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ABSTRACT

In recent years we have witnessed large changes in how HPC users express
their applications. While many applications still use traditional languages(e.g. C,
Fortran) and frameworks(e.g. OpenMP, MPI), new applications are trending towards
orchestration. Frameworks such as Parsl [2] and Dask [3] have marked this new era
of high-performance computing. Scientists glue these frameworks together with high-
performant simulation and data analysis applications written in low-level languages.
With this shift towards orchestration, we see serverless computing, a new model of
computation taking hold. Using the serverless model, scientists register a compute
task with a serverless platform and specify the set of resources that the task can
be deployed on. In recent years, orchestration and serverless have trended towards
decomposing applications into smaller tasks. This trend is rooted in the fact that
decomposing coarse-grained jobs into fine—grained tasks enables clusters to make more
precise scheduling decisions. Current HPC orchestration and serverless frameworks
efficiently launch and manage coarse-grained jobs, however, they struggle to do the
same for fine—grained tasks. In this work we investigate the mechanisms that compose
orchestration systems and improve those mechanisms for fine-grained parallelism. We
also examine how serverless frameworks are used in the context of HPC systems. For
HPC serverless frameworks we propose changes to their software stack to improve
their performance. We conclude this work by discussing future directions for fine-

grained parallelism in HPC.
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CHAPTER 1
INTRODUCTION

In this thesis we present an exploration of fine—grained parallelism in two
contexts. First we address fine—grained parallelism in orchestrating scientific work-
flows [4]. We focus on Parsl, an orchestration framework. We disect and improve
Parsl’s throughput. Second we explore cold start time in serverless computing [5].
We reduce cold start time by replacing containers with unikernels. We argue that re-
ducing cold start time is also a question of fine—grained parallelism. Before exploring

each work, we first define some terms.
1.1 Fine—grained Parallelism

Traditional High-Performance Computing(HPC) applications are composed of
simulations followed by analyzing the data produced in the simulation step [0 [7]. In
traditional HPC workflows users submit workloads to supercomputers as large batch

processing jobs. These batch-processing jobs can take hours to days.

In recent years we have seen the case made for fine—grained parallelism in
HPC [7] and Data centers [8,[9]. Raicu et al.[7] argues that small tasks enable clusters
to make precise scheduling decisions and rapidly respond to changes in compute load.
Increasingly, we see that scientific programs run many very short tasks (e.g., for
machine learning inference) across large-scale HPC systems comprised of thousands
of nodes and tens of thousands (or more) cores. The demand for these characteristics
in software systems has led to a plethora of frameworks for both HPC [10} 11, [12]

and Data centers [9] [I3], 14] that are optimized for small tasks.

Python has become one of the most pervasive programming languages, in



part because it is a language that enables beginners and experts to quickly develop
programs. Python offers a simple interface, clear error messages, and rapid devel-
opment time. Given Python’s robust numerical libraries and extensive ecosystem of
scientific frameworks, many make use of Python for scientific computations. The ad-
vantages of Python lead to the development of Parsl [2], a Python-based continuation
of Swift [I5]. Parsl is task parallel workflow system written to orchestrate scientific
applications. Addressing modern workload requirements increasingly relies on the
use of parallel and distributed computing resources; unfortunately, Python’s heavy
interpreter and Global Interpreter Lock (GIL) make it difficult to scale. While there
are plans to remove the GIL, Parsl was constructed around the GIL, and thus our
improvements are constructed with the GIL in mind. Various Python-based libraries
have been developed to overcome these limitations and enable distributed execution
in Python [3| 16 2]. We focus on Parsl, a parallel programming library that main-
tains Python’s accessible user interface while dispatching code for concurrent and
asynchronous execution on both local and remote computing resources. Parsl’s low
relative throughput implies it that the overhead to launch a task is relatively high.
This high overhead effectively caps the scale of deployment. Parsl is used for a diverse
range of scientific applications and is deployed on large supercomputers at enormous
scales (thousands of nodes and hundreds of thousands of cores). A review of various

Parsl applications shows that some tasks run for short durations.

Parsl’s low throughput effectively caps the scale of deployment due. An anal-
ysis of Globus Compute [I7] workloads [18], a Python-based serverless computing
framework for HPC that relies on Parsl for task execution, found that the median

task time was 340ms.

Motivated by these small tasks we seek to understand the limitations of Parsl’s

performance and indirectly the limitations of using Python for such purposes. We



conduct an extensive empirical evaluation of Parsl and illustrate a detailed picture of
Parsl’s runtime. We identify areas for improvement and conduct experiments to eval-
uate the efficacy of these changes. Ultimately, we identify shortcomings that cannot
be resolved in Python and implement a C version of Parsl’s scheduler. We show that
our optimizations and new C implementation achieves six-fold better performance on
microbenchmarks. Furthermore, we benchmark our improvements using a common

scientific application and demonstrate throughput improvements.
1.2 Orchestration

Recent work [2] in HPC has identified orchestration as an in-demand fea-
ture in modern HPC frameworks. This demand is rooted in the number of software
tools modern science applications are composed of. Today’s scientists write higher-
level programs that stitch together components written in efficient lower-level lan-
guages(e.g., C/C++). Parsl and other orchestration framework [2], [15] [3, 16] play the
role of managing the data and dependencies between lower-level software frameworks.
This new requirement of HPC frameworks introduces new challenges. In this work,

we address the challenge of orchestrating software with smaller granularity tasks.
1.3 Serverless

