to Figure 3.3 in Figure 3.5 we see that Docker outperforms Firecracker on a shared filesystem. It is important to note that the experiment did not include large Python libraries, thus the results from Docker are optimistic.
Figure 3.4. Breakdown of time spent when booting Firecracker worker

Figure 3.5. CDF of time to spawn 240 workers across 16 nodes
3.4 Summary  Serverless workloads in some sense represent a worst case scenario for HPC systems. Functions require custom execution environments composed of various Python libraries that themselves have many small files. These environments must be loaded in parallel. We investigate methods to improve cold start times with Python unikernels. Unikernels move the entire execution environment into memory turning many small reads into one big read. A secondary benefit is the low level access that unikernels provide, which enables future optimizations for cold start.
CHAPTER 4
CONCLUSION

In this thesis we addressed fine-grained parallelism in two contexts. First, we examined Parsl. We found Parsl’s base throughput insufficient for fine-grained parallelism. To improve Parsl’s throughput we analyzed the cost of launching a task. We employed two methods to understand Parl’s launch cost. Profiling each thread in Parsl’s execution pipeline showed us the most expensive functions. We learned that IPC and polling were the leading cost among most threads and that semaphore contention within worker threads consumed a large portion of time. Placing tags on each tasks showed us where tasks spend most their time. We found that tasks spent orders of magnitude more time within the interchange. We used this picture of Parsl’s overhead to inform performance optimizations. Since tasks pile up in the interchange we removed it. To eliminate semaphore contention we gave each worker a private task queue. We found that neither optimizations scaled. This led us to question the scheduler’s overhead. We rewrote Parsl’s scheduler in C. This final optimization improved Parsl’s throughput at scale.

Second we examined Globus Compute. Globus Compute provides a serverless interface to HPC applications. To manage the many dependencies of HPC applications Globus Compute makes use of containers. Containers impose a cold start cost on applications. We sought to decrease this cost. We first painted a picture of this cost. Serverless functions typically depend on many libraries. In some cases these libraries are composed of many files(e.g. Tensorflow). These large libraries are taxing on HPC shared filesystems. With this in mind, we propose replacing containers with Python Unikernels. By using unikernels we wrap dependencies into a singular image file. Singular large files leverage the shared file systems performance for large files.
Unikernels enable future optimizations such as snapshoting. We evaluated the cold start time of Python Unikernels and compared them to containers. We found that unikernels reduce cold start time over containers even when containers do not incur the shared filesystem cost.

The theme of this work is our in depth investigation of workflow systems. To improve a system for fine-grained parallelism we sought to minimize provionsing overhead. Before we optimized either system we painted an detailed picture of each systems performance. In doing so we found inefficient mechanisms in each system. We modified those mechanisms to improve throughput for Parsl and cold start for Globus Compute.
BIBLIOGRAPHY