Serverless computing provides an abstraction for compute resources that en-
able users to deploy compute on laptops, clusters, and edge devices. To deploy jobs
on diverse computing platforms Serverless frameworks execute jobs within contain-
ers. Containers enable deployment on multiple platforms by creating environments
with the necessary libraries and dependencies for execution and isolating execution
between functions. Wrapping libraries and dependencies in a container solves the
portability problem, however, they incur some overhead due to the time required to

spin up a container. Because of the startup overhead of containers, users must deploy



functions much larger than the overhead cost.
1.4 Thesis Outline

This thesis discusses two works and is structured as follows. In|Chapter 2| we
examine Parsl. We analyze Parsl’s throughput from different perspectives and use
that information to guide performance optimizations. We conclude show-
ing that Parsl competitive with existing parallel workflow systems and showing that
the performance gains we observe in microbenchmarks carry over to real scientific
applications. In we focus on Globus Compute. We explore the cold-start
times of common container and virtualization technologies(Docker and Firecracker).
Finding that these technologies have significant cold-start time, we explore a new ap-
proach using Python Unikernels. Unikernels have low cold-start time as they include
only necessary libraries and system programs. Critically, unikernels, when executed
as virtual machines, move libraries from disk to memory. In [Chapter 4, we argue
that both works are questions of fine—grained parallelism. Our first work addresses
fine—grained parallelism directly. However, in reducing serverless cold start times in
our second work we enable efficient execution of short duration functions(i.e. finer—
grained tasks). We conclude by discussing our general approach toward improving
applications for fine-grained parallelism and the implications of having computing

infrastructure built for fine-grained parallelism.



CHAPTER 2
FINE-GRAINED PARALLELISM IN PARSL

Parsl is used for a diverse range of scientific applications and is deployed on
large supercomputers at enormous scales (thousands of nodes and hundreds of thou-
sands of cores [2]). A review of various Parsl applications shows that some tasks run
for short durations, effectively capping the scale of deployment due to the limited
throughput. An analysis of Globus Compute workloads [18], a Python-based server-
less computing framework for HPC [I7] that relies on Parsl for task execution, found

that the median task time was 340ms.

Motivated by these small tasks we seek to understand the limitations of Parsl’s
performance and indirectly the limitations of using Python for such purposes. We
conduct an extensive empirical evaluation of Parsl and illustrate a detailed picture of
Parsl’s runtime. We identify areas for improvement and conduct experiments to eval-
uate the efficacy of these changes. Ultimately, we identify shortcomings that cannot
be resolved in Python and implement a C version of Parsl’s scheduler. We show that
our optimizations and new C implementation achieves six-fold better performance on
microbenchmarks. Furthermore, we benchmark our improvements using a common

scientific application and demonstrate throughput improvements.

In this work we contribute the following.

e In-depth analysis of a modern Python workflow system
e Scheduler improvements for fine-grain parallelism

e Comparison of task-based parallel workflow systems



This chapter is structured as follows. In we describe the Parsl
architecture. In we analyze Parsl’s performance from two perspectives. We
first understand Parsl by profiling each component in its execution pipeline. Second,
we place timestamps on each task to understand in which component do tasks spend
most of their time. Informed by profiling and tagging data in we describe
the changes we made to Parsl’s components to improve throughput. we
evaluate the optimizations described in [Section 2.3] We discuss the limitations of

our solutions in [Section 2.6l In [Section 2.5 we discuss related work and conclude our
findings in Section 2.1

2.1 Parsl Architecture

To give a background for our analysis we briefly describe Parsl’s architecture.
The relevant parts of Parsl’s architecture are shown in [Figure 2.1, We explain each

component and relate them to common elements of parallel programming frameworks.

2.1.1 Dataflow Kernel. The DataFlow Kernel (DFK) is Parsl’s scheduler. It is
responsible for selecting an appropriate resource for execution and dispatching tasks
to that resource. The DFK maintains a dictionary of Task Records that maps task id
to task record objects. Each task ¢, with dependencies t, ..., t,, is assigned a callback
function that attempts to launch all dependent tasks to, ..., ¢, when it (task ¢) has
finished. The DFK automatically memoizes tasks to decrease redundant computation.

The DFK is written entirely in Python.

2.1.2 Executor. The ezecutor is an abstraction for computation resources. Parsl
maintains several executors that are built for different types of workloads: High-
Throughput Executor, Low Latency Executor, and Extreme-Scale Executor. Several
external executors have also been integrated, such as RADICAL-Cybertools [19],

Flux [20], and WorkQueue [21]. The executor is associated with a provider, which
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allows Parsl to elastically provision compute resources via different interfaces (e.g.,
batch scheduler, container orchestration system, or cloud API). The DFK, executor,
and provider are all started by the same Python interpreter. The executor manages
computation resources and partitions compute nodes into blocks. The user allocates
a minimum number of blocks, configures the number of nodes per block, and sets a
maximum number of blocks. Given that information, the executor will dynamically
add blocks and remove blocks. In this work, we focus on Parsl’s default executor, the

High Throughput Executor (HTEX).

2.1.3 Interchange. The interchange is a critical part of Parsl’s execution frame-
work. It enables the use of supercomputers, clouds, and clusters. The interchange
is deployed on the same node as the DFK and executor but lies within a separate
Python interpreter. The interchange receives tasks from the executor and sends tasks
to managers via Zero-MQ sockets(which wrap linux sockets in a flexible interface).
The interchange maintains a queue for tasks and results. It combines tasks into
batches and sends the batches to managers. The interchange chooses the manager
based on the manager’s advertised capacity (in terms of number of tasks). The inter-
change is responsible for tracking the status of workers, it does this by occasionally
sending messages to workers. Since the interchange interacts directly with managers
it is responsible for load balancing. The interchange tracks each manager’s capacity.
It sends batches of tasks to a manager so long as the number of tasks assigned to it

is less than its capacity.

2.1.4 Manager. Managers are responsible for a subset of workers on a node.
Managers can reside on the same node as the DFK, executor, and interchange, how-
ever, they typically are deployed on separate compute nodes. Managers communicate
with the interchange via Zero-MQ pipes and communicate with their workers via

IPC queues. The same result and task queues are shared by the manager and all



of its workers. During initialization, the manager creates separate processes for each
worker and begins sending them tasks. Managers effectively allow for multiplexing
of communication from the interchange to the many workers deployed on a node and

allow Parsl to consume fewer ports on each node.

2.1.5 Worker. Workers receive tasks from managers, execute tasks, and return
their results back to managers. They are single-threaded Python processes that al-

ways reside on the same node as their manager.

2.2 Analysis of Parsl’s Throughput To build a comprehensive image of Parsl we
employ two methods to measure performance. First, we profile the Python processes
for each component. Some of the components are I/O heavy (e.g., interchange)
thus they are multi-threaded processes. For these processes, we profile each thread.
Second, we augment the Parsl codebase to capture the timestamps when entering and
exiting each component. This approach captures where time is spent from the task’s
perspective. For both methods we used a no-op workload, so we could isolate system
overheads from execution of the task. It is essential to note that we chose to augment
the code rather than use Parsl’s existing logging mechanism as our initial profiling
data showed that logging consumed a significant portion of the time in the DFK.
When we disabled all loging Parsl’s throughput increased from 1200 to 4000 tasks
per second. Our experiments used Python version 3.10 and Parsl version 1.3.0 dev.
Single-node experiments were conducted on a testbed using Ubuntu 22.04 with Linux
kernel version 5.15. This node has 770GiB of RAM and 8 Intel Xeon Platinum 8160
each having 24 cores with 2 hardware threads per core. The multi-node experimental

setup is discussed later.
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2.2.1 Profiling.
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DFK + Executor
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Figure 2.2. Profiling data showing the time spent in the major components of the
Parsl architecture. The figure categorizes time spent in each function in the Parsl
source code among ten categories. Time is normalized for each component.

The following profiling data is obtained from an experiment where we executed
10k no-op tasks on a single node with 192 workers. We configured Parsl such that
each manager is responsible for eight workers, resulting in 24 managers.
shows the results from profiling. The raw profiling data includes a list of functions
called within Parsl and the time spent in each of those functions. We categorized
each function and divided the time consumed by each category by total thread time,
returning the proportion of time dedicated to each category. We discuss each thread

in order of task submission.

2.2.1.1 Dataflow Kernel and Executor. The first bar in corresponds
to DFK and HTEX. The DFK and HTEX live in the same process and the DFK
invokes HTEX via Python function calls, thus they occupy the same thread. Our
initial observation is that the bulk of time is spent submitting a task. Communication,
composed of categories Send and Poll are the most expensive. The functions apart of
the communication category are responsible for queuing tasks within the interchange.

Parsl operations consume a fifth of total time and are concerned with managing
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Parsl’s task launch state. Those functions include(in order of invocation) dfk.submit,

dfk.launch_if ready, dfk.launch, and htex.submit.

2.2.1.2 Interchange. The interchange is a multi-threaded process. Its main
thread is responsible for sending results back to HT'EX and sending tasks to available
managers. [ts command thread ensures that workers are alive and allows the user to
manually kill workers. Lastly, its Task puller thread receives work from HTEX. The
profiling results of each thread are represented by separate rows in [Figure 2.2]

Task Puller Thread. The task puller thread pops tasks from a ZMQ socket that
connects the interchange and executor. The tasks it receives are immediately placed
in an in-process queue within the interchange. From this queue, the main thread pulls
tasks. The third row in shows where time is spent in the task puller thread.
The task puller thread spends upwards of 95% of time receiving tasks. The next most
significant cost is deserializing the Python objects it receives which consumes ~1.5%

of time. Finally placing the tasks on the internal queue consumes ~1% of time.

Main Thread. Similar to the DFK, communication dominates work performed
by the interchange’s main thread. However, in this case, Poll accounts for most of
communication time. The main thread waits for tasks on an in-process queue between
it and the task puller thread. After polling, Send, which involves sending a batch of

tasks to a manager consumes the next most time.

Command Thread. The command thread has little activity. The Python inter-
preter spends the least time on this thread. Almost all of its time is spent receiving
confirmation messages from workers. Most of the functions called in this thread are

invoked less than 10 times.
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2.2.1.3 Manager. The manager is a dual-threaded process. It contains a thread
that pulls tasks from the interchange and sends those tasks to workers and a thread
that pulls results from the workers and pushes results to the interchange. Both the

threads within the manager are I/O bound.

Task Puller thread. Polling the ZMQ socket consumes most (approximately 90%)

time in this thread. While the other operations consume little time.

Result Pusher thread. The result pusher thread’s profiling information is displayed
in the sixth row of Like the interchange’s main thread, polling accounts for
roughly three-quarters of thread time. Unlike the previous threads, queue operations
are the next most expensive category. This category is composed of functions that
wait for and pop results from the worker’s results queue. Little time is spent sending
results to the interchange, roughly 2.5%. The fact that the majority of the time is
spent polling suggests that even with 100s of workers computing results, the workers

are unable to saturate the queue.

2.2.1.4 Worker. Workers are single-threaded Python processes that lie at the
end of the execution pipeline. Workers pop tasks off the queue they share with
their manager and place results in a separate queue. They receive tasks as serialized
Python objects, so deserialization is a cost that workers pay for each task as well as
serializing results. The last row of displays the profiling data from the
worker. The worker’s profiling data shows two functions consume most of its time.
Reading bytes from the task queue consumes ~60% of time. The other ~40% of time

is spent contending over the Semaphore that protects the tasks queue.

2.2.1.5 Profiling Summary. For all processes, communication in some form
consumed most time. Every process/thread downstream of the interchange’s task

puller thread spent most of its time polling. While the interchange’s task puller
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thread spent most of its time receiving Python objects, this suggests that tasks might
face a bottleneck within the interchange. Although receive accounted for most of the

worker’s time, workers spent a substantial amount of time contending for a semaphore.

2.2.2 Tagging.
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Figure 2.3. Average time (microseconds) spent in each Parsl component and com-
munication for each task in a workload with 10k no-op tasks. Top figures shows
tagging data from each component. Bottom figure shows tagging data from each
mechanism(communication and threads) within the interchange.

Profiling showed where time was spent from the perspective of the process.
This information yielded insights that informed our optimizations; however, it does
not tell the complete story. We now explore performance from the perspective of a
task (rather than the processes). We use a method we call tagging to track where
tasks spent their time during execution. summarizes our results for a no-op

workload with 10k tasks using 192 workers and a single manager.
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is a logarithmic graph that shows the average number of microsec-
onds tasks spent in each component and communication channel throughout the entire
10k no-op workload. Tasks spend an order of magnitude more time within the inter-
change than other components. shows that tasks are piling up in the queue
between the interchange’s main and task puller threads. Tasks spend more time on

average within that queue than they do in all other components combined.

The second most costly component is the ZMQ connection between HTEX and
the interchange. Tasks likely begin to pile up in this component after the interchange’s

internal queue.

After the HTEX-interchange ZMQ socket, tasks spend the most time within
workers and the manager-worker in-process queue. Tasks spending significant time
within the worker may be surprising because the workload is a no-op and the worker
code is simple. However, recall that workers spend upwards of 40% of their time

contending for a Semaphore, and thus tasks stall, waiting within the worker.

As mentioned previously managers can be deployed on separate nodes thus the
queue between the interchange and manager is unique to each manager and uses a

ZMQ socket. This communication channel is the least expensive channel on average.

Tasks spend little time in the DFK, HTEX, and Managers. The DFK deter-
mines if a task can be launched. When HTEX is invoked, it stores some state about
the task and places the task on the pipe. The difference in responsibilities explains
the gap in time cost. Workers place themselves in a queue when they can receive
work, and the manager sends work to workers in the queue. When a worker receives
work it pops itself off that queue. The simplicity of the manager’s role explains its

low cost.
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2.3 Optimizations

We build upon the detailed analysis performed in previous sections to motivate
several important optimizations. We both augment Parsl’s architecture as well as

modify data structures used for communication.

2.3.1 Cut out the Middleman. We learned from tagging data that tasks spend
on average 10*us in the interchange. That makes the interchange 10 times costly
than any other component. The interchange is a component that performs multiple
roles (e.g., fault tolerance, and load balancing). Given its complexity and that tasks
pile up in its internal queue we decided to remove the interchange altogether. In this
exercise, we also removed the manager because it exists to reduce the number of ports

consumed by Parsl on a singular node. We call this the DIRect to worker EXecutor

(DIREX).

Removal of the interchange restricts Parsl to operate on a single node. The
interchange is core to Parsl’s fault tolerance, thus removing it exposes our experi-
ments to the failures of workers. Workers may crash during computation, if a worker
was computing a task that has dependencies when it crashed then none of its de-
pendencies could be launched, causing the entire computation to fail. Using no-ops
for our benchmarks temporarily buries that concern, since there are no dependencies.
However, for some workloads, the exchange of fault tolerance for performance may

not be possible.

2.3.2 Worker Queues. Profiling showed that workers spent a large portion
of their time contending over the semaphore that protects the task queue between
them and their manager. Semaphore contention is expensive even when the worker
count is small. To reduce this cost we assign a task queue to each of the workers.

Though semaphores are still protecting the queues, decreasing the number of workers
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contending for that semaphore to one worker minimizes its cost. Workers are assigned

tasks in a round-robin manner.

2.3.3 Implementing the DFK in C. The DFK is core to the performance of
the entire runtime system. If the DFK cannot create and schedule a million tasks
per second then Parsl could never execute a million tasks per second. In
we demonstrated that the DFK and HTEX are inexpensive for each task, however,
it is important to note that the average task submit time was 100us. To achieve
10k tasks per second, we would need to have an average turnaround time for an
entire task of 100us. Of course, many components can be parallelized, Parsl can have
multiple executors, thus multiple interchanges and multiple managers supervising

many workers, however, in its current form every task will pay that 100us toll.

When investigating the causes of the submit cost in the DFK we found many
necessary, but computationally trivial, operations that collectively are very expensive.
Even the operations that we believed should be inexpensive, such as creating a Task
Record object, took 5us which is a non-trivial amount of time if we aim for a total

time of 100us.

We choose C over other low-level languages because it provides high per-
formance and integrates well with CPython. CPython is the most commonly used
Python implementation. Integrating C/C++ code with Python is made simple with
CPython’s C/C++ APIL. We leverage the C/C++ API to decrease the overhead of

scheduling task in Parsl.

Memory footprint is an important consideration when aiming to support fine—
grained parallelism. Python represents data as objects and uses garbage collection for
memory management. Invoking 10s of thousands of tasks implicitly creates at least

10s of thousands of objects. Since Parsl represents tasks as a Task Record object
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which is a dictionary, many objects are created for each task.

In implementing the DFK in C we represent tasks as structs. Our task struct
consumes 128 bytes plus the size of its Python objects. Using Python’s sys library
to measure the size of an empty Task Record we found a Task Record in Python

consumes at least 232 bytes plus the size of its Python objects.

2.3.4 Bringing it all Together. Removing the interchange and giving each
worker its task queue will decrease the cost of sending tasks to workers. Improving
the latency of the execution pipeline increases throughput, assuming that the DFK
can launch tasks quickly enough. The C implementation of the DFK produces many

more tasks per second than the Python DFK.
2.4 Evaluation

We evaluate the performance of our optimizations and the C implementation
of the Parsl DFK. The evaluation was performed on the Mystic testbed, as discussed

previously.

2.4.1 Removing the Interchange. To remove the interchange we modified
DIREX such that it would spawn its workers. Using a no-op workload with 10k tasks

we compare throughput achieved by HTEX and DIREX as a function of the number
of workers in [Figure 2.4]

shows that with the interchange removed Parsl using DIREX achieves
the same throughput with 1 worker as Parsl using HTEX does with hundreds of work-
ers. This clearly demonstrates that workers are not saturated. Workers could handle
many more tasks if Parsl were able to produce more of them. While removing the
interchange increases the throughput of Parsl with low worker counts, at scale, the
throughput improvements are minimal at ~15%. Moreover, DIREX experiences a

slight decrease in throughput as the worker count increases.
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Figure 2.4. DIREX vs HTEX throughput compared using 10k no-op tasks. Left:
throughput as we increase the number of workers. Right: profiling Data from a
DIREX worker.

also shows profiling data from a DIREX worker. Using a single
worker resulted in semaphore contention accounting for an immeasurable amount of
time. Like all previous threads, communication dominates, however, the category
Python Std Lib now consumes 10% of total thread time. Functions in the Python
Std Lib category include time.sleep and ezec. Exec is used to execute the task and
time.sleep is the task body itself. Thus removing the interchange has increased the

utilization of the worker.

2.4.2 Worker Queues. igure 2.5 shows the throughput of Parsl when workers
each pop tasks of the same queue and when workers have their own task queues.
As expected, neither scales well, and both show similar trends in throughput. How-
ever, the multi-queue model has consistently lower throughput. The difference in
throughput is not trivial either, it erases the slight throughput gains from removing

the interchange and manager.

show the profiling data collected from the workers. Profiling single-
queue workers shows that semaphore contention becomes even more expensive when
the interchange is removed, however, as shown in the profiling data of multi-queue

workers all of that cost is shifted back to reading bytes off the queue.
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Figure 2.5. Comparison of throughput when workers share a single task queue (single)
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We conclude that while semaphore contention is expensive, the use of semaphores
does not impede throughput. This further motivates our optimization to remove this

lock—workers spend 85% of their time acquiring this lock.

o o o Iy
I ) © o

Percentage of Thread Time
o
N

00 e — —

Recy  Pytho, Stq Litl)Je/s@,,-a /iz/',?u

Lock Recy, Pytho, De/seri. Quey ey
Operatio, " Std Ljpy SMalizing'® g OPeratjy,

9 ODerat,'On
Category Category

Figure 2.6. Left: Profiling data from a worker receiving tasks via a single queue.
Right: Profiling data from a worker receiving tasks with multi-queue.

2.4.3 Moving the DFK to C. We now explore throughput and memory footprint

of the C DFK. We finally evaluate performance when combining the C implementation

with DIREX.
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2.4.3.1 Throughput. Results from above suggest that the workers were not satu-
rated. Profiling showed that Semaphore contention consumed significant time for the
workers, but, we did not achieve a significant throughput improvement by removing
these semaphores. Similarly, the modest gains to maximum throughput from remov-
ing the interchange combined with the increased utilization of the workers implies
that there are still throughput gains to be realized from increasing the throughput of

Parsl’s scheduler.
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Figure 2.7. Throughput for the Python and C implementations of the DFK for a
100k no-op workload with varying workers.

compares the throughput accomplished during a 100k no-ops work-
load with varying amounts of workers. The C implementation of the DFK achieves
a maximum throughput double that of standard Python implementation. While the
Python DFK scales linearly with a worker count of up to 128 workers, the C DFK
never experiences linear scaling. Its maximum throughput is reached with 8 workers.
Furthermore, its throughput with 1 worker is similar to the Python DFK’s throughput
with many workers. The benchmark in does not include any of the pre-
vious changes. The current C DFK implementation is integrated into Parsl without

changes to the executor, interchange, manager, and worker.

Given that CDFK is functional with HTEX(i.e. it can communicate with the
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Figure 2.8. Throughput for the Python and C implementations of the DFK for a 10k
no-op workload with varying workers.

interchange), we can deploy work tasks over multiple nodes. shows the
throughput achieved using one node and eight nodes. Each node is identical using
CentOS 8 with Linux kernel version 4.18. They have 2 Intel Xeon Silver 4108 with
8 cores and 2 hardware threads per core, 64GB of DRAM, and Mellanox MT27800
Network cards.With few workers the single node outperforms multi-node. As the
number of workers increases the performance of both converge. This demonstrates

that our improvements are applicable to large-scale Python workflows.

2.4.3.2 Memory footprint. With small task counts, necessarily the number of
Python objects will be small, and as the task count increases the number of Python
objects increases. A large number of Python objects becomes a problem for Python’s
garbage collector. shows the throughput difference between the Python

DFK with the garbage collector turned on and turned off.

Turning off the garbage collector is simple, however, we do not want our target
users, domain scientists, disabling and enabling the garbage collector for improved
performance. It could also be dangerous with many task workloads. Having many
millions or tens of millions of outstanding Python objects, many of which are Task

Records, and the objects they store could cause other issues. is a log plot
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Figure 2.9. Left: number of objects created in the Python and C DFK as we increase
the number of tasks.Right: Throughput comparison with and without the garbage
collector for the Python DFK as we increase the number of tasks.

displaying the difference in object count between standard Parsl’s DFK and C DFK

Parsl. The workload used was no-op with varying amounts of tasks.

The gap in object count is roughly 10 times the task count. For example, the
final data point shows that C DFK Parsl had approximately 2.6 million Python ob-
jects after executing 100k no-ops, while Parsl had 3.6 million Python objects. Careful
readers will point out that since the DFK has been moved to C, Python’s garbage
collector should not impact our performance. However, recall that the executor and
DFK are in the same process. Therefore the executor and DFK share the garbage
collector and C DFK creates and tracks Python objects for its tasks, so polluting the

interpreter with 100s of thousands more objects could slightly impact throughput.
2.4.3.3 C DFK + DIREX.

We finally integrate the above optimizations and evaluate performance. Re-
call, the C DFK, which increases the rate of scheduling tasks, and DIREX, which
minimizes the latency of the execution pipeline complement each other. We compare
performance against standard Parsl as well as against Dask [3] and Ray [16], two of
the most widely used Python parallelism libraries (although more than 70% of Ray

is implemented in C++).
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[Figure 2.11]shows a peak throughput of roughy 14k tasks per second is achieved
with C DFK using DIREX with 4 workers. Previous experiments showed that neither
C DFK nor DIREX achieved linear scaling by themselves, however, Parsl achieves
linear scaling. While C DFK + DIREX achieves a higher maximum throughput it
too does not scale. C DFK with or without DIREX achieves similar throughput. After
reaching a maximum throughput with 4 workers it experiences decreased throughput
when worker count is increased. The throughput of C DFK using HTEX or DIREX
during a no-op workload with 1 worker is around 8k tasks per second. This high
baseline throughput linear scaling with C DFK would imply ~500k tasks per second

with hundreds of workers.

also shows the same experiment performed using Parsl’s Python
DFK with HTEX. Throughput for tasks of granularity Ous, 1us, and 10us have the
same trend lines and are unaffected by task duration. Task duration begins to affect

throughput at 10ms granularity.

While CDFK + DIREX achieves higher maximum throughput on finer gran-
ularity tasks(Ous 10us) Ray, shown in achieves better scaling and higher
throughput for coarse grain tasks. Executing 10ms tasks Ray achieves nearly 8k tasks
per second with 128 workers, while CDFK + DIREX does not scale past 8 workers
and peaks at around 7k tasks per second. Ray scales with 1ms tasks similarly to how

it scales with 10ms tasks.

also shows the performance of Dask. Dask achieves peak perfor-
mance with around 16 workers, afterwards, it experiences decreased throughput per
worker. In comparison Parsl scales much better, handling up to 128 workers before
throughput drops. Important to note is that Dask’s throughput for millisecond and
microsecond no-ops tasks are the same. Suggesting that the minimum task granular-

ity for Dask is much higher than for Ray or Parsl. Similar conclusions were made in
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Figure 2.12. ParslDock runtime for Serial, Standard Parsl, and CDFK implementa-
tions for different batch sizes as we scale the number of workers.

Slaughter et al. [22].
2.4.4 Scientific Application.

Finally, we explore performance of our techniques on a real-world protein dock-
ing workflow. Protein docking is a computational method used in molecular biology
to predict the structure of protein complexes formed when two or more proteins in-
teract. This technique is vital in understanding biological processes and designing
therapeutic drugs. It involves simulating the process by which proteins fit together
or ‘dock’ to form a stable complex. This is akin to finding the correct way two puz-
zle pieces fit together among myriad possibilities. This docking process is driven by
several factors, including shape complementarity, electrostatic attractions, and hy-
drophobic interactions. As proteins are highly flexible and complex molecules, the

problem of predicting their interactions is computationally demanding.

A typical docking computation can take over 10 minutes on a single core; a
typical workload involves multiple protein receptors with millions of possible ligands
to dock, yielding a total runtime for a brute force approach to be over 21M CPU-
hours. This high computational requirement has motivated researchers to leverage

machine learning methods to expedite screening.

ParslDock [23], a docking simulation coordinated with Parsl, aims to identify
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the “best” ligands from a large dataset of potential molecules by efficiently combining
simulation(i.e. docking) and machine learning algorithms on high-performance com-
puting resources. The computational complexity of brute force docking applications

is reduced through machine learning methods.

Key to this work is the workflow graph generated by ParslDock. Each task
consists of a molecule that is formatted and passed to a machine-learning module
for inference. This generates a bag-of-tasks graph, such a task graph is highly par-
allelizable and has very short-running tasks. We use this scientific application to

demonstrate the improved performance achieved by our optimizations.

We execute ParslDock on the Mystic testbed mentioned previously. The dock-
ing simulation displayed in shows runtime with varying numbers of work-
ers and batch size. The simulation was run across 100k total molecules For serial,
standard Parsl with Python DFK, and CDFK. We see the best runtimes are achieved
with the largest batch size. This suggests that there is still an opportunity to improve

performance for fine—grained tasks.

The leftmost plot in[Figure 2.12]shows the runtime of the docking simulation as
a function of the batch size using serial code. Using a batch size of 1000 molecules the
serial code achieves a runtime of around ~35 seconds. The middle plot in[Figure 2.12
displays the runtime achieved by standard Parsl with the Python DFK. Parsl achieves
its lowest runtime using 8 workers with a batch size of 1000, ~11s. With standard
Parsl using many workers or few workers returns a high runtime, ~100 seconds.
The rightmost plot in shows the runtime achieved by CDFK Parsl. It
scales linearly with the number of workers used, plateauing with hundreds of workers.
CDFK Parsl with 128 workers and a batch size of 1000 simulates 100k molecules in
~1.5 seconds. This runtime is 10x faster than standard Parsl’s lowest runtime and

30x faster than serial.
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2.5 Related Work

Rust Dask Scheduler.[24] The most relevant related work was an investigation of
Dask’s throughput when its scheduler is implemented in Rust [24]. As discussed in
their paper Dask utilizes a work-stealing scheduler. When all of a task’s dependencies
have been resolved the task is given to a worker such that its time to start is minimized.
If there is a load imbalance, saturated workers will have tasks stolen from them
by unsaturated workers. In their work, they first compare Dask’s scheduler to a
random scheduler. In this exercise, they find that the random scheduler achieves
performance near Dask’s work-stealing schedule for many workloads. The random
scheduler achieves up to 1.4x speedup and at worst its performance is twice as slow.
Second, they compare RuSt Dask Scheduler(RSDS), a scheduler they implemented
in Rust that uses work-stealing, to Dask’s scheduler. In so doing they find that
RSDS achieves up to 4x speedup and at worst throughput slightly decreases. In their
final experiment, they compare RSDS with random scheduling to Dask’s scheduler.
This experiment demonstrates the limits of Python as RSDS outperforms Dask’s
scheduler in many cases despite using a random scheduler. Similar to the previous
experiment RSDS reaches a maximum speedup of 4x while at worst being half as
performant. They conclude that the performance gains of an intricate scheduler

cannot be actualized if the underlying runtime system is inefficient.

Ray [10] is a distributed computing framework tailored towards AI applications.
Since many Al applications are written in Python users interact with Ray using a
Python API. Much like Parsl, Ray models computation with a dynamic task graph.
In Ray, a task represents stateless computation while an actor represents stateful
computation. Ray uses a bottom-up scheduler, each node has a local scheduler for its
workers, who communicate with a global scheduler when necessary. When a task is

created on a node, its local scheduler will attempt to assign a worker to that task.
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When a local scheduler is unable to assign the task to a local worker it will forward
that task to the global scheduler. Using this scheduling system along with other
components Ray achieves a million tasks per second at scale. Though Ray is accessed
via its Python API, 72% of Ray’s System layer is written in C++. This shows that
Python frameworks can achieve high throughput when their underlying system code

is written in a performant language.

TaskBench [22] is a framework that measures the performance of parallel run-
time systems that make use of task parallelism. One of the major contributions
of TaskBench was Minimum Effective Task Granularity (METG). METG is a metric
that quantifies the efficiency of a workflow system at a given task granularity and is
parameterized by efficiency. Slaughter et al. apply this metric to OpenMP, OpenMP
+ MPI, Dask, OpenMP task, StarPU, Tensorflow, and more. They measure METG
as a function of task granularity and find the threshold at which efficiency dips below
50%. Implicitly our work seeks to decrease METG for Parsl. We do not integrate
Parsl into TaskBench, however, we measure the throughput of Parsl at different gran-

ularities with and without the optimizations we apply in later sections.

2.6 Limitations DIREX imposes the greatest limitations on Parsl. DIREX sends
tasks to workers using an interprocess queue between itself and its workers. In con-
trast, HTEX uses ZMQ sockets to communicate with managers, who ultimately use
interprocess queues to send tasks and receive results from workers. The usage of inter-
process queues instead of ZMQ sockets disables DIREX from coordinating workflows

across multiple nodes.

2.7 Conclusions and Future Work In this work, we investigated and improved
Parsl’s ability to manage fine—grained tasks. We first rigorously investigated how
processes and task spend their time and then used the data we collected to motivate

changes to Parsl’s execution pipeline. The profiling data we collected led us to believe
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that the semaphores on the manager-worker IPC were a bottleneck in throughput;
however, we did not see a significant improvement in throughput after removing
the semaphores. The optimizations motivated by tagging data (i.e., C-DFK and
removing interchange) increased throughput. We conclude that while profiling data
can be useful, for task-based parallel systems, where the journey of the task is most
important for throughput tracking the individual task throughout a workload returns

the most useful data.

This work lead us to conclude that the barrier to high throughput in Python-
based parallel workflow systems is much closer to the throughput experienced by the
system than first thought. Python is a high-level language that sacrifices performance
for accessibility. Given that, one should expect Python frameworks to be less per-
formant than C frameworks, however, we did not expect the barrier to be at our
doorstep. Through rigorous exploration of Parsl’s execution pipeline, we found that
trivial operations consume non-trivial amounts of time, leading us to move critical

components of Parsl out of Python.

In the future, we plan to collect more scientific applications to further validate
our findings. Given that machine learning inference tasks effectively have no depen-
dencies and do not require I/0 inside the worker, we seek applications that will place

a greater strain on our systems.
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CHAPTER 3
FINE-GRAINED PARALLELISM IN GLOBUS COMPUTE

Function-as-a-Service (FaaS) platforms typically deploy containers in which functions
are executed. Containers serve not only to isolate execution between functions, but
also to create environments with the necessary libraries and dependencies for execu-
tion. While containers solve the portability problem they incur some overhead due

to the time required to start (“cold-start” time).

We focus on improving the cold-start time as part of the Globus Compute
(previously funcX) platform. Globus Compute implements a federated FaaS model
in which Python functions can be executed on remote computing systems, often HPC
systems. Previous research has explored the challenges of scaling Python on HPC
systems, showing that the time to import common Python libraries can take up to 10
of minutes. We explore the cold-start times of common container and virtualization
technologies(Docker and Firecracker). Finding that these technologies have significant
cold-start time, we explore a new approach using Python Unikernels. Unikernels have
low cold-start time as they include only necessary libraries and system programs.
Critically, unikernels, when executed as virtual machines, move libraries from disk to

memory.
3.1 Background

In HPC environments libraries and containers must be loaded from shared
file systems. Shared file systems distribute chunks of files across nodes within the
cluster. File stripping improves read performance on large files since a few network
and OS invocations are amortized across many blocks and reads are parallelized across

nodes. However, for small files, the opportunity for parallelizing 1/O is diminished and
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they incur the same cost on the metadata store as large files. Unfortunately, many
Python libraries are composed of many small files. shows the number
of files accessed for common libraries used in Globus Compute. We see libraries
like Tensorflow access thousands of files. shows the time taken to load
Tensorflow as we increase the number of nodes on the Theta supercomputer [1]. We

see that it takes up to 10 minutes even on a modest number of nodes.
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Figure 3.1. Amount of time taken to import Tensorflow across multiple nodes [I]
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3.2 Approach

We seek to improve cold start time for scientific workflows on HPC systems
with Python Unikernels. We first evaluated existing solutions such as Firecracker, a
lightweight virtual machine manager and Docker, a container management system.
On both Firecracker and Docker we run Alpine Linux, a lightweight Linux distri-
bution. We then integrated Docker and Firecracker into Parsl, the Python-based
parallel runtime used in Globus Compute. In Parsl, VMs and containers are used for

the worker processes.

We employ Python unikernels to wrap the entire application including libraries
and runtime systems into a single image. This allows us to cater system calls and
other low level utilities towards our applications, and remove unnecessary utilities. We
use Unikraft [25], a framework for building unikernels, to build our images because
it provides a uniform interface. Using unikernels gives the application developer
access OS mechanisms(e.g scheduler, drivers, page allocator). To further reduce cold
start time developers can leverage these mechanisms. For example, SEUSS [26] is
an operating system that improves on cold start by creating snapshots of unikernel
images. Snapshots cache the memory and cpu state of a unikernel after booting

within the unikernel image. This allows us to avoid the cost of booting the unikernel.
3.3 Results

We measure the boot time of the Python Unikernel running on gemu-kvm, and
compare it with the boot time of Alpine Linux running on Firecracker, and Docker.
Boot times are measured within the Python interpreter. As shown in the

Unikernel boots 1.6x faster than Docker and 2.4x faster than Firecracker.

We further explore where time is spent when booting Firecracker virtual ma-

chines. shows the time consumed by different stages. Booting Alpine Linux
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Figure 3.3. Time to enter Python interpreter on different platforms

consumes a plurality of time.

Finally, we conducted a scaling experiment with Firecracker and Docker inte-
grated with Parsl. We measure the time it takes to create 240 workers across 16 nodes.
Each node has 64GBs of RAM with 2 in Intel Xeon Silver 4108 each having 8 cores
with 2 hardware threads per core. Both Docker and Firecracker images are stored
on a Lustre shared file system. In this experiment both Firecracker and Docker run

Alpine Linux. We compare Firecracker and Docker to Parsl workers that run inside

a Linux process. Similar to |Figure 3.3] in [Figure 3.5 we see that Docker out performs

Firecracker on a shared fileystem. It is important to note that the experiment did

not include large Python libraries, thus the results from Docker are optimistic.
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3.4 Summary Serverless workloads in some sense represent a worst case scenario
for HPC systems. Functions require custom execution environments composed of
various Python libraries that themselves have many small files. These environments
must be loaded in parallel. We investigate methods to improve cold start times with
Python unikernels. Unikernels move the entire execution environment into memory
turning many small reads into one big read. A secondary benefit is the low level

access that unikernels provide, which enables future optimizations for cold start.
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CHAPTER 4
CONCLUSION

In this thesis we addressed fine—grained parallelism in two contexts. First, we exam-
ined Parsl. We found Parsl’s base throughput insufficient for fine-grained parallelism.
To improve Parsl’s throughput we analyzed the cost of launching a task. We employed
two methods to understand Parl’s launch cost. Profiling each thread in Parsl’'s ex-
ecution pipeline showed us the most expensive functions. We learned that IPC and
polling were the leading cost among most threads and that semaphore contention
within worker threads consumed a large portion of time. Placing tags on each tasks
showed us where tasks spend most their time. We found that tasks spent orders of
magnitude more time within the interchange. We used this picture of Parsl’s over-
head to inform performance optimizations. Since tasks pile up in the interchange
we removed it. To eliminate semaphore contention we gave each worker a private
task queue. We found that neither optimizations scaled. This led us to question
the scheduler’s overhead. We rewrote Parsl’s scheduler in C. This final optimization

improved Parsl’s throughput at scale.

Second we examined Globus Compute. Globus Compute provides a serverless
interface to HPC applications. To manage the many dependencies of HPC applica-
tions Globus Compute makes use of containers. Containers impose a cold start cost
on applications. We sought to decrease this cost. We first painted a picture of this
cost. Serverless functions typically depend on many libraries. In some cases these
libraries are composed of many files(e.g. Tensorflow). These large libraries are taxing
on HPC shared filesytems. With this in mind, we propose replacing containers with
Python Unikernels. By using unikernels we wrap dependencies into a singular image

file. Singular large files leverage the shared file systems performance for large files.
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Unikernels enable future optimizations such as snapshoting. We evaluated the cold
start time of Python Unikernels and compared them to containers. We found that
unikernels reduce cold start time over containers even when containers do not incur

the shared filesystem cost.

The theme of this work is our in depth investigation of workflow systems.
To improve a system for fine-grained parallelism we sought to minimize provionsing
overhead. Before we optimized either system we painted an detailed picture of each
systems performance. In doing so we found inefficient mechanisms in each system.
We modified those mechanisms to improve throughput for Parsl and cold start for

Globus Compute.
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